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Abstract: Efficient sampling and effective use of data are desirable because the number of experiments
that might be undertaken is limited by time and cost. The precision of prediction depends on the number
and precision of samples, which have a trade-off relation in sampling. Whereas low precision data requires a
lot of samples to improve prediction precision, obtaining high precision samples increases the required time
and cost. We propose a prediction and optimization method which combines different samples of varying
precision. Data is divided into several levels according to its precision and then an auto-regression model
with a Gaussian process is assumed between each level. On every level the prediction is updated by adding
higher precision samples. Then, we consider the use of Efficient Global Optimization (EGO) as an indicator
of the possibility of a solution being optimal. This indicator consists of the predicted value and the accuracy
of the predictor at each point. The prediction is sequentially updated by adding higher precision samples
which are selected by the indicator. By updating the prediction, the optimal solution can be searched for
with an efficient sampling method. Finally, the precision and efficiency of optimization is examined through
numerical simulations which utilize the proposed method.
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1 Introduction

Recently, various improved methods for sampling data have been developed which make
use of developments in technology, yielding a variety of resultant datasets. The sampling
method differs, depending upon whether or not an examination is made in detail, and
sampling points are designed in accordance with the region of interest. The time and cost
of sampling data often need to be considered when an efficient sampling methodology is
desired, because the number of experiments is limited by time and cost. We also have
to obtain data suitable for the intended purpose and to select an adequate data analysis
method. In data analysis, methods for prediction are widely used. Generally, the accuracy
of prediction depends on the number of samples and the precision of sampling. However
these two factors are in a trade off relation in terms of the time and cost of sampling.
Prediction using high precision data is highly reliable and, by increasing the amount of high
precision data, we can ensure increased accuracy of the prediction. However, to obtain high
precision data may be expensive; a long measurement time or expensive equipment may be
necessary. On the other hand, low precision data can be obtained easily, but a lot of samples
are required to improve the accuracy of prediction. Kennedy et al. [7] proposed combining
data of different precision obtained via the finite element method. They also attempted to
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obtain data efficiently and to improve the precision of prediction. There are several methods
of prediction which combine data from different experiments [3, 8].

Efficient Global Optimization (EGO) is one of the methods to search for a global optimal
solution with a small number of samples [5]. It is important to consider a balance between
global and local regions when searching for such a global optimum. A global optimum may
not be obtained if we focus only on certain local regions; however too much time or too
many samples might be needed for convergence to the optimum if an exploration of the
global region is emphasized. In EGO, this balance between global and local regions is taken
into account [6, 12]. At each point the probability that the point is the optimum can be
approximately estimated from the prediction value and the accuracy of the predictor at
each point; all regions can be evaluated. Sampling is done at the point with the highest
probability and then the prediction and probability of the possible optimum values are
updated by adding a new sample. The approximate optimal solution is obtained by repeating
this sampling and prediction procedure.

The purpose of this study is to solve the trade-off between the precision of prediction
and the efficiency of sampling. We consider the prediction of response variables and a
global optimization problem. We try to refine the precision of prediction using high and low
precision data, improving the prediction by using only high precision data with inefficient
sampling. Furthermore, by using the proposed method of prediction with high efficiency and
precision, we try to search for the optimal point efficiently by utilizing the EGO algorithm.
By combining different data samples of varying precision, the accuracy of optimization and
prediction using high precision data is retained while, at the same time, the efficiency of
sampling that results from using low precision data is obtained.

The proposed method can be applied for any dimensional problems. However, in this
paper, we consider the case of physical experiments to obtain an optimal operational level of
parameters. For example, at the statistical optimization by ANOVA (analysis of variance),
it usually deals with one or two factors, say one-way and two-way layout. We believe that
it has a worthwhile contribution even this size of problems.

In Section 2, we describe the Kriging model, which is a prediction method for a response
surface that allows prediction of a value, together with an estimate of its accuracy. Also,
the EGO algorithm for prediction and optimization is described in this section. Section 3
deals with different precision data and a corresponding model. The proposed method of
prediction is described in Section 4. EGO using the proposed method is then applied to
different precision data; the procedure is described in Section 5. The numerical experiments
are described in Section 6. Finally, Section 7 contains our conclusion.

2 Efficient Global Optimization with the Kriging Model

2.1 Efficient Global Optimization

EGO is a method for solving a global optimization problem [4, 5, 6]. Using this technique, an
optimal solution can be searched for with only a small number of samples. The criterion for
the choice of new sampling points with EGO utilizes the global predictor and its accuracy.

Here, we consider a search for a global minimum. Figure 1 shows an example of updating
a predicted value with an initial design to approximate a true function. If the neighborhood
of a minimum of the predicted values is sampled, it is to be expected that a better solution
will be obtained. However, it is not enough to consider only the predicted values to obtain
a global minimum. It is necessary to consider the variance of predictors as shown in Figure
2. Here the variance of the predictor at −2 is small since there are several data values
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close to −2, but the variance of the predictor around 0 is large since there is no data in a
neighborhood of 0. Expected Improvement(EI) is proposed as an indicator for selecting a
new sample point, which takes into account a balance between a local and global search.
EI stands for the degree of improvement of the minimum in the case of sampling at a point
by comparing the current minimum sample value ymin = min{y(x(1)), . . . , y(x(n))}, that
is, EI is the expected value that a sampling point becomes a new minimizer. Not only is a
local region around a minimum of the predicted value considered, but also the global region
including points with a large predicted value, because this expected value includes a measure
of the accuracy of the predictor. Figure 3 shows that a new sample will be taken at the
point of highest EI value. Then the prediction is updated as shown in Figure 4.

2.2 Kriging Model

We use the Kriging model to predict response variables. The Kriging model was originally
used in geostatistics or spatial statistics and, in particular, it has been used as an inter-
polation method [1]. Furthermore, Kriging has been applied in the design and analysis of
computer experiments [10, 11].

In the Kriging model, a response variable Y (x) at the point x is assumed to be determined
by a regression model and a Gaussian process, as follows:

Y (x) = h(x)Tβ + η(x) + ε, (2.1)

where ε is error or noise, distributed normally with mean zero and variance σε. h(·) =
(h1(·), . . . , hp(·))T is known as the regressor vector, βt = (β1, . . . , βp)T is an unknown coef-
ficient vector and p is the degree of the regression. In the case of a simple linear function,
we set h(x) = (1, x)T, β = (β0, β1)T, then h(x)Tβ = β0 + β1x. η(x) is a Gaussian process
with mean zero, and covariance function η(x) and η(x′) given by

Cov
{
η(x), η(x′)

}
= σ2

ηc(x,x′), (2.2)

where σ2
η is the variance, and c(x,x′) is a correlation function. This correlation function is

dependent on the distance between x and x′. If a prediction point is far from any sampling
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points, the standard error of the predictor at this point is large. If a prediction point is
close to sampling points, the standard error of the predictor at this point is small. Various
correlation functions are proposed in [11].

Consider a response variable Y (x0) at point x0. The following notation is introduced.
Let sample points be x(1), . . . , x(n) and a set of samples for these points be Y =

(
Y (x(1)),

. . . , Y (x(n))
)T. H is the design matrix with elements consisting of h(·) of each sample point,

expressed as

H =




h(x(1))T
...

h(x(n))T


 . (2.3)

r(x0) is an n × 1 covariance vector between Y (x0) and samples Y (x(1)), . . . , Y (x(n)) and
R is the n × n matrix that consists of covariance functions between each sample. The k-th
element of r(x0) and the (i, j)-th element of R are given by

[
r(x0)

]
k

= σ2
ηc(x0,x

(k)) (2.4)
[
R

]
i,j

= σ2
ηc(x(i),x(j)) + σεδi,j , (2.5)

respectively, where if i = j, δi,j = 1, otherwise δi,j = 0. Then, the Best Linear Unbiased
Predictor (BLUP) is given by

Ŷ (x0) = h(x0)Tβ̂ + r(x0)TR−1(Y −Hβ̂). (2.6)

β̂ is the least squares estimate of β, thus β̂ =
(
HTR−1H

)−1
HTR−1Y . Suppose that the

response variable for given samples Y is Y †(x0) = [Y (x0)|Y ], then the expected value
E{Y †(x0)} coincides with eq.(2.6).

The Mean Squared Error (MSE) of the predictor is

s2(x0) = σ2
η − r(x0)TR−1r(x0)

+
(
h(x0)−HTR−1r(x0)

)T(
HTR−1H

)−1(
h(x0)−HTR−1r(x0)

)
. (2.7)

The accuracy of the prediction can be expressed using MSE.

2.3 Expected Improvement

Suppose that a predictor Y †(x) is normally distributed with mean Ŷ (x) and variance s2(x),
where Ŷ (x) is the BLUP and s2(x) is the MSE. The degree to which a sample at point x
is smaller than the current minimum is expressed by

I(x) = max
{
ymin − Y †(x), 0

}
. (2.8)

The expected value of I(x) is the value used to determine whether x may become a new
minimizer. Setting EI(x) = E{I(x)}, we have

EI(x) =
∫ ymin−Ŷ (x)

s(x)

−∞
(ymin − Ŷ (x)− s(x)τ)φ(τ)dτ

=
(
ymin − Ŷ (x)

)
Φ

(
ymin − Ŷ (x)

s(x)

)
+ s(x)φ

(
ymin − Ŷ (x)

s(x)

)
, (2.9)
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where Φ(·) is the standard normal probability cumulative density function and φ(·) is the
standard normal probability density function [4, 5, 6, 11]. To obtain a smaller value than
the current minimum at a point with large EI, the next sampling point is given by

x(n+1) = arg max
{
EI(x)} (2.10)

Adding the new sample y(x(n+1)) , the predictor is updated. The process of prediction,
estimating EI and adding a sample is repeated to search for a optimal point. This process
is indicated schematically in Figures 1, 2, 3 and 4.

3 Combining Data with Different Levels of Precision

3.1 Kennedy’s Prediction Model

Kennedy et al. [7] combined data with different levels of precision that were obtained using
the finite element method. The finite element method, which is used in many fields, including
structural and fluid mechanics, is a numerical technique that subdivides the object with a
mesh and an approximate solution is obtained by solving the partial problem in each sub-
region of the mesh. The solution consists of the sum of those obtained for each partial
problem; this solution is then treated as one data item in the subsequent analysis. If the
mesh size is small, the approximate solution is close to the true solution, i.e., the data
precision is high. However considerable calculation time may be required to obtain the
solution. On the other hand, if the mesh size is large, data precision is low, but calculation
time is short. In this case, data precision and calculation time have a trade off relation. By
combining different precision data from the finite element model with different mesh sizes,
both precision of prediction and efficiency are improved. Moreover, error bounds for the
data obtained from the finite element model can be calculated. As shown in Figure 5, the
same set of inputs always results in the same output.

Kennedy et al. assumed an auto-regression model between the different precision data.
Using s finite element models having different grid sizes, outputs from these models are set
to q1(·), . . . , qs(·) in the order of largest to smallest, according to the size of the grid. qs(·)
is the output of the highest precision model.

Suppose that the set of inputs is x
(1)
t , . . . ,x

(nt)
t , where nt is the number of data elements,

and the output is qt =
(
qt(x

(1)
t ), . . . , qt(x

(nt)
t )

)T for the model having the t-th largest size
of the grid, i.e., the t-th highest precision model (t = 1, . . . , s). The auto-regression model
between these outputs is given by

q1(x) = z1(x) (3.1)
qt(x) = ρt−1qt−1(x) + zt(x), (t = 2, . . . , s), (3.2)

where ρt−1 is an auto-regression coefficient. The Kriging model zt(x) is not independent on
qt−1(·), . . . , q1(·). In this regard, the noise term of eq.(2.1) is ignored for data arising from
the computer experiment.

Given all samples q1, . . . , qs, output of the highest precision finite element model is pre-
dicted. When considering the prediction at point x0, [qs(x0), qs, . . . , q1] has a multivariate
normal distribution; zt(x0) consists of a Gaussian process. The predicted value is given by
the expected value E

{
[qs(x0)|q1, . . . , qs]

}
of the conditional distribution, given all samples.

In this way, using an assumed auto-regression model between outputs from different
finite element models, the trade off between precision of prediction and the calculation time
in obtaining data is taken into account.
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3.2 Expanding the Prediction Model

For actual data modeling, there is uncertainty in observation and measurement, unlike the
case of the computer experiment results. When we allow for noise in the observations, the
response is stochastic.

This study deals with a degree of uncertainty of precision of data. Suppose that the true
function is f and the sample y, then y = f + ε, where ε is noise, which follows the normal
distribution N(0, σ2

ε ). The error variance σ2
ε can be regarded as a measure of precision of

the data because σ2
ε represents variation in the sample. Data with small σ2

ε is regarded as
data of high precision.

Data of different precision are divided into several levels according to their precision. Let
the t-th lowest precision data belong to the t-th level (t = 1, . . . , s). Higher precision data
belong to higher levels; data with errors of greater variance belong to lower levels. Data
yt(·) belonging to the t-th level is expressed as yt(·) = f(·) + εt, εt ∼ N(0, σ2

εt), where εt

and σ2
εt are respectively noise and its variance for data at the t-th level. Division into levels

is such that

σ2
ε1 > σ2

ε2 > · · · > σ2
εs, (t = 1, . . . , s). (3.3)

The highest precision data elements, which have the smallest error variance, belong to the
highest (s-th) level. Data at the first level have the lowest precision.

Our study is using different precision data; we are using the error variance as a measure
of the precision of the data. Data elements having the highest precision, i.e., having the
smallest error variance, belong to the highest level s. When the error variance of data
elements is larger, they belong to a lower level. We assume that the level for each data
element is known, although the actual values of the variances σ2

ε1, σ2
ε2, · · · , σ2

εs are supposed
to be unknown. So, our study treats data divided into each levels, according to eq.(3.3).

An auto-regression model is adopted which uses the relation between levels, similar to
that of Kennedy’s method. At the t-th level, the response variable Yt(x) is assumed to
satisfy

Y1(x) = Z1(x) (3.4)
Yt(x) = ρt−1Yt−1(x) + Zt(x), (t = 2, . . . , s), (3.5)

where ρt−1 is an auto-regression coefficient. Data in the t-th level is not always closer to true
value than that in (t − 1)-th level because of the stochastic error. However, data in higher
level is more reliable than data in lower level in the sense of the data precision. So, let ρt−1

that shows a weight factor between levels be in the range from 0 to 1. Zt(·) is assumed to
satisfy a Kriging model:

Zt(x) = h(x)Tβt + ηt(x) + εt. (3.6)
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βt is a p× 1 vector of regression coefficients, ηt(·) is a Gaussian process and εt ∼ N(0, σ2
εt)

is noise. ηt(·) has mean zero and covariance function

Cov
{
ηt(x), ηt(x′)

}
= σ2

Yt
ct(x,x′) (3.7)

ct(x,x′) = exp
{−γt(x− x′)T(x− x′)

}
, (3.8)

where σ2
ηt and ct(x,x′) are t-th level variance and correlation functions, respectively. The

exponential form (3.8) is widely used as a correlation function [7, 8, 10].
Because the auto-regression model includes the Kriging model, at each level not only a

predicted value is obtained but also the accuracy of the predictor can be estimated. There-
fore, EI can be used at each level. A sample point is selected by applying EI as an indicator;
higher precision predicted values are added.

The accuracy of the predictor depends on the distance between the sample and the
predicted point; the variance is small (and consequently the accuracy is high) where this
distance is small. If a predicted point is far from any sampling points, the variance of the
predictor at this point is large, so the predictor is of low accuracy. When using EGO with
different precision data, adding to higher precision prediction according to EI, high precision
data elements are used only in a limited region.

4 Prediction and Optimization with Data of Varying Precision

4.1 Best Linear Unbiased Pedictor with Data of Varying Precision

When the predictor of the extended model is considered, a methodology to update the
predictor using data divided into several levels is necessary, each time adding higher precision
samples. Let Y nt

t =
(
Yt(x

(1)
t ), . . . , Yt(x

(nt)
t )

)T be at the t-th level. At the first level, a
predictor is equal to that of the Kriging model, and it is the BLUP of Y1(x) as shown in
eq.(2.6). The predicted value is the expected value of the predictor Y †

1 (x) given Y 1.
The covariance function between Y †

1 (x) and Y †
1 (x′) is dependent on the distance between

x and x′ as shown in eq.(3.7) and (3.8). Let C1(x,x′) = Cov{Y †
1 (x), Y †

1 (x′)}, then

C1(x,x′) = σ2
Y 1c1(x,x′)− r1(x)TR−1

1 r1(x′)

+(h(x)−HT
1 R−1

1 r1(x))T
(
HT

1 R−1
1 H1

)−1(h(x′)−HT
1 R−1

1 r1(x′)), (4.1)

where H1, r1 and R1 are given by eq.(2.3), (2.4) and (2.5), respectively. When x = x′,
eq.(4.1) expresses MSE at the first level, for which s1

2(x) = C1(x,x).
Next, we consider a predictor at the t(≥ 2)-th level. Given sample points x

(1)
t , . . . ,

x
(nt)
t , a set of predictors of the (t − 1)-th level is expressed by Y †

t−1 =
(
Y †

t−1(x
(1)), . . . ,

Y †
t−1(x

(nt)
t )

)T. At the new sample points, a set of lower level predictors Y †
t−1 is compared

with that from the new samples Y t, and then the predictor is updated. From eq.(3.5), the
predictor is expressed by Yt(x) = ρt−1Y

†
t−1(x) +h(x)βt +εt.

Consider the BLUP of Yt(x0). Let

Ŷt(x0) = a(x0)TY nt
t . (4.2)

Then the BLUP is obtained by selecting a(x0) that minimizes MSE{Ŷt(x0)} subject to the
unbiased constraint, which can be expressed as the following problem:

min E
{(

a(x0)TY nt
t − Yt(x0)

)2}
subject to E

{
a(xo)TY nt

t − Yt(xo)
}

= 0
. (4.3)
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Here, let rt(x0) be the covariance vector between Yt(x0) and each sample Yt(x
(1)
t ), . . . ,

Yt(x
(nt)
t ), and similarly Rt be the covariance matrix consisting of covariance functions be-

tween each Yt(x
(1)
t ), . . . , Yt(x

(nt)
t ). The k-th element of rt(x0) and the (i, j)-th element of

Rt are given by

[
rt(x0)

]
k

= ρ2
t−1Ct−1(x0,x

(k)
t ) + σ2

Yt
ct(x0,x

(k)
t ) (4.4)

[
Rt

]
i,j

= ρ2
t−1Ct−1(x

(i)
t ,x

(j)
t ) + σ2

Yt
ct(x

(i)
t ,x

(j)
t ) + σ2

εt
δi,j , (4.5)

respectively, where if i = j, δi,j = 1, otherwise δi,j = 0 . At sample points (x(1)), . . . , (x(nt)
t )

at the t-th level, let a set of predicted values at this (t−1)-th level be Ŷ t−1 =
(
Ŷt−1(x(1)), . . . ,

Ŷt−1(x
(nt)
t )

)T, and additionally, let gt(x0) =
(
Ŷt−1(x0),h(xo)T

)T and Ft =
(
Ŷ

nt

t−1,Ht

)
.

Then eq.(4.3) can be expressed as the following problem :

min a(x0)TRta(x0)− 2a(x0)Tr(x0)
subject to FT

t a(x0)− gt(x0) = 0 . (4.6)

Introducing Lagrange multipliers λ(x0), eq.(4.6) yields

(
0 FT

t

Ft Rt

)(
λ(x0)
a(x0)

)
=

(
g(x0)
rt(x0)

)
. (4.7)

Solutions for λ and a can then be calculated. Therefore we have the BLUP at the t-th level
as

Ŷt(x0) = gt(x0)T(HT
t R−1

t Ht)−1HT
t R−1

t Y nt
t

+ rt(x0)TR−1
t

(
Y nt

t − Ft(HT
t R−1

t Ht)−1HT
t R−1

t Y nt
t

)
. (4.8)

Additionally setting the covariance function between Y †
t (x) and Y †

t (x′) as Ct(x,x′) =
Cov

{
Y †

t (x), Y †
t (x′)

}
, we have

Ct(x0,x
′
0) = ρ2

t−1Ct−1(x,x′) + σ2
Yt

ct(x,x′)− rt(x)TR−1
t rt(x′)

+(gt(x)− FT
t R−1

t rt(x))T(FT
t R−1

t F )−1(gt(x
′)− FT

t R−1
t rt(x′)) (4.9)

When x = x′, eq.(4.9) expresses theMSE at the t-th level and st
2(x) = Ct(x,x).

4.2 Estimating the Parameters

To estimate the parameters, we make the same two assumptions as Kennedy et al. [7]. First,
all parameters from the first to the (t − 1)-th level are treated as fixed at the t-th level .
Firstly, we assume that parameters at the t-th level are little influenced by those at lower
levels. Secondly, only current data and lower predictors are utilized. This means that data
elements belonging to the (t + 1)-th or higher levels are not considered during estimation at
the t-th level. If we make these two assumptions, parameters at each level can be estimated
to the order of lower levels.

The parameters belonging to the first level are β1, σ2
Y1

, σ2
ε1 and γ1. Let σ2

sum1 = σ2
Y1

+σ2
ε1 ,

σ∗1
2 =

σ2
Y1

σ2
sum1

, and R∗1 = 1
σ2
sum1

R1. Then the diagonal elements of R∗1 are 1, and the others



OPTIMIZATION BY SAMPLES OF VARYING PRECISION 291

are σ∗1
2c1(x

(i)
1 ,x

(j)
1 ). The logarithm likelihood function is expressed by

l1(β1, σ
2
sum1, σ

∗
1
2, γ1) ∝ −n1 log σ2

sum1 − log |R∗1|
+

1
σ2

sum1

(Y n1
1 −H1β1)

TR∗1
−1(Y n1

1 −H1β1). (4.10)

The maximum likelihood estimators of β1 and σ2
sum1 are given by β̂1 =

(HT
1 R−1

1 H1)−1HT
1 R−1

1 Y n1
1 and σ̂2

sum1 = 1
n1

(Y n1
1 −H1β1)TR∗1

−1(Y n1
1 −H1β1). By finding

σ∗1
2 and γ1 that maximize the logarithm likelihood function in eq.(4.10), these estimators

can be obtained as solutions to the following problem :

{
σ̂∗1

2
, γ̂1} = arg min

0<σ∗1
2<1,γ1>0

{
n1 log σ̂2

sum1 + log |R∗1|
}

(4.11)

The parameters at the t-th level are βt, σ2
Y t, σ2

εt, γt and ρt−1, and here, setting Tt =
Y nt

t − ρt−1Ŷ t−1, the logarithm likelihood function is expressed by

lt(βt, σ
2
Yt

, σ2
εt

, γt, ρt−1) ∝ − log |Rt|+ (Tt −Htβt)
TRt

−1(Tt −Htβt). (4.12)

The maximum likelihood estimate of βt is given by β̂t = (HT
t R−1

t Ht)−1HT
t R−1

t Tt. By
finding σ2

Yt
, σ2

εt
, γt and ρt−1 that maximize the logarithm likelihood function in eq.(4.12),

these estimates can be determined, by solving the following problem :

{σ̂2
Yt

, σ̂2
εt

, γ̂t, ρ̂t−1}=arg min
σ2

Yt
,σ2

εt
,γt>0, 0≤ρt−1≤1

{
log |Rt|−(Tt−Htβ̂t)

TRt
−1(Tt−Htβ̂t)

}
.(4.13)

5 Applying Efficient Global Optimization to Data of Varying Pre-
cision

5.1 Integrated Mean Square Error for Data Divided into Levels

The methodology for selecting only one sample is given by eq.(2.10). However, the number
of additional samples must be greater than the number of parameters at each level, so a
sampling criterion to obtain several samples is needed. There are methods to structure a
uniform design such as a Latin Hypercube design, minimax and maxmin distance designs, or
criteria for the optimal design matrix H in eq.(2.3) may be utilized, such as D-optimality, A-
optimality [2]. A uniform design is used to infill and spread sample point evenly throughout
the area, and the optimal design has a criterion to minimize the particular variance when
the relation between sample points and the response surface is examined. Now, in addition
to obtain new samples according to EI, it is also necessary the weight the points in the
sample.

The Integrated Mean Squares Error (IMSE) is one approach to optimal design. This
method has the criterion of minimizing the MSE with a weighted sampling function at
each point [2, 10]. Let the design Dn be the structure of sample points, and set Dn =
{x(1), . . . ,x(n)}. The criterion of IMSE is to choose the design Dn which minimizes the
integration of MSE, given a weight function of the sample points. For the Kriging model,
because s(x)2 represents the MSE, the IMSE design is given by

min
Dn⊂χ

IMSE = min
Dn⊂χ

∫

χ

s(x)2w(x)dx, (5.1)
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where χ is the sampling region, w(·) is a weight function that satisfies
∫

χ
w(x)dx = 1, and

also, from eq.(2.7), IMSE is expressed by

IMSE = σ2
η − trace

[(
O H(Dn)

H(Dn) R(Dn)

)−1 ∫

χ

(
h(x)h(x)T h(x)r(x)T

r(x)h(x)T r(x)r(x)T

)
w(x)dx

]
. (5.2)

Suppose that, when the higher level sample is added, these points are selected by the
IMSE design criterion. The design Dnt

t = {x(1)
t , . . . , x

(nt)
t } at the t-th level is therefore

selected to minimize IMSE, when the parameters of IMSE use alternative for estimating at
the (t − 1)-th level and w(·) is given by normalized EI(·) obtained at the (t − 1)-th level .
Let the parameters at the (t− 1)-th level be θt−1, and normalized EI at the (t− 1)-th level
be wt−1(·), given by EI(·)/∫

χ
EI(x)dx. Then Dnt

t is determined by solving the following
problem :

max
Dt

trace

[(
O Ht

Ht Rt(θt−1)

)−1 ∫

χ

(
h(x)h(x)T h(x)rt(x;θt)T

rt(x;θt−1)h(x)T rt(x;θt−1)rt(x;θt−1)T

)
wt−1(x)dx

]
(5.3)

We consider the grid points in χ. The maximization problem for the choice of the IMSE
design in eq.(5.3) is approximately solved by Simulated Annealing, where the selection of
points on χ is a combinatorial optimization problem.

5.2 Proposed Efficient Global Optimization

Here, we consider how to search for a global minimizer. For each level t = 1, . . . , s, suppose
that the number of initial and additional data elements is set to n

(ini)
t and n

(add)
t respectively

in advance, such that the number of initial data elements exceeds the number of parameters.
The following shows the algorithm of the proposed EGO.

[First level]

Step 1: Set j = 0. Choose an initial design D
(0)
1 and obtain a set of initial samples

Y 1(D
(0)
1 )

Step 2: Given Ŷ (x) and s(x) at all points x by eq.(2.6), (2.7) from
{
D

(j)
1 ,Y 1(D

(j)
1 )

}
,

respectively. Then, obtain EI(x) in eq.(2.9) at all points x from Ŷ (x) and s(x).

Step 3: If j > n
(add)
1 , t = t + 1 and go to Step 5. Otherwise go to Step 4.

Step 4: Sample at the point where xnew
1 = arg max{EI(x)}, and obtain a new sample

Y (xnew
1 ). Set

{
D

(j)
1 ,Y 1(D

j
1)

}
=

{
D

(j)
1 ,Y 1(D

j
1)

}∪ {xnew
1 , Y (xnew

1 )}, then go to
Step 2.

Step 5: If t < s, go to the next level, otherwise stop.

[t-th level (t ≥ 2)]

Step 1: Set j = 0. Choose the initial design D
(0)
t that minimizes IMSE in eq.(5.3) from

EI at the (t− 1)-th level, and obtain a set of initial samples Y t(D
(0)
t ).
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Figure 7: Goldstein-Price’s function

Step 2: Obtain Ŷt(x) and st(x) in eq.(4.8), (4.9) at all points x from
{
D

(j)
1 ,Y t(D

(j)
t )

}
,

respectively. Then, obtain EI(x) in eq.(2.9) at all points x from Ŷt(x) and st(x).

Step 3: If j > n
(add)
t , set next level or stop, otherwise go to Step 4.

Step 4: Sample at the point where xnew
t = arg max{EI(x)}, and obtain a new sample

Y (xnew
t ). Set

{
D

(j)
t ,Y t(D

j
t )

}
=

{
D

(j)
t ,Y t(D

j
t )

} ∪ {xnew
t , Y (xnew

t )}, then go to
Step 2.

Step 5: If t < s, go to the next level, otherwise stop.

6 Numerical Experiments

In this section, we consider some numerical experiments, in which we used the proposed
method with different precision data to search for an optimal solution, and the precision of
the solution and the efficiency of sampling was evaluated from the results.

Goldstein-Price’s function [9] was used as a test function, expressed by

f(x1, x2) = {1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)}
×{30 + (2x1 − 3x2)2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)},

(−2 ≤ x1 ≤ 2,−2 ≤ x2 ≤ 2), (6.1)

where a global minimizer is x∗ = (x1, x2) = (0,−1) and a global minimum is f(x∗) = 3.
Goldstein-Price’s function is shown in Figure 7.

This experiment treated 41×41 points on the grid χ = [−2,−1.9, . . . , 2]×[−2,−1.9, . . . , 2],
and data of two different levels of precision, where lower precision data elements Y 1 belonged
to the first level and higher precision data elements Y 2 belonged to the second level. Sup-
pose that these have error variances σ2

ε1 = 0.42, and σ2
ε2 = 0.22 respectively; however both

variances were unknown for the experiments. The regression function was taken as constant,
which is expressed by h(x1, x2) = 1. The initial and additional number of samples at the
first and second level, n

(ini)
1 , n

(add)
1 , n

(ini)
2 and n

(add)
2 were decided in advance. The min-

imization problems for the estimation of parameters in eq.(4.11), (4.13) were numerically
solved using the Nelder-Mead method.

The initial design was structured by points chosen by random sampling at the first level.
For each sampling strategy, numerical experiments were carried out using 50 initial designs
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Table 1: Evaluation of xmin and y(xmin) with data of varying precision

n
(ini)
1 n

(add)
1 n

(ini)
2 n

(add)
2 E{d(xmin)} Var{d(xmin)} E{d(y(xmin))} Var{d(y(xmin))}

30 10 8 2 0.360 0.085 25.98 378.2
20 20 8 2 0.191 0.155 29.85 796.2
20 10 8 7 0.413 0.189 35.58 1113
20 10 10 5 0.443 0.191 41.30 2789
20 0 10 10 0.677 0.460 56.93 2826
15 5 10 10 0.346 0.052 34.54 1080
10 10 10 10 0.454 0.109 47.10 2412

Table 2: Evaluation of xmin and y(xmin) with data of a single precision

n
(ini)
1 n

(add)
1 n

(ini)
2 n

(add)
2 E{d(xmin)} Var{d(xmin)} E{d(y(xmin))} Var{d(y(xmin))}

20 40 - - 0.217 0.039 14.64 188.3
30 30 - - 0.261 0.064 14.76 143.8
40 20 - - 0.365 0.185 27.58 571.1

- - 10 20 0.566 0.319 59.03 4801
- - 15 15 0.546 0.285 52.65 2737
- - 20 10 0.565 0.237 53.45 1483

chosen by random sampling. The minimizer xmin of samples obtained during searching is
given by

xmin = arg min
{
y(x(1)

1 ), . . . , y(x(n1)
1 ), y(x(1)

2 ), . . . , y1(x
(n2)
2 )

}
, (6.2)

and then the evaluation used the Euclidean distance between the true global minimizer x∗

and xmin, which is expressed by

d(xmin) =
√∑2

j=1(x
∗
j − xminj)2, (6.3)

where x∗j and xminj were the coordinates of x∗ and xmin in dimension j. The expected
value E{d(xmin)} and variance Var{d(xmin)} of each sampling strategy using the different
precision data are shown in Table 1. Also, the minimum sample value y(xminj) is evaluated.
The Euclidean distance between the global minimum f(x∗) and y(xmin) is expressed by

d(y(xmin)) = |f(x∗)− y(xmin)|, (6.4)

The expected value E{d(y(xmin))} and variance Var{d(y(xmin))} are shown in Table 1.
For comparison, searches for a global optimum using only single precision data were

made. The number of initial and additional data elements were set in advance, as was the
case for the search using data of varying precision. The results for each sampling strategy
using low and high precision data are shown in Table 2.

Table 2 shows that the precision of the search using only high precision data was low;
on the other hand, the precision of the search using only low precision data was high, but
many samples were required. In particular, the precision of the search was high when the
number of additional data elements was large. The searches using data of varying precision
were of greater precision than those using only high precision data. If it is difficult to obtain
a lot of high precision data, the precision of the search can be made greater by combining
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low precision data. The precision of the search with n
(ini)
1 = 20, n

(add)
1 = 20, n

(ini)
2 = 8 and

n
(add)
2 = 2 was greater than the precision of those using only low precision data. As was

the case for data of a single precision, the search was of high precision when the number of
additional data elements was large.

This paper proposes one approach to combine the varying precision samples, and shows
the possibility of the improvement of searching efficiency. We have applied for some test
functions. However, we did not mention in the manuscript, because the results are almost
duplicates of Goldstein-Price’s function. Our approach is based on the sampling rather
than optimization, where the procedure of finding the optimum point may be a sequence of
sampling point which maximizes EI(x). The optimum point is given by taking the minimum
from the searching points as eq.(6.2).

7 Conclusion

This paper deals with the search for a global optimum considering efficiency of sampling,
and for this purpose, a method utilizing EGO and combining data of varying precision is
proposed. An auto-regression model with a Kriging model is applied between respective lev-
els where data elements are classified into levels according to their precision. Since not only
a predicted value can be obtained but also the accuracy of the predictor can be estimated,
the search can be executed with EGO applied to data of varying precision. Numerical ex-
periments showed that the proposed method is effective, resulting in higher efficiency and
precision of an obtained solution than was possible using only data of a single precision.

There are some further problems to consider. In this paper, selection of initial data at
each level was performed by the IMSE; however data elements of varying precision were not
considered. Sampling points would have to be changed to take account of data of varying
precision.

When we consider efficiency of sampling, it is necessary to consider practical conse-
quences. In the case that there are constraints of time or cost, or constraints on sampling
points, we must consider how to treat the problem including the constraints.
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