
INVARIANCE UNDER AFFINE TRANSFORMATION IN
SEMIDEFINITE PROGRAMMING RELAXATION FOR

POLYNOMIAL OPTIMIZATION PROBLEMS

Hayato Waki, Masakazu Muramatsu and Masakazu Kojima

Abstract: Given a polynomial optimization problem (POP), any nonsingular affine transformation on its
variable vector induces an equivalent POP. Applying Lasserre’s SDP relaxation [SIAM J.Opt. 11:796–817,
2001] to the original and the transformed POPs, we have two SDPs. This paper shows that these two SDPs
are isomorphic to each other under a nonsingular linear transformation, which maps the feasible region of
one SDP onto that of the other isomorphically and preserves their objective values. This fact means that
the SDP relaxation is invariant under any nonsingular affine transformation.

Key words: polynomial optimization problem, semidefinite programming relaxation, sum of squares relax-
ation, invariance, affine transformation, polynomial SDP

Mathematics Subject Classification: 65K05, 90C22, 99C30

1 Introduction

A polynomial optimization problem (POP) is the problem of minimizing a polynomial ob-
jective function over a feasible region defined by polynomial equalities and inequalities. In
recent years, intensive and extensive studies have been done on theoretical and practical
aspects of semidefinite programming (SDP) relaxations for POPs since Lasserre’s and Par-
rilo’s pioneering works on this subject [11, 17]. See also [15, 19, 20] for earlier and more
fundamental works. In theory, Lasserre’s method constructs a sequence of SDP relaxation
problems of a given POP, whose optimal values converge the optimal value of the POP under
moderate assumptions [11, 14, 16]. In practice, some software packages [2, 18, 23] are avail-
able, and the sparse SDP relaxations [12, 22] can now be applied to large-scale POPs. Waki
et al. [22] reported numerical results of the sparse SDP relaxations for large-scale POPs
with sparse structure, including the minimization of the Broyden tridiagonal function with
1000 variables and a quadratic optimization problem with 1998 variables from the optimal
control. The SDP relaxations also have been extended to polynomial SDPs [4, 5, 8] and
POPs over symmetric cones [10, 22].

In this paper, we consider a POP (2.1) with an n-dimensional variable vector x ∈ Rn and
a POP (3.1) with a variable vector w ∈ Rn transformed from (2.1) by a nonsingular affine
transformation x = Aw + b, where A denotes an n × n nonsingular matrix and b ∈ Rn.
Applying Lasserre’s SDP relaxation, we obtain a pair of SDPs, one from the original POP
(2.1) and the other from the transformed POP (3.1). We show that these two SDPs are
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isomorphic. More specially, there exists a nonsingular linear transformation between their
feasible regions that preserves their objective values.

This paper is organized as follows. Section 2 describes the SDP relaxation proposed
by Lasserre in a different way from [11]. Section 3 presents the main results, the invariant
relations under a nonsingular affine transformation in the SDP relaxation illustrated in
Figure 1. Section 4 is devoted to their proofs. Section 5 is devoted to some concluding
remarks.

We introduce some symbols used in this paper. Let R denote the set of real numbers,
Z+ the set of nonnegative integers, and R[x] the set of polynomials in a variable vector
x = (x1, . . . , xn)T ∈ Rn. For every α ∈ Zn

+, xα denotes the monomial xα1
1 · · ·xαn

n and
|α| = ∑n

i=1 αi. The degree deg(f) is the maximum value of |α| over all monomials xα whose
coefficients fα are nonzero.

2 Lasserre’s SDP Relaxation

In this section, we present the SDP relaxation proposed by Lasserre [11]. Our description
of the relaxation is, however, based on a general framework given in [9] for SDP relaxations
of POPs over cones, and different from the original description using the moment theory by
Lasserre [11] . The original of our description can be found in [7].

We consider the polynomial optimization problem

minimize f0(x) subject to fj(x) ≥ 0 (j = 1, . . . , m), (2.1)

where f0, . . . , fm ∈ R[x]. The SDP relaxation is composed of two steps. The first step is
to replace the polynomial inequalities fj(x) ≥ 0 (j = 1, . . . , m) by a set of valid polyno-
mial matrix inequalities. The resulting problem forms a polynomial SDP having the same
polynomial objective function as POP (2.1) and polynomial matrix inequalities which are
equivalent to the polynomial inequalities of POP (2.1). The second step is to linearize the
polynomial SDP by replacing each monomial xα in the polynomial SDP with a variable yα.

For every r ∈ Z+, let Gr = {α ∈ Zn
+ | |α| ≤ r} and let ur(x) be the column vector of all

monomials xα (α ∈ Gr): ur(x) =
(
x0, x1, . . . , xn, x2

1, x1x2, . . . , x
2
n, . . . , xr

1, . . . , x
r
n

)T
, where

x0 is 1 for any x ∈ Rn. Let s(r) =
(
n+r

r

)
denote the cardinality of Gr, which coincides

with the size of the column vector ur(x). We introduce the s(r) × s(r) symmetric matrix
ur(x)ur(x)T ; the (β, γ)th element of the matrix is given by xβ+γ for each pair of row and
column indices β, γ ∈ Gr. To represent ur(x)ur(x)T in terms of a polynomial in x with
symmetric matrix coefficients, define an s(r)× s(r) matrix Eα whose elements are given by

(Eα)β,γ =
{

1 if α = β + γ, and β, γ ∈ Gr,
0 otherwise, (2.2)

for every α ∈ G2r. Then we can write ur(x)ur(x)T =
∑

α∈G2r
xαEα. We also deal with

the s(r) × s(r) matrix f(x)ur(x)ur(x)T for each f ∈ R[x]. The (β, γ)th element of the
matrix is xβ+γf(x) for β, γ ∈ Gr. The matrix can be represented as f(x)ur(x)ur(x)T =∑

α∈G2r+deg(f)
xαBα, for some s(r)× s(r) matrices Bα (α ∈ G2r+deg(f)).

We observe that ur(x)ur(x)T is positive semidefinite for all x ∈ Rn, and that
f(x)ur(x)ur(x)T is positive semidefinite for any x such that f(x) ≥ 0. As the first step
of the SDP relaxation of POP (2.1), we will derive an equivalent polynomial SDP. Let r̄ be
the maximum value of ddeg(fj)/2e over all j = 0, 1, . . . , m. Choose a nonnegative integer
r ≥ r̄, and let rj = r−ddeg(fj)/2e for all j = 1, . . . , m. By definition, we see that r, rj ∈ Z+
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(j = 1, 2, . . . , m). Replacing each constraint fj(x) ≥ 0 by fj(x)urj
(x)urj

(x)T º O in POP
(2.1) and adding ur(x)ur(x)T º O to POP (2.1), we now obtain a polynomial SDP

minimize f0(x)
subject to fj(x)urj

(x)urj
(x)T º O (j = 1, . . . , m),

ur(x)ur(x)T º O.



 (2.3)

Note that the (0, 0)th element of the symmetric matrix urj (x)urj (x)T involved in the con-
straints is 1 for every j = 1, . . . , m. This ensures that fj(x)urj

(x)urj
(x)T º O if and only

if fj(x) ≥ 0. Therefore, POP (2.1) and polynomial SDP (2.3) are equivalent to each other.
We further rewrite polynomial SDP (2.3) as

minimize cT
2ru2r(x)

subject to
∑

α∈G2r
xαBj,α º O (j = 1, . . . , m),∑

α∈G2r
xαEα º O



 (2.4)

for some s(2r)-dimensional column vector c2r such that f0(x) = cT
2ru2r(x) for all x ∈

Rn, some s(r) × s(r) symmetric matrices Eα and some s(rj) × s(rj) symmetric matrices
Bj,α (α ∈ G2r, j = 1, . . . , m). By construction, we know that deg(f0) ≤ 2r̄ ≤ 2r. Hence, for
any α ∈ G2r \G2r̄, the αth element (c2r)α of the column vector c2r vanishes. This fact will
be used later to see the monotonicity of the optimal value v∗r of SDP (2.6) with respect to
r.

Note that we use G2r instead of G2rj+deg(fj) to describe the matrices
∑

α∈G2r
xαBj,α in

polynomial SDP (2.4) for the sake of simplicity. Indeed, we know that G2rj+deg(fj) ⊂ G2r,
and if G2r \G2rj+deg(fj) is not empty, we set Bj,α = O for all α ∈ G2r \G2rj+deg(fj). Then∑

α∈G2rj+deg(fj)
xαBj,α =

∑
α∈G2r

xαBj,α holds.
Before we proceed to the second step of the SDP relaxation, we show some examples to

illustrate the symbols and notation used above.

Example 2.1. In the case of n = 2 and r = 2, we have

Gr = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2)},
ur(x) = (x0, x1, x2, x

2
1, x1x2, x

2
2)

T ,

ur(x)ur(x)T =




x0 x1 x2 x2
1 x1x2 x2

2

x1 x2
1 x1x2 x3

1 x2
1x2 x1x

2
2

x2 x1x2 x2
2 x2

1x2 x1x
2
2 x3

2

x2
1 x3

1 x2
1x2 x4

1 x3
1x2 x2

1x
2
2

x1x2 x2
1x2 x1x

2
2 x3

1x2 x2
1x

2
2 x1x

3
2

x2
2 x1x

2
2 x3

2 x2
1x

2
2 x1x

3
2 x4

2




,

G2r =
{

(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0), (2, 1),
(1, 2), (0, 3), (4, 0), (3, 1), (2, 2), (1, 3), (0, 4)

}
.

Recall that x0 = 1 for any x ∈ Rn, so that the (0, 0)th element of ur(x)ur(x)T is 1. If we
take α = (2, 0) ∈ G2r and α = (3, 1) ∈ G2r, we see

E(2,0) =




1
1

1




and E(3,1) =




1
1




,
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where each blank above means 0.

Example 2.2. Let n = 2, f(x) = 2− x1 + x2, and r = 1. Then

Gr = {(0, 0), (1, 0), (0, 1)},
ur(x) = (x0, x1, x2)T ,

f(x)u1(x)u1(x)T

=




2x0 − x1 + x2 2x1 − x2
1 + x1x2 2x2 − x1x2 + x2

2

2x1 − x2
1 + x1x2 2x2

1 − x3
1 + x2

1x2 2x1x2 − x2
1x2 + x1x

2
2

2x2 − x1x2 + x2
2 2x1x2 − x2

1x2 + x1x
2
2 2x2

2 − x1x
2
2 + x3

2


 ,(2.5)

G2r+deg(f)

=
{

(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0), (2, 1), (1, 2), (0, 3)
}

.

If we take α = (1, 0), (1, 1), (2, 1) ∈ G2r+deg(f), we see

B(1,0) =



−1 2
2


 , B(1,1) =




1 −1
1 2
−1 2


 and B(2,1) =


 1 −1

−1


 .

If we replace each monomial xα on the right side of the identity (2.5), we have a linear
mapping from the space of s(2r+deg(f))-dimensional column vector y consisting of yα (α ∈
G2r+deg(f)) into the space of s(r)×s(r) symmetric matrices, which we will denote by M r(fy)
in the subsequent discussion;

M r(fy)

=




2y0 − y(1,0) + y(0,1) 2y(1,0) − y(2,0) + y(1,1) 2y(0,1) − y(1,1) + y(0,2)

2y(1,0) − y(2,0) + y(1,1) 2y(2,0) − y(3,0) + y(2,1) 2y(1,1) − y(2,1) + y(1,2)

2y(0,1) − y(1,1) + y(0,2) 2y(1,1) − y(2,1) + y(1,2) 2y(0,2) − y(1,2) + y(0,3)




=
∑

α∈G2r+deg(f)

yαBα.

Since the (β, γ)th element of the s(r) × s(r) matrix f(x)ur(x)ur(x)T is xβ+γf(x)
(β, γ ∈ G2r), the corresponding element of the s(r) × s(r) matrix M r(fy) is given by∑

α∈Gdeg(f)
fαyα+β+γ where fα is the coefficient of the monomial xα in f . In this example,

we have f(0,0) = 2, f(1,0) = −1, f(0,1) = 1 and fα = 0 for all other α. If we take β =
(1, 0), γ = (0, 0), then we have

∑

α∈Gdeg(f)

fαyα+β+γ =
∑

α∈Gdeg(f)

fαyα+(1,0)+(0,0)

= f(0,0)y(0,0)+(1,0) + f(1,0)y(1,0)+(1,0) + f(0,1)y(0,1)+(1,0)

= 2y(1,0) − y(2,0) + y(1,1),

and we can see that the left-hand side is equal to the (β, γ)th element of the matrix M r(fy).

Now we perform the second step of the SDP relaxation of POP (2.1). Recall that we
have derived an equivalent polynomial SDP (2.4) from POP (2.1) in the first step. We
apply the linearization to the objective polynomial function and the polynomial matrix
inequality constraints of polynomial SDP (2.4) by replacing each xα by a single real variable
yα (α ∈ G2r). Then we obtain an SDP

minimize cT
2ry

subject to M rj
(fjy) º O (j = 1, . . . , m),M r(y) º O, y0 = 1.

}
(2.6)
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Here
M rj

(fjy) =
∑

α∈G2r

yαBj,α (j = 1, . . . , m), M r(y) =
∑

α∈G2r

yαEα, (2.7)

respectively. The size of variable vector y is s(2r). For each β, γ ∈ Grj
, the (β, γ)th element

of M rj
(fjy) is

∑
α∈Gdeg(fj)

fj,αyα+β+γ , where fj,α the coefficient of the monomial xα of fj .

We note that SDP (2.6) is defined for every nonnegative integer r ≥ r̄. Hence we
obtain an infinite sequence of SDP relaxation problems of POP (2.1). Let v∗ denote the
optimal value of POP (2.1) and v∗r the optimal value of SDP (2.6) with r ≥ r̄. Then
v∗r ≤ v∗r+1 ≤ v∗ for all r ≥ r̄. In fact, if x ∈ Rn is a feasible solution of POP (2.1)
(hence it is a feasible solution of polynomial SDP (2.4)), then y = u2r(x) ∈ Rs(2r) is a
feasible solution of SDP (2.6) with the objective value cT

2ry = cT
2ru2r(x). This implies that

if POP (2.1) attains an objective value at a feasible solution then so does SDP (2.6). Hence
v∗r ≤ v∗. The monotonicity of v∗r is proved as follows. Let ȳ ∈ Rs(2(r+1)) be a feasible
solution of SDP (2.6) with r = r + 1. Then M rj+1(ȳ) º O (j = 1, . . . , m) and M r+1(ȳ)
hold from the feasibility. Let ỹ denote the subvector of ȳ consisting of the elements ȳα

with indices α restricted to the members of G2r. Then M rj
(ỹ) º O (j = 1, . . . , m) and

M r(ỹ) º O because M rj (ỹ) (j = 1, . . . , m) and M r(ỹ) are leading principal submatrices
of M rj+1(ỹ) (j = 1, . . . , m) and M r+1(ỹ), respectively. Hence ỹ is a feasible solution of
SDP (2.6) with r. We also see that cT

2(r+1)ȳ = cT
2rỹ =

∑
α∈G2r̄

(c2r)αỹα because (c2r)α = 0
and (c2(r+1))α = 0 for any α ∈ G2r \G2r̄. As a result, we have v∗r ≤ v∗r+1.

In [11], Lasserre showed the convergence of v∗r (r ≥ r̄) to the optimal value v∗ of POP
(2.1) as r → ∞ under a certain moderate condition (see Theorem 4.2 of [11]). He also
demonstrated that the optimal value v∗r of SDP (2.6) attains the optimal value v∗ of POP
(2.1) for a finite r, which is not much larger than r̄, in all test problems reported there,
and suggested that the finite convergence of v∗r (r ≥ r̄) to v∗ is expected in many practical
problems. The following sufficient condition for the finite convergence, which we call the
rank condition, was proved in [3, 13].

Proposition 2.3. Let y∗ be an optimal solution of SDP (2.6) and d = maxj=1,...,mddeg(fj)/2e.
If rank M r(y∗) = rank M r−d(y∗), then v∗r is equal to the optimal value v∗ of POP (2.1).

To check whether the optimal value of SDP (2.6) attains the optimal value of POP (2.1)
or not, this condition was used in the software package GloptiPoly [2].

The dual problem of SDP (2.6) turns out to be

maximize p
subject to 〈X,E0〉+

∑m
j=1〈Y j ,Bj,0〉 = (c2r)0 − p,

〈X,Eα〉+
∑m

j=1〈Y j ,Bj,α〉 = (c2r)α (α ∈ G2r \ {0}),
X,Y j º O (j = 1, . . . , m),





(2.8)

where 〈A,B〉 denotes the matrix inner product
∑

k

∑
` Ak`Bk` for symmetric matrices A

and B, and the size of the matrix variables X and Y j are s(r) × s(r) and s(rj) × s(rj)
(j = 1, . . . , m), respectively. We are also concerned with a sum of squares (SOS) problem
induced from POP (2.1) (Lasserre [11])

maximize p
subject to f0(x)− p = ur(x)T Xur(x) +

∑m
j=1 fj(x)urj (x)T Y jurj (x) (∀x ∈ Rn),

X,Y j º O (j = 1, . . . , m).





(2.9)
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The equality condition of the problem (2.9) is the identity on x. We can verify that the
dual SDP (2.8) is equivalent with the problem (2.9). In fact, comparing coefficients of each
monomial on the both sides of the identity, we obtain the equality constraints in SDP (2.8).
See Lasserre [11] for more details.

3 Main Results

In this section, we first introduce a POP transformed from (2.1) by an affine transformation
x = Aw + b, where A ∈ Rn×n is a nonsingular matrix and b ∈ Rn.

minimize f̃0(w) subject to f̃j(w) ≥ 0 (j = 1, . . . , m), (3.1)

where f̃0(w) = f0(Aw + b) and f̃j(w) = fj(Aw + b). We derive Lasserre’s SDP relaxation
problem (3.2) for the transformed POP (3.1) and its dual (3.4) as we have done for POP
(2.1), and we then describe details of the isomorphic relations illustrated in Figure 1.

By the definition of f̃j , deg(fj) = deg(f̃j) holds for all j = 0, 1, . . . , m. Thus, We can
construct a sequence of SDP relaxation problems from POP (3.1) for all r ∈ Z+ satisfying
r ≥ r̄. Moreover, the obtained SDP (3.2) has s(r)×s(r) and s(rj)×s(rj) coefficient matrices
for all r ≥ r̄ as in (2.6).

To generate the SDP relaxation problem from POP (3.1), we use the monomial vector

ur(w) = (w0, w1, . . . , wn, w2
1, w1w2, . . . , w

2
n, . . . , wr

1, . . . , w
r
n)T

where w0 = 1 for any w ∈ Rn, and represent the matrix ur(w)ur(w)T in w as

ur(w)ur(w)T =
∑

α∈G2r

wαEα,

where Eα is given by (2.2). By applying the discussion of Section 2 into POP(3.1), we
obtain the following SDP relaxation problem of POP (3.1):

minimize c̃T
2rz

subject to M rj
(f̃jz) º O (j = 1, . . . , m),M r(z) º O, z0 = 1,

}
(3.2)

where c̃2r ∈ Rs(2r) is the column vector such that f̃0(w) = c̃T
2ru2r(w) for all w ∈ Rn and

M rj
(f̃jz) =

∑

α∈G2r

zαB̃j,α (j = 1, . . . , m), M r(z) =
∑

α∈G2r

zαEα (3.3)

for some s(rj) × s(rj) real symmetric matrices B̃j,α (j = 1, . . . , m;α ∈ G2r). The size
of the variable z is s(2r). Note that the (β, γ)th element of the matrix M rj

(f̃jz) is∑
α∈Gdeg(fj)

f̃j,αzα+β+γ for β, γ ∈ Grj
, where f̃j,α is the coefficient of the monomial wα

of f̃j .
The dual problem of SDP (3.2) is

maximize q

subject to 〈W ,E0〉+
∑m

j=1〈Zj , B̃j,0〉 = (c̃2r)0 − q,

〈W ,Eα〉+
∑m

j=1〈Zj , B̃j,α〉 = (c̃2r)α (α ∈ G2r \ {0}),
W ,Zj º O (j = 1, . . . , m),





(3.4)
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where W ∈ Rs(r)×s(r) and Zj ∈ Rs(rj)×s(rj). Note that SDP (3.4) is also equivalent with
the SOS problem induced from POP (3.1) :

maximize q

subject to f̃0(w)− q = ur(w)T Wur(w) +
∑m

j=1 f̃j(w)urj (w)T Zjurj (w) (∀w ∈ Rn),
W ,Zj º O (j = 1, . . . , m).





(3.5)
Recall that a similar equivalent relation between SDP (2.8) and (2.9) was observed at the
end of Section 2.

The following theorems are the main results of this paper. Their proofs will be given in
Section 4.

Theorem 3.1. There exists an s(2r) × s(2r) nonsingular matrix P s(2r) satisfying the fol-
lowing properties.

1. (p, X, {Y j}m
j=1) is a feasible (optimal) solution for SDP (2.8) if and only if

(q, W , {Zj}m
j=1) = (p, P T

s(r)XP s(r), {P T
s(rj)Y jP s(rj)}m

j=1),

is a feasible (optimal) solution for SDP (3.4), where P s(r) and P s(rj) are the s(r)×s(r)
and s(rj)× s(rj) leading principal matrices of P s(2r).

2. y is a feasible (optimal) solution for SDP (2.6) with an objective value cT
2ry if and only

if z = P−1
s(2r)y is a feasible (optimal) solution for SDP (3.2) with the same objective

value c̃T
2rz.

3. We have

c̃2r = P T
s(2r)c2r,

B̃j,α = P−1
s(rj)


 ∑

β∈G2r

(
Ps(2r)

)
β,α

Bj,β


 P−T

s(rj)
,

Eα = P−1
s(r)


 ∑

β∈G2r

(
Ps(2r)

)
β,α

Eβ


 P−T

s(r).

Theorem 3.2. Let y∗ be a feasible solution of SDP (2.6), and let z∗ = P−1
s(2r)y

∗. If
y∗ satisfies the rank condition rank M r(y∗) = rank M r−d(y∗), then z∗ satisfies the rank
condition rankM r(z∗) = rankM r−d(z∗) with the same r.

The POPs and SDPs which we deal with and the invariant relations which we establish
are summarized in Figure 1.

4 Proofs

4.1 Basic lemmas

In this subsection, we construct matrices P s(2r), P s(r) and P s(rj) (j = 1, . . . , m) involved
in Theorem 3.1 from the affine transformation x = Aw +b, and show some basic properties
on these matrices.



302 H. WAKI, M. MURAMATSU AND M. KOJIMA

POP (1) on POP (10) on 

SDP relax. SDP relax.

SDP (6) on SDP (11) on 

Dual Dual

SDP (8) 

on 

SDP (13) 

on 

z = P−1
s(2r)y

q = p

W = P T
s(r)XP s(r)

Zj = P T
s(rj)

Y jP s(rj)

x

y

w

z

(p, X, {Y j}
m
j=1) (q, W , {Zj}

m
j=1)

x = Aw + b

SOS (9) 

on (p, X, {Y j}
m
j=1)

Equiv. Equiv.

SOS (14) 

on (q, W , {Zj}
m
j=1)

Figure 1: Invariance of Lasserre’s SDP relaxation under an affine transformation

Lemma 4.1. There exists a sequence of nonsingular matrices P s(k) ∈ Rs(k)×s(k) (k ∈ Z+)
satisfying the following properties :

1. uk(x) = P s(k)uk(w) for every x and w such that x = Aw + b.

2. Let ` < k. There exist matrices R ∈ R(s(k)−s(`))×s(`) and S ∈ R(s(k)−s(`))×(s(k)−s(`))

such that

P s(k) =
(

P s(`) O
R S

)
.

Proof. For every k ∈ Z+ and α ∈ Gk, substituting Aw + b for x, we can represent the
monomial xα as a polynomial in w :

xα = (Aw + b)α =
n∏

i=1

(Aw + b)αi
i =

∑

β∈Gk

Pα,βwβ

for some Pα,β (β ∈ Gk). Defining P s(k) to be an s(k)×s(k) matrix whose (α, β)th component
is Pα,β for every α, β ∈ Gk, we see that uk(x) = uk(Aw + b) = P s(k)uk(w). By a similar
argument applied to the inverse affine transformations w = A−1x −A−1b, there exists a
nonsingular matrix Qs(k) ∈ Rs(k)×s(k) such that uk(w) = uk(A−1x−A−1b) = Qs(k)uk(x).
It follows from uk(x) = P s(k)Qs(k)uk(x) for every x ∈ Rn that P s(k)Qs(k) = I. We see
that P s(k) is nonsingular.

It remains to prove property 2 on P s(k). We can partition uk(x) = (u`(x)T ,v`(x)T )T

and uk(w) = (u`(w)T ,v`(w)T )T , where v`(x) and v`(w) are column vectors of all mono-
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mials xα and wα for every α ∈ Gk \G`. Let us write :

uk(x) =
(

u`(x)
v`(x)

)
=

(
P ′ Q′

R′ S′

)(
u`(w)
v`(w)

)
= P s(k)uk(w),

where P ′ ∈ Rs(`)×s(`), Q′ ∈ Rs(`)×(s(k)−s(`)), R′ ∈ Rs(`)×(s(k)−s(`)) and S′ ∈
R(s(k)−s(`))×(s(k)−s(`)), respectively. It follows from this relation that u`(x) = P ′u`(w) +
Q′v`(w). Because u`(x) = P s(`)u`(w) for all x,w satisfying x = Aw + b, we obtain the
identity on w :

P ′u`(w) + Q′v`(w) = P s(`)u`(w) for all w ∈ R.

Comparing the coefficients of each monomial wα on the both sides of this identity, we have
P ′ = P s(`) and Q′ = O.

Example 4.2. We consider the following affine transformation:

x1 =
w1 + 1

2
and x2 =

w2 + 1
2

.

In this case,

A =
(

1/2
1/2

)
and b =

(
1/2
1/2

)

Under this affine transformation, u2(x) = P s(2)u2(w) turns out to be

u2(x) =




1
x1

x2

x2
1

x1x2

x2
2




=




1
1/2 1/2
1/2 1/2
1/4 1/2 1/4
1/4 1/4 1/4 1/4
1/4 1/2 1/4







1
w1

w2

w2
1

w1w2

w2
2




= P s(2)u2(w).

Hence, P s(0) and P s(1) are

P s(0) = (1) and P s(1) =




1
1/2 1/2
1/2 1/2


 .

We can see that P s(0), P s(1) and P s(2) have all properties in Lemma 4.1.

Lemma 4.3. Let f ∈ R[x] and k ≥ deg(f). Define a polynomial f̃ ∈ R[w] by f̃(w) =
f(Aw + b). Represent f ∈ R[x] such that f(x) = fT uk(x) for some f ∈ Rs(k) and
f̃ ∈ R[w] such that f̃(w) = f̃

T
uk(w) for some f̃ ∈ Rs(k). Then f̃ = P T

s(k)f .

Proof. By definition, we see that f̃
T
uk(w) = f̃(w) = f(x) = fT uk(x) if x = Aw + b.

By property 1 of Lemma 4.1, we know that uk(x) = P s(k)uk(w) if x = Aw + b. Hence

f̃
T
uk(w) = (P T

s(k)f)T uk(w) for all w ∈ Rn. Comparing the coefficients of all monomials
wα on the both sides of this identity, we obtain the desired result.
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4.2 Proof of Property 1 of Theorem 3.1

We only prove the “only if” part of property 1 of Theorem 3.1 because we can prove the
“if” part similarly. Since SDP (2.8) is equivalent to SOS problem (2.9), any feasible solution
(p, X, {Y j}m

j=1) of SDP (2.8) satisfies the following identity on x :

f0(x)− p = ur(x)T Xur(x) +
m∑

j=1

fj(x)urj
(x)T Y jurj

(x) for every x ∈ Rn.

By substituting x = Aw + b into the both side of the identity above and by applying
property 1 of Lemma 4.1, we obtain the following identity on w:

f̃0(w)− p

= ur(w)T P T
s(r)XP s(r)ur(w) +

m∑

j=1

f̃j(w)urj (w)T P T
s(rj)Y jP s(rj)urj (w)

for every w ∈ Rn.

Note that P T
s(r)XP s(r) and P T

s(rj)Y jP s(rj) (j = 1, . . . , m) are positive semidefinite matri-
ces. These facts imply that (q, W , {Zj}m

j=1) = (p, P T
s(r)XP s(r), {P T

s(rj)Y jP s(rj)}m
j=1), is a

feasible solution of SOS problem (3.5) induced from POP (3.1). Hence (q, W , {Zj}m
j=1) is

a feasible solution for SDP (3.4) because SDP (3.4) is equivalent to SOS problem (3.5).

4.3 Proof of Property 2 of Theorem 3.1

To prove property 2 of Theorem 3.1, we will use two lemmas below. Throughout this
subsection, we assume that r ≥ r̄ is fixed, and we denote the (α, β)th element of P s(2r) by
Pα,β for simplicity of notation.

Lemma 4.4. Let h, k ∈ Z+ and ` ∈ Z+ satisfy 2r ≥ h + k + `. Then

Pα+β+γ,δ =
∑

δ=δ1+δ2+δ3,
δ1∈Gh,δ2∈Gk,δ3∈G`

Pα,δ1Pβ,δ2Pγ,δ3 for every α ∈ Gh, β ∈ Gk, γ ∈ G` and δ ∈ G2r.

Proof. Let α ∈ Gh, β ∈ Gk and γ ∈ G` be fixed. Property 2 of Lemma 4.1 gives

Pα,δ = 0 (∀δ ∈ G2r \Gh), Pβ,δ = 0 (∀δ ∈ G2r \Gk),
Pγ,δ = 0 (∀δ ∈ G2r \G`), Pα+β+γ,δ = 0 (∀δ ∈ G2r \Gh+k+`).

By property 1 of Lemma 4.1, we see that

xα =
∑

γ∈G2r

Pα,δw
δ =

∑

δ∈Gh

Pα,δw
δ, xβ =

∑

δ∈G2r

Pβ,δw
δ =

∑

δ∈Gk

Pβ,δw
δ,

xγ =
∑

δ∈G2r

Pγ,δw
δ =

∑

δ∈G`

Pγ,δw
δ, xα+β+γ =

∑

δ∈G2r

Pα+β+γ,δw
δ =

∑

δ∈Gh+k+`

Pα+β+γ,δw
δ.
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It follows from these relations that

∑

δ∈Gh+k+`

Pα+β+γ,δw
δ = xα+β+γ = xαxβxγ

=

( ∑

δ1∈Gh

Pα,δ1w
δ1

)( ∑

δ2∈Gk

Pβ,δ2w
δ2

)( ∑

δ3∈G`

Pγ,δ3w
δ3

)

=
∑

δ∈Gh+k+`




∑

δ=δ1+δ2+δ3,
δ1∈Gh,δ2∈Gk,δ3∈G`

Pα,δ1Pβ,δ2Pγ,δ3


 wδ.

Comparing the coefficients of each monomial wδ, we obtain the desired result.

Lemma 4.5. Assume that f ∈ R[x], r ≥ ddeg(f)/2e and ẑ ∈ Rs(2r). Let ŷ = P s(2r)ẑ,
r′ = r− ddeg(f)/2e and f̃(w) = f(Aw + b). Then P s(r′)M r′(f̃ ẑ)P T

s(r′) = M r′(f ŷ) holds.

Proof. Because the size of P s(r′)M r′(f̃ ẑ)P T
s(r′) is the same as that of M r′(f ŷ), it is enough

to show that the (α, β)th element m̃α,β of P s(r′)M r′(f̃ ẑ)P T
s(r′) is equal to the (α, β)th

element mα,β of M r′(f ŷ) for all α, β ∈ Gr′ . Substituting ŷ = P s(2r)ẑ into M r′(f ŷ), and
using Lemma 4.1, we see

mα,β =
∑

γ∈Gdeg(f)

fγ ŷα+β+γ =
∑

γ∈Gdeg(f)

fγ

( ∑

δ∈G2r

Pα+β+γ,δ ẑδ

)

=
∑

γ∈Gdeg(f)

fγ


 ∑

δ∈Gdeg(f)+2r′

Pα+β+γ,δ ẑδ


 ,

where fγ is the coefficient in f with respect to xγ . On the other hand, we obtain by the
definition of m̃α,β and deg(f) = deg(f̃) that

m̃α,β =
∑

δ1∈Gr′

∑

δ2∈Gr′

Pα,δ1


 ∑

γ′∈Gdeg(f)

f̃γ′ ẑγ′+δ1+δ2


 Pβ,δ2 ,

where f̃γ′ is the coefficient in f̃ with respect to wγ′ . We also see from Lemma 4.3 and
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deg(f) = deg(f̃) that f̃γ′ =
∑

γ∈Gdeg(f)
fγPγ,γ′ for all γ′ ∈ Gdeg(f). Now we obtain:

m̃α,β =
∑

δ1∈Gr′

∑

δ2∈Gr′

Pα,δ1


 ∑

γ′∈Gdeg(f)


 ∑

γ∈Gdeg(f)

fγPγ,γ′


 ẑγ′+δ1+δ2


 Pβ,δ2

=
∑

γ∈Gdeg(f)

fγ


 ∑

δ1∈Gr′

∑

δ2∈Gr′

∑

γ′∈Gdeg(f)

Pα,δ1Pβ,δ2Pγ,γ′ ẑγ′+δ1+δ2




=
∑

γ∈Gdeg(f)

fγ

∑

δ∈Gdeg(f)+2r′




∑

δ=δ1+δ2+γ′,
δ1,δ2∈Gr′ ,γ

′∈Gdeg(f)

Pα,δ1Pβ,δ2Pγ,γ′


 ẑδ

=
∑

γ∈Gdeg(f)

fγ


 ∑

δ∈Gdeg(f)+2r′

Pα+β+γ,δ ẑδ


 (by Lemma 4.4)

= mα,β .

This completes the proof.

Now we are ready to prove property 2 of Theorem 3.1. We only prove the “only if”
part since we can prove the “if” part similarly. Letting f = 1 in Lemma 4.5, we obtain
P s(r)M r(z)P T

s(r) = M r(y). Since y is feasible for SDP (2.6) and z = P−1
s(2r)y, we obtain

that

M r(z) = P−1
s(r)M r(y)P−T

s(r) º O,

M rj
(f̃jz) = P−1

s(rj)
M rj

(fjy)P−T
s(rj)

º O (j = 1, . . . , m).

These imply that z is feasible for SDP (3.2). By Lemma 4.3 and the definitions of c2r and
c̃2r , we also see that c̃2r = P T

s(2r)c2r and c̃T
2rz = cT

2rP s(2r)P
−1
s(2r)y = cT

2ry. This shows
that the objective value of SDP (3.2) coincides with that of SDP (2.6).

4.4 Proof of Property 3 of Theorem 3.1

Recall that we have already proved c̃2r = P T
s(2r)c2r, which is the first identity of property

3 of Theorem 3.1, in Lemma 4.3. To prove the second identity, let j ∈ {1, . . . , m} be fixed
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arbitrarily. Then we observe that
∑

α∈G2r

zαB̃j,α = M rj
(f̃jz) (by (3.3))

= P−1
s(rj)

M rj
(fjy)P−T

s(rj)
(by Lemma 4.5)

= P−1
s(rj)


 ∑

β∈G2r

Bj,βyβ


 P−T

s(rj)
(by (2.7))

= P−1
s(rj)


 ∑

β∈G2r

Bj,β

∑

α∈G2r

Pβ,αzα


 P−T

s(rj)
(by property 2 of Theorem 3.1)

= P−1
s(rj)


 ∑

α∈G2r

zα

∑

β∈G2r

Pβ,αBj,β


 P−T

s(rj)

=
∑

α∈G2r

zαP−1
s(rj)


 ∑

β∈G2r

Pβ,αBj,β


 P−T

s(rj)
.

Comparing the both sides of the above equality, we have the second identity of property 3
of Theorem 3.1.

Taking fj(x) = 1 in the above argument, we can similarly show the third identity of
property 3 of Theorem 3.1. The details are omitted here.

4.5 Proof of Theorem 3.2

It suffices to show that rankMk(z∗) = rankMk(y∗) for every k ≤ r. To show this, let
k ∈ {0, 1, . . . , r} be fixed. By property 2 of Lemma 4.1, we can express

P s(r) =
(

P s(k) O
R S

)

for some R ∈ R(s(r)−s(k))×s(k) and S ∈ R(s(r)−s(k))×(s(r)−s(k)). Substituting this into the
relation P s(r)M r(z∗)P T

s(r) = M r(y∗), and taking the s(k)× s(k) principal submatrices of
the both sides, we obtain P s(k)Mk(z∗)P T

s(k) = Mk(y∗). Because P s(k) is nonsingular due
to Lemma 4.1, we see that rankMk(z∗) = rankMk(y∗) for all k ≤ r.

5 Concluding Remarks

We have shown that Lasserre’s SDP relaxation [11] is invariant under any nonsingular affine
transformation on the variable space Rn. We can also say that P s(2r) has the invariance
property between the polynomial SDP and its linear SDP relaxation, and that the affine
transformation induces such linear transformation on R[x]. In fact, one of the key obser-
vations was the block lower triangular structure of P s(2r) of the linear transformation on
R[x]. See property 2 of Lemma 4.1. We can hardly imagine that any linear transformation
on R[x] that does not have this property will have the good invariance property. On the
other hand, we can consider some other linear transformations on R[x] having the same
block lower triangular structure property. Such a linear transformation is natural in the
sense that it maps any polynomial of degree r to a polynomial of the same degree. A linear
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transformation which maps the standard monomials {xα}α∈Gr
to Chebyshev polynomials

of degree up to r is one of such examples. This linear transformation produces the so-called
Chebyshev basis. In [1], de Klerk et al. use Chebyshev basis, and report that the numeri-
cal stability was improved for POP constructed from univariate polynomials. However, the
formulation into the SDP problem is different from ours, and its invariance property is not
mentioned. Whether a linear transformation which maps any polynomial of degree r to a
polynomial of the same degree has the same invariance property or not will be the subject
to further research.

An important usage of an affine transformation of a POP is to increase numerical sta-
bility. We can scale a POP to be solved by applying an appropriate affine transformation
in advance so that the transformed POP could be solved more stably. Suppose that a POP
to be solved involves a higher degree monomials in variables x1, . . . , xn, and that they are
expected to take large numerical values at optimal solutions. Then it is likely that optimal
solutions of its SDP relaxation contain huge numerical values, which causes a numerical in-
stability. It was reported in [22] that scaling those variables within [0, 1]n is very effective to
avoid this type of numerical instability, and this technique was incorporated in SparsePOP
[23]. One of the problems where we can see such a remedy in numerical stability is Bex3 1 1:





min x1 + x2 + x3

subject to 0.0025x4 + 0.0025x6 ≤ 1,−0.0025x4 + 0.0025x5 + 0.0025x7 ≤ 1
−0.01x5 + 0.01x8 ≤ 1, 100x1 − x1x6 + 833.33252x4 ≤ 83333.333,
x2x4 − x2x7 − 1250x4 + 1250x5 ≤ 0, x3x5 − x3x8 − 2500x5 ≤ −1250000,
100 ≤ x1 ≤ 700, 1000 ≤ x2 ≤ 2000, 1000 ≤ x3 ≤ 6000,
10 ≤ x4 ≤ 300, 10 ≤ x5 ≤ 400, 10 ≤ x6 ≤ 400,
10 ≤ x7 ≤ 400, 10 ≤ x8 ≤ 500.

For Bex3 1 1, when we apply the SDP relaxation method as is, the SDP solver SeDuMi [21]
terminates by reporting a message on the numerical error. On the other hand, if we rescale
each variable between [0, 1] by applying the following affine transformation x = Aw + b:

A =




600
1000

5000
290

390
390

390
490




, b =




100
1000
1000
10
10
10
10
10




,

then SeDuMi terminates normally and returns the accurate optimal value and solution of
the SDP relaxation problem.

In this paper, we have not paid any attention to the sparsity of the polynomials involved
in a POP, and we have restricted ourselves to the “dense” SDP relaxation of a POP. Another
important usage of an affine transformation on the space of a variable vector of a POP is
to improve its sparsity so that we can apply the “sparse” SDP relaxation [12, 22] to the
transformed POP. This issue is discussed in the recent paper [6]. We should mention,
however, that when we apply the “sparse” SDP relaxation to POPs the invariance under
affine transformation does not hold any more in general.
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