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Abstract: While research on constrained optimization using evolutionary algorithms has been actively
pursued, it has had to face the problems that the ability to solve multi-modal problems, which have many
local solutions within a feasible region, is insufficient, that the ability to solve problems with equality
constraints is inadequate, and that the stability and efficiency of searches is low. In this study, we propose a
new constrained optimization algorithm εDE, defined by applying the ε constrained method to a differential
evolution (DE). DE is a simple, fast and stable population based search algorithm that is robust to multi-
modal problems. Also, a new and simple way of controlling relaxation of constraints is proposed for the
ε constrained method to solve problems with equality constraints. The εDE realizes stable and efficient
searches that can solve multi-modal problems and those with equality constraints. The advantage of the
εDE is shown by applying it to thirteen constrained problems of various types and comparing the results to
those obtained by other methods.
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1 Introduction

An evolutionary algorithm (EA) is the term commonly used for algorithms based on princi-
ples of evolution, and includes genetic algorithms (GAs), evolution strategies (ESs), and evo-
lutionary and genetic programming. EAs are direct search methods that use only the value
of the objective function and do not require extensive knowledge of the search space such
as functional derivatives; essentially solving unconstrained optimization problems. However
optimization problems in the real world are often constrained optimization problems where
objective functions are optimized under given constraints.

There are many studies on solving constrained optimization problems using EAs [3, 5,
18,23]. However there have been some difficulties in these studies:

(1) The ability to solve multi-modal problems is insufficient. EAs for constrained opti-
mization can locate a feasible region and find feasible solutions in uni-modal problems. But
when multi-modal problems that have many local solutions in a feasible region are solved,
even if the EAs can locate the feasible region, they are sometimes trapped to a local solution
and cannot search for an optimal solution. Thus a method that is robust to multi-modal
problems is required.

(2) The feasibility of solutions obtained by EAs in problems with equality constraints
is inadequate. Many EAs for constrained optimization cannot directly solve problems with
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equality constraints. To overcome such problems, the definition of the problems needs to be
changed by converting equality constraints into relaxed inequality constraints. As a result,
the feasibility of the obtained solutions is inadequate. A method that can dynamically relax
equality constraints and find better solutions with minimum constraint violation is required.

(3) The stability and efficiency of searches is low. Even when solving the same problem,
EAs sometimes find good solutions but sometimes find only very bad solutions. The initial
search points are usually generated randomly and the search process includes many stochas-
tic operations in EAs. Sometimes EAs cannot overcome the effect of randomness in the
search process of some problems. Thus, the stability of the search becomes low. Also, many
EAs need rank-based selection or replacement, stochastic selection and mutations based on
Gaussian or Cauchy distributions that incur high computational costs. Thus, the efficiency
of search also becomes low.

To overcome these problems, we propose a new constrained optimization algorithm εDE,
defined by applying the ε constrained method [41] to a differential evolution (DE) [31,32]. DE
is an evolutionary algorithm for unconstrained global optimization that incorporates both
crossover and mutation into a simple operation realized by selecting a random parent and
adding a scaled difference between two new random parents to the parent. By incorporating
DE, problems (1) and (3) can be solved; DE is a simple, fast and stable search algorithm
that is robust to multi-modal problems. The εDE is stable because it uses a simple and
stable selection and replacement mechanism excluding stochastic operations. The εDE is
also efficient because it uses a simple arithmetic operation and does not use any rank-based
operations or mutations based on Gaussian and Cauchy distributions. The problem (2) is
solved by providing a new and simple way of controlling the relaxation of equality constraints
for the ε constrained method to directly solve problems with equality constraints.

The εDE realizes stable and efficient searches that can solve multi-modal problems and
those with equality constraints. The advantage of the εDE is shown by applying it to
thirteen constrained problems of various types and comparing the results to those obtained
by other methods.

The rest of this paper is organized as follows: Section II describes previous works. Sec-
tion III briefly describes the ε constrained method. Section IV describes DE and the εDE
with a new way of controlling the relaxation of equality constraints. Section V presents
experimental results of various benchmark problems. Comparisons with other methods are
included in this section. Section VI has discussion on parameter settings. Finally, Section
VII concludes with a brief summary of the paper and some remarks.

2 Previous Works

EAs for constrained optimization can be classified into several categories by the way the
constraints are treated:

(1) Constraints are only used to see whether a search point is feasible or not [6, 21]. In
this category, the search process begins with one or multiple feasible points and continues
to search for new points within the feasible region. When a new search point is generated
and the point is not feasible, the point is repaired or discarded.

(2) The constraint violation, which is the sum of the violation of all constraint functions,
is combined with the objective function. Approaches in this category are called penalty
function methods. An extended objective function is defined by adding the constraint vio-
lation to the objective function as a penalty. The optimization of the objective function and
the constraint violation is realized by the optimization of the extended objective function.
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(3) The constraint violation and the objective function are used separately. In this
category, both the constraint violation and the objective function are optimized separately.

Takahama and Sakai proposed the α constrained method [33–35] and the ε constrained
method [41]. These methods adopt a lexicographic order, in which the constraint violation
precedes the objective function, with relaxation of the constraints. The methods can effec-
tively optimize problems with equality constraints through the relaxation of the constraints.
Deb [4] proposed a method using an extended objective function that realizes the lexico-
graphic ordering. Runarsson and Yao [28] proposed a stochastic ranking method based
on ES and using a stochastic lexicographic order that ignores constraint violations with
some probability. Mezura-Montes and Coello [17] proposed a comparison mechanism that is
equivalent to the lexicographic ordering based on ES. Venkatraman and Yen [43] proposed a
two-step optimization method based on GA, which first optimizes constraint violation and
then objective function. These methods have been successfully applied to various problems.

(4) The constraints and the objective function are optimized by multiobjective optimiza-
tion methods. In this category, constrained optimization problems are solved as multiobjec-
tive optimization problems in which the objective and the constraint functions are objectives
to be optimized [1, 2, 26,29,30].

In category (1), generating initial feasible points is difficult and computationally demand-
ing when the feasible region is very small. Especially if the problem has equality constraints,
it is almost impossible to find initial feasible points. In category (2), it is difficult to select
an appropriate value for the penalty coefficient that adjusts the strength of the penalty. Sev-
eral methods that dynamically control the penalty coefficient have been proposed [12,13,20].
However, ideal control of the coefficient is problem dependent [27] and it is difficult to de-
termine a general control scheme. Farmani and Wright [7] proposed a self-adaptive fitness
formulation, but the solutions found for some problems are not sufficient. In category (4),
the difficulty is that solving multiobjective optimization problems is a more difficult and
expensive task than solving single objective optimization problems.

In this paper, we investigate the ε constrained method in the promising category (3). In
the ε constrained method, a constraint violation for the constraints is introduced to indicate
how much a search point violates the constraints, and the ε level comparison is defined as an
order relation that gives priority to the constraint violation over the value of the objective
function. The α and the ε constrained methods are new types of transformation methods
that convert an algorithm for unconstrained optimization into an algorithm for constrained
optimization by replacing the ordinal comparisons with the α and the ε level comparisons
in direct search methods. We call the methods algorithm transformation methods. The α
constrained method was applied to Powell’s method [25], the nonlinear simplex method by
Nelder and Mead [24], a genetic algorithm [9] and particle swarm optimization (PSO) [14,15];
and the α constrained Powell’s method [33–35], the α constrained simplex method [36,38,42],
the αGA [37,39] and the αPSO [40] were proposed. The ε constrained method was applied
to PSO, and the ε constrained PSO [41] was proposed.

Of these methods, the α constrained simplex method with mutations [42] is the best as
it can stably and efficiently search solutions. In the nonlinear simplex method, a simplex is
spanned by multiple search points and the simplex shows the region including an optimal
solution. The simplex is gradually reduced while searching for better points. When the
simplex has sufficiently converged, an optimal solution with a high precision is obtained.
The nonlinear simplex method is a simple and fast mathematical optimization algorithm
and is very effective for uni-modal problems. However, the simplex is often trapped by
local solutions in multi-modal problems and an optimal solution cannot be found. To avoid
such situations, boundary mutation, which searches the boundary of a feasible region, is
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introduced in the α constrained simplex method. But boundary mutation incurs a high
computational cost and also reduces search efficiency when an optimal solution exists inside
the feasible region because the mutation searches for solutions at the boundary. Contrarily,
the εDE can stably solve multi-modal problems.

3 The ε Constrained Method

In this section, the ε constrained method [41] is described.

3.1 Constrained Optimization Problems

The general constrained optimization problem (P) with inequality, equality, upper bound
and lower bound constraints is defined as follows:

(P) minimize f(x),
subject to gj(x) ≤ 0, j = 1, . . . , q,

hj(x) = 0, j = q + 1, . . . , m,
li ≤ xi ≤ ui, i = 1, . . . , n,

(3.1)

where x = (x1, x2, · · · , xn) is an n dimensional vector of decision variables, f(x) is an
objective function, gj(x) ≤ 0 are q inequality constraints and hj(x) = 0 are m− q equality
constraints. The functions f, gj and hj are linear or nonlinear real-valued functions. The
values ui and li are the upper and lower bounds of xi, respectively. The upper and lower
bounds define the search space S. Inequality and equality constraints define the feasible
region F . Feasible solutions exist in F ⊆ S.

3.2 The Constraint Violation

We introduce the constraint violation φ(x) to indicate by how much a search point x violates
the constraints. The constraint violation φ(x) is the following function:

{
φ(x) = 0 (x ∈ F)
φ(x) > 0 (x 6∈ F) (3.2)

Some types of constraint violations, which are adopted as a penalty in penalty function
methods, can be defined as follows:

φ(x) = max{max
j
{0, gj(x)},max

j
|hj(x)|} (3.3)

φ(x) =
∑

j

max{0, gj(x)}p +
∑

j

|hj(x)|p (3.4)

where p is a positive number.

3.3 The ε Level Comparison

The ε level comparison is defined as an order relation on the set of (f(x), φ(x)). If the
constraint violation of a point is greater than 0, the point is not feasible and its worth is
low. The ε level comparisons are defined by a lexicographic order in which φ(x) precedes
f(x), because the feasibility of x is more important than the minimization of f(x).
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Let f1 (f2) and φ1 (φ2) be the function value and the constraint violation respectively,
at a point x1 (x2). Then, for any ε satisfying ε ≥ 0, the ε level comparisons <ε and ≤ε

between (f1, φ1) and (f2, φ2) are defined as follows:

(f1, φ1) <ε (f2, φ2) ⇔




f1 < f2, if φ1, φ2 ≤ ε
f1 < f2, if φ1 = φ2

φ1 < φ2, otherwise
(3.5)

(f1, φ1) ≤ε (f2, φ2) ⇔




f1 ≤ f2, if φ1, φ2 ≤ ε
f1 ≤ f2, if φ1 = φ2

φ1 ≤ φ2, otherwise
(3.6)

In the case of ε = 0, <0 and ≤0 are equivalent to the lexicographic order in which the
constraint violation φ(x) precedes the function value f(x). Also, in the case of ε = ∞, the ε
level comparisons <∞ and ≤∞ are equivalent to the ordinal comparisons < and ≤ between
function values.

3.4 The Properties of the ε Constrained Method

An optimization problem solved by the ε constrained method, that is, a problem in which
ordinary comparisons are replaced with ε level comparisons, (P≤ε

), is defined as follows:

(P≤ε
) minimize≤ε

f(x), (3.7)

where minimize≤ε denotes the minimization based on the ε level comparison ≤ε. Also, a
problem (Pε) is defined such that the constraint of (P), that is, φ(x) = 0, is relaxed and
replaced with φ(x) ≤ ε:

(Pε) minimize f(x),
subject to φ(x) ≤ ε.

(3.8)

The problem (P≤ε) means searching for the minimum point ordered by the order relation ε
level comparison ≤ε. The problem (Pε) means searching for the minimum point ordered by
the ordinary comparison ≤ under the relaxed condition φ(x) ≤ ε.

For the three types of problems, (Pε), (P≤ε
) and (P), the following theorems are given.

Theorem 3.1. If an optimal solution of (P0) exists, any optimal solution of (P≤ε) is an
optimal solution of (Pε).

Proof. Let x∗ be an optimal solution of (P0). As x∗ satisfies the constraints of (P0),
φ(x∗) = 0. Then, letting x̂ be an optimal solution of problem (P≤ε

), there does not
exist a point x which is smaller than x̂ in the meaning of the ε level comparison. That
is, (f(x̂), φ(x̂)) ≤ε (f(x∗), φ(x∗)). From the definition of ≤ε and φ(x∗) ≤ ε, φ(x̂) ≤ ε.
Therefore, x̂ is a feasible solution of problem (Pε).

For any point x ∈ Xε = {x|φ(x) ≤ ε}, (f(x̂), φ(x̂)) ≤ε (f(x), φ(x)). f(x̂) ≤ f(x) from
the definition of ≤ε, φ(x̂) ≤ ε and φ(x) ≤ ε. Therefore, x̂ is an optimal solution of problem
(Pε).

Theorem 3.2. If an optimal solution of (P) exists, any optimal solution of (P≤0) is an
optimal solution of (P).

Proof. Since problem (P) is identical with problem (P0), letting ε = 0, this theorem is
proved by Theorem3.1.
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Theorem 3.3. Let {εn} be a strictly decreasing non-negative sequence converging to 0. Let
f(x) and φ(x) be continuous functions of x. Assume that an optimal solution x∗ of (P0)
exists and an optimal solution x̂n of (P≤εn

) exists for any εn. Then, any accumulation point
of the sequence {x̂n} is an optimal solution of (P0).

Proof. From Theorem3.1, x̂n is an optimal solution of problem (Pεn) and f(x̂n) ≤ f(x∗).
Let x̄ be an accumulation point of the sequence {x̂n} and let {x̂nk

} be a subsequence of
{x̂n} converging to x̄. That is, limk→∞ x̂nk

= x̄. Thus, f(x∗) ≥ limk→∞ f(x̂nk
) = f(x̄).

On the other hand, from the continuity of φ and limk→∞ εnk
= 0, φ(x̄) = limk→∞ φ(x̂nk

) ≤
limk→∞ εnk

= 0. Then, x̄ is a feasible solution of problem (P0) and f(x∗) ≤ f(x̄). Therefore,
f(x̄) = f(x∗). That is, x̄ is an optimal solution of problem (P0).

Theorems 3.1 and 3.2 show that a constrained optimization problem can be transformed
into an equivalent unconstrained optimization problem using the ε level comparisons. So,
if the ε level comparisons are incorporated into an existing unconstrained optimization
method, constrained optimization problems can be solved. It is thought that the ε con-
strained method converts an algorithm for unconstrained optimization into an algorithm for
constrained optimization by replacing ordinary comparisons with the ε level comparisons.
Theorem 3.3 shows that an optimal solution of (P0) is asymptotically obtained by converg-
ing the ε level to 0, if a perfect optimization algorithm, which can find optimal solution
perfectly, is used. This is the same as the penalty method can solve constrained problems
by increasing the penalty coefficient to ∞.

4 The εDE

In this section, we first describe differential evolution. Then, we describe the εDE, which is
the integration of the ε constrained method and DE. A control function of the relaxation of
equality constraints is also defined.

4.1 Differential Evolution

Differential evolution is a variant of ES proposed by Storn and Price [31, 32]. DE is a
stochastic direct search method using population or multiple search points. DE has been
successfully applied to optimization problems including non-linear, non-differentiable, non-
convex and multi-modal functions. It has been shown that DE is fast and robust to these
functions.

The main feature of DE is that DE uses simple arithmetic operations to avoid the control
of Gaussian mutation in ES. In general, the mutation process must be controlled to adjust
the step size of the Gaussian mutation, because the ideal step size depends on the locus
or the position of the gene that is mutated and also depends on the state of the evolution
process. DE adopts the sum of a base vector and the scaled difference vectors as the
mutation operation instead of Gaussian mutation. The base vector is an individual selected
from the population. The difference vectors are formed by the differences between a pair of
individuals randomly selected from the population. As the search space by the population
contracts and expands over generations, the step size in each dimension, which is given by
the difference vectors, adapts automatically.

There are some variants of DE that have been proposed, such as DE/best/1/bin and
DE/rand/1/exp. The variants are classified using the notation DE/base/num/cross. “base”
indicates the method of selecting a parent that will form the base vector. For example,
DE/rand/num/cross selects the parent for the base vector at random from the population.
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DE/best/num/cross selects the best individual in the population. “num” indicates the
number of difference vectors used to perturb the base vector. “cross” indicates the crossover
mechanism used to create a child. For example, DE/base/num/bin shows that crossover
is controlled by a binomial crossover using constant crossover rate. DE/base/num/exp
shows that crossover is controlled by a binomial crossover using exponentially decreasing
the crossover rate.

In DE, initial individuals are randomly generated within the search space and form
an initial population. Each individual contains n genes as decision variables or a decision
vector. At each generation or iteration, all individuals are selected as parents. Each parent is
processed as follows: The mutation process begins by choosing 1+2 num individuals from all
individuals except for the parent in the processing. The first individual is a base vector. All
subsequent individuals are paired to create num difference vectors. The difference vectors
are scaled by the scaling factor F and added to the base vector. The resulting vector is
then recombined or crossovered with the parent. The probability of recombination at an
element is controlled by the crossover rate CR. This crossover process produces a trial
vector. Finally, for survivor selection, the trial vector is accepted for the next generation if
the trial vector is better than the parent.

4.2 The Algorithm of the εDE

The algorithm of the εDE based on DE/rand/1/exp variant, which is used in this study, is
as follows:

Step0 Initialization. Initial N individuals xi are generated as the initial search points,
where there is an initial population P (0) = {xi, i = 1, 2, · · · , N}. An initial ε level is
given by the ε level control function ε(0).

Step1 Termination condition. If the number of generations (iterations) exceeds the maxi-
mum generation Tmax, the algorithm is terminated.

Step2 Mutation. For each individual xi, three individuals xp1, xp2 and xp3 are chosen from
the population without overlapping xi and each other. A new vector x′ is generated
by the base vector xp1 and the difference vector xp2 − xp3 as follows:

x′ = xp1 + F (xp2 − xp3) (4.1)

where F is a scaling factor.

Step3 Crossover. The vector x′ is crossovered with the parent xi. A crossover point j is
chosen randomly from all dimensions [1, n]. The element at the j-th dimension of the
trial vector xnew is inherited from the j-th element of the vector x′. The elements of
subsequent dimensions are inherited from x′ with exponentially decreasing probability
defined by a crossover rate CR. Otherwise, the elements are inherited from the parent
xi. In real processing, Step2 and Step3 are integrated as one operation.

Step4 Survivor selection. The trial vector xnew is accepted for the next generation if the
trial vector is better than the parent xi.

Step5 Controlling the ε level. The ε level is updated by the ε level control function ε(t).

Step6 Go back to Step1.

Fig. 1 shows the algorithm of the εDE.
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εDE/rand/1/exp()
{

P=Generate N individuals {xi} randomly;

ε=ε(0);
for(t=1; t ≤ Tmax; t++) {

for(i=1; i ≤ N; i++) {
(p1, p2, p3)=select randomly from [1, N ]\{i} s.t. p1 6= p2, p2 6= p3, p3 6= p1;

xnew=xi ∈ P;

j=select randomly from [1, n];
k=1;
do {

xnew
j =xp1

j +F (xp2
j − xp3

j );
j=(j + 1)%n;
k++;

} while(k ≤ n && u(0, 1) < CR);

if((f(xnew), φ(xnew)) <ε (f(xi), φ(xi))) xi=xnew;

}
ε=ε(t);

}
}

Figure 1: The algorithm of the ε constrained differential evolution with control of the ε
level, where ε(t) is the ε level control function, F is a scaling factor, CR is a crossover rate,
and u(0, 1) is a uniform random number generator in [0, 1].

4.3 Controlling the ε Level

Usually, the ε level does not need to be controlled. Many constrained problems can be
solved based on the lexicographic order where the ε level is constantly 0. However, when a
constrained problem has severe small feasible region, the searching process is often trapped
at a local solution. From theorem 3.3, the ε constrained method can avoid this situation
by enlarging feasible region using the ε level and converging the enlarged feasible region to
the original feasible region. Although DE is not a perfect optimization algorithm, DE is a
very robust algorithm. Thus, it is expected that εDE can solve constrained optimization
problems with severe feasible region if the ε level is controlled properly.

In this study, a new and simple way of controlling the ε level is defined according to
the equation (4.2). In the later, it is shown that εDE can solve constrained problems with
equality constraint, which are the problems with the most severe feasible region, using the
ε level control with the equation (4.2). The initial ε level ε(0) is the constraint violation of
the top θ-th individual in the initial search points. The ε level is updated until the number
of iterations t becomes the control generation Tc. After the number of iterations exceeds Tc,
the ε level is set to 0 to obtain solutions with minimum constraint violation.

ε(0) = φ(xθ) (4.2)

ε(t) =
{

ε(0)(1− t
Tc

)cp, 0 < t < Tc,

0, t ≥ Tc

where xθ is the top θ-th individual and θ = 0.2N . Tc is 80% of the maximum generations,
or Tc = 0.8Tmax.
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5 Solving Constrained Nonlinear Programming Problems

In this paper, thirteen benchmark problems that are mentioned in some studies [17, 28, 42]
are optimized, and the results by the εDE are compared with those results.

5.1 Test Problems and the Experimental Conditions

In the thirteen benchmark problems, g02, g03, g08 and g12 are maximization problems,
while the others are minimization problems. Problems g03, g05, g11 and g13 contain equal-
ity constraints. Problem g12 has disjointed feasible regions. The harder version studied
in [16], where the feasible region consists of 93 disjointed spheres, each with a radius of 0.25,
is solved. Table 1 shows the outline of the thirteen problems [7, 17]. The table contains
the number of variables n, the form of the objective function, the number of linear inequal-
ity constraints (LI), nonlinear inequality constraints (NI), linear equality constraints (LE),
nonlinear equality constraints (NE) and the number of constraints active at the optimal
solution. The problems marked by an upward arrow are maximization problems.

Table 1: Summary of test problems

f n Form of f LI NI LE NE active
g01 13 quadratic 9 0 0 0 6
↑g02 20 nonlinear 1 1 0 0 1
↑g03 10 polynomial 0 0 0 1 1
g04 5 quadratic 0 6 0 0 2
g05 4 cubic 2 0 0 3 3
g06 2 cubic 0 2 0 0 2
g07 10 quadratic 3 5 0 0 6
↑g08 2 nonlinear 0 2 0 0 0
g09 7 polynomial 0 4 0 0 2
g10 8 linear 3 3 0 0 6
g11 2 quadratic 0 0 0 1 1
↑g12 3 quadratic 0 93 0 0 0
g13 5 nonlinear 0 0 1 2 3

The parameters for the ε constrained method are as follows: Every constraint violation
is defined as a simple sum of constraints, or p = 1 in the equation (3.4). The ε level is
controlled using the equation (4.2) for problems with equality constraints using cp = 5 and
for the other problems the ε level is fixed to 0. The parameters for DE are: The number of
search points N = 40, the maximum generation Tmax = 4, 999, the scaling factor F = 0.7
and the crossover rate CR = 0.9 are common settings. In g12, Tmax = 499 is used. Thus,
the maximum number of function evaluations is 200,000 except g12 (20,000 evaluations). In
this paper, 30 independent runs are performed. The effect of parameters will be discussed
later.

5.2 Experimental Results

Table 2 summarizes the experimental results. The table shows the known “optimal” solution
for each problem and the statistics from the 30 independent runs. These include the best,
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median, mean, and worst values and the standard deviation of the objective values found.
Also, the average constraint violation of the best solution, the average number of evaluations
of the objective function and the constraints to find the best solution in each run are shown
in the columns labeled violation, #func and #const respectively. The average execution
time (seconds) in each run using a 1.3GHz Mobile Pentium III notebook PC is shown in
the column labeled time(s). The table also shows the results when the equality constraints
are relaxed and converted to inequality constraints according to the equation (5.1), which
is adopted in many methods:

|hj(x)| ≤ δ, δ > 0, (5.1)

where δ = 10−4.

Table 2: Experimental results on 13 benchmark problems using standard settings; 30 inde-
pendent runs were performed

f optimal best median mean worst st. dev.
violation #func #const time(s)

g01 -15.000 -15.000000 -15.000000 -15.000000 -15.000000 0
0 52859.0 169331.2 0.31

↑g02 0.803619 0.803618 0.803614 0.803613 0.803588 5.587e-06
0 82559.0 198707.4 0.62

↑g03 1.000 0.999999 0.999994 0.999991 0.999953 1.009e-05
5.534e-11 64953.5 178246.8 0.29

(δ = 10−4) 1.000500 1.000500 1.000500 1.000500 6.457e-09
1.000e-04 89817.4 199667.1 0.28

g04 -30665.539 -30665.538670 -30665.538670 -30665.538670 -30665.538670 0
0 35612.8 89555.8 0.22

g05 5126.498 5126.498110 5126.498113 5126.498119 5126.498164 1.289e-05
5.301e-15 58119.5 182886.2 0.28

(δ = 10−4) 5126.496714 5126.496714 5126.496714 5126.496714 1.819e-12
1.000e-04 65846.2 175659.5 0.27

g06 -6961.814 -6961.813876 -6961.813876 -6961.813876 -6961.813876 0
0 6948.4 12727.7 0.14

g07 24.306 24.306209 24.306209 24.306209 24.306209 4.269e-09
0 56809.3 199759.1 0.30

↑g08 0.095825 0.095825 0.095825 0.095825 0.095825 0
0 4234.4 4896.8 0.22

g09 680.630 680.630057 680.630057 680.630057 680.630057 0
0 33177.7 72071.8 0.24

g10 7049.248 7049.248021 7049.248021 7049.248021 7049.248021 0
0 33754.5 198651.9 0.25

g11 0.750 0.750000 0.750000 0.750000 0.750000 0
9.035e-21 115694.2 171171.9 0.13

(δ = 10−4) 0.749900 0.749900 0.749900 0.749900 0
1.000e-04 118115.0 161004.4 0.14

↑g12 1.000000 1.000000 1.000000 1.000000 1.000000 0
0 4674.9 9278.9 0.29

g13 0.053950 0.053950 0.053950 0.053950 0.053950 8.453e-09
5.864e-17 63913.8 196419.8 0.21

(δ = 10−4) 0.053942 0.053942 0.053942 0.053942 0
1.000e-04 77860.8 188870.6 0.22
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For every problem, the best, median, average and worst values are almost equivalent to
the optimal solutions. For problems g01, g04, g06, g07, g08, g09, g10, g11, g12 and g13,
the optimal solutions are found consistently in all 30 runs. For other three problems g02,
g03 and g05, the optimal or near-optimal solutions are found in all 30 runs. These results
show that the εDE is a very stable algorithm. The problem g02 is a multi-modal problem
that has many local optima (maxima) with high peaks near the global optimum within the
feasible region. Many other methods cannot constantly obtain high quality solutions, but
the εDE in all 30 runs consistently found near-optimal solutions. Thus, it is thought that
the εDE has a high ability to solve multi-modal problems.

For problems g03, g05, g11 and g13, which contain equality constraints, the constrained
violation, given by the maximum of the constraint functions defined by the equation (3.3)
is about from 10−20 to 10−10, which is very small and indeed negligible. These results
show that the εDE can directly solve problems with equality constraints without converting
the equality constraints to relaxed inequality constraints and so can obtain very strict and
feasible solutions. When equality constraints are relaxed using δ = 10−4, the εDE found
better objective than optimal values because the constraint violation was a fairly large value
10−4.

It is thought that the good performance of εDE is caused by good balance between the
diversity and the intensity of the search process. In earlier generations, the diversity of the
search is very large. The search points gradually converge to the global optimum or near
optimum. In later generations, the intensity of the search becomes large and the diversity
is almost lost.

The εDE is a very fast algorithm. The execution times ranged from 0.13 seconds to
0.62 seconds using a notebook PC. The execution times are less than 1/3 seconds in all
problems, except for g02. The number of evaluations of the constraints to find the best
solution ranged from about 5,000 to 200,000. The number of evaluations of the objective
function ranged between about 4,000 and 118,000. These results show that the εDE is very
efficient algorithm.

In the εDE, the objective function and the constraints are treated separately. So, when
the order relation of the search points can be decided only by the constraint violation of the
constraints, the objective function is not evaluated. Thus, the number of evaluations of the
objective function is less than the number of evaluations of the constraints. This nature of
the εDE contributes to the efficiency of the algorithm especially when the objective function
is computationally demanding.

5.3 Comparison with Other Methods

There are some methods that solved the same thirteen problems. In the methods, for
comparative studies we chose the stochastic ranking method (SR) proposed Runarsson and
Yao [28], the simple multimembered evolution strategy (SMES) proposed by Mezura-Montes
and Coello [17] and α constrained simplex method with mutations (αSimplex) as proposed
by Takahama and Sakai [42], because the results of these methods are better than the results
of the other methods, and they reported good quality statistical information.

In SR, 30 independent runs were performed, the maximum number of evaluations in
each run was 1750 × 200 = 350, 000 except for g12 (175 × 200=35,000) and all equality
constraints were relaxed by the equation (5.1), where δ = 10−4. Thus, it is thought that
the constraint violation in problems with equality constraints was about 10−4. In SMES,
30 independent runs were performed, the maximum number of evaluations in each run was
800 × 300 = 240, 000. For problems with equality constraints, allowable tolerance, which
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is similar to the ε level, is controlled. They used different control schemes to solve the
problems. In g03, g05 and g11, the allowable tolerance is controlled from 0.001 to 0.0004
and is controlled from 3.0 to 0.00003 in g13. Thus, it is thought that the constraint violation
in g03, g05 and g11 was about 4× 10−4 and in g13 it was about 3× 10−5. Contrarily, the
εDE used the same way of controlling the ε level for all problems with equality constraints.
In αSimplex, 30 independent runs were performed, the maximum number of evaluations in
each run was about 30,000 for problem g12 and about from 290,000 to 330,000 for the other
problems. All equality constraints were relaxed using δ = 10−4.

Table 3, 4, 5, 6 and 7 show comparisons of the best, median, average, worst values and
standard deviation for the four methods. The better cases are highlighted using boldface.
The results of the εDE were taken from Table 2, where equality constraints are relaxed using
δ = 10−4, and the maximum number of evaluations was 20,000 for problem g12 and 200,000
for the other problems.

Table 3: Comparison of the best values among proposed (indicated by εDE), Runarsson and
Yao’s (indicated by SR), Mezura-Montes and Coello’s (indicated by SMES) and Takahama
and Sakai’s (indicated by αSimplex) algorithms

f optimal εDE SR SMES αSimplex

g01 -15.000 -15.000 -15.000 -15.000 -15.000
↑g02 0.803619 0.803618 0.803515 0.803601 0.803619
↑g03 1.000 1.001 1.000 1.000 1.001
g04 -30665.539 -30665.539 -30665.539 -30665.539 -30665.539
g05 5126.498 5126.497 5126.497 5126.599 5126.497
g06 -6961.814 -6961.814 -6961.814 -6961.814 -6961.814
g07 24.306 24.306 24.307 24.327 24.306
↑g08 0.095825 0.095825 0.095825 0.095825 0.095825
g09 630.63 680.630 680.630 680.632 630.630
g10 7049.25 7049.248 7054.316 7051.903 7049.248
g11 0.75 0.750 0.750 0.75 0.750
↑g12 1.000 1.000000 1.000000 1.000 1.000000
g13 0.053950 0.053942 0.053957 0.053986 0.053942

All methods found optimal solutions for all 30 runs for g01, g04, g06, g08, g11 and
g12. The εDE found better best values than SR and SMES for g02, g03, g07, g10 and g13,
and better best values than SMES for g05 and g09. The αSimplex found better best value
for g02 but the difference was very small, and the εDE found the same best values as the
αSimplex for the other problems. For median values, the εDE found better values than all
other methods for g02, better values than SR and SMES for g03, g05, g07, g09, g10 and
g13. For average values, the εDE found better values than all other methods for g02 and
g13, better values than SR and SMES for g03, g05, g07, g09 and g10. For worst values, the
εDE found better values than all other methods for g02, g07 and g13, better values than
SR and SMES for g03, g05, g09 and g10. For standard deviations that shows the stability
of methods, the εDE is better than all other methods for g02, g05, g06, g07, g09, g10, g11
and g13. Also, the εDE found solutions more stable than αSimplex for g01 and g12, than
SR and SMES for g03, than SR for g04 and g08.

The εDE found better solutions, or at least the same solutions, than other methods for all
problems except for the best value found by the αSimplex for g02. These results show that
the performance of the εDE is better than the performance of the other methods because
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Table 4: Comparison of the median values among εDE, SR, SMES and αSimplex algorithms

f optimal εDE SR SMES αSimplex

g01 -15.000 -15.000 -15.000 -15.000 -15.000
↑g02 0.803619 0.803614 0.785800 0.792549 0.785163
↑g03 1.000 1.001 1.000 1.000 1.001
g04 -30665.539 -30665.539 -30665.539 -30665.539 -30665.539
g05 5126.498 5126.497 5127.372 5160.198 5126.497
g06 -6961.814 -6961.814 -6961.814 -6961.814 -6961.814
g07 24.306 24.306 24.357 24.426 24.306
↑g08 0.095825 0.095825 0.095825 0.095825 0.095825
g09 630.630 680.630 680.641 680.642 680.630
g10 7049.248 7049.248 7372.613 7253.603 7049.248
g11 0.75 0.750 0.750 0.75 0.750
↑g12 1.000 1.000000 1.000000 1.000 1.000000
g13 0.053950 0.053942 0.057006 0.061873 0.053942

Table 5: Comparison of the average values among εDE, SR, SMES and αSimplex algorithms

f optimal εDE SR SMES αSimplex

g01 -15.000 -15.000 -15.000 -15.000 -15.000
↑g02 0.803619 0.803613 0.781975 0.785238 0.784187
↑g03 1.000 1.001 1.000 1.000 1.001
g04 -30665.539 -30665.539 -30665.539 -30665.539 -30665.539
g05 5126.498 5126.497 5128.881 5174.492 5126.497
g06 -6961.814 -6961.814 -6875.940 -6961.284 -6961.814
g07 24.306 24.306 24.374 24.475 24.306
↑g08 0.095825 0.095825 0.095825 0.095825 0.095825
g09 630.630 680.630 680.656 680.643 680.630
g10 7049.248 7049.248 7559.192 7253.047 7049.248
g11 0.75 0.750 0.750 0.75 0.750
↑g12 1.000 1.000000 1.000000 1.000 1.000000
g13 0.053950 0.053942 0.067543 0.166385 0.066770

the εDE found better solutions or at least the same solutions on average in all problems
using much fewer numbers of function evaluations. Also, the stability of the εDE is clearly
better than the other methods.

6 Discussion

In this section, the effect of algorithm parameters such as scaling factor and crossover rate
is discussed.

6.1 Effect of Scaling Factor

The scaling factor F is effective for controlling the trade-off between a convergence speed and
robustness of search. The recommended value is F = 0.8, while a lower F makes convergence
speed slower and the search more robust, but it takes a long time to converge to an optimal
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Table 6: Comparison of the worst values among εDE, SR, SMES and αSimplex algorithms

f optimal εDE SR SMES αSimplex

g01 -15.000 -15.000 -15.000 -15.000 -15.000
↑g02 0.803619 0.803588 0.726288 0.751322 0.784187
↑g03 1.000 1.001 1.000 1.000 1.001
g04 -30665.539 -30665.539 -30665.539 -30665.539 -30665.539
g05 5126.498 5126.497 5142.472 5304.167 5126.497
g06 -6961.814 -6961.814 -6350.262 -6952.482 -6961.814
g07 24.306 24.306 24.642 24.843 24.307
↑g08 0.095825 0.095825 0.095825 0.095825 0.095825
g09 630.630 680.630 680.763 680.719 680.630
g10 7049.248 7049.248 8835.655 7638.366 7049.248
g11 0.75 0.750 0.750 0.75 0.750
↑g12 1.000 1.000000 1.000000 1.000 1.000000
g13 0.053950 0.053942 0.216915 0.468294 0.066770

solution. Therefore, a suitable scaling factor needs to be selected. In this study, a lower
scaling factor F = 0.7 is used for more robust searching of multi-modal problems.

Table 8 summarizes the mean of the objective values in the cases of the scaling factor F
alone being changed to 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 from standard settings using δ = 0. The
better cases are highlighted using boldface. In the case of F = 0.5 the results for problems
g02, g05, g06 and g13 are a little worse than the results when F is greater than 0.5. Also, in
the case of F = 1.0 the results of problems g03, g07, g09 and g10 are worse than the other
results. These results show that the εDE is very stable for the selection of a scaling factor,
and that a scaling factor between 0.6 and 0.9 is an appropriate setting for many problems.

6.2 Effect of a Crossover Rate

DE is much more sensitive to the choice of a scaling factor than it is to the choice of a
crossover rate CR. CR is a parameter for fine tuning. High values of CR give faster
convergence if convergence occurs. Sometimes, however, a very low value is chosen to make
DE robust enough for a particular problem. The recommended value is CR = 0.9. In this
study, the recommended value is used.

Table 9 summarizes the mean of the objective values in the cases of the crossover rate
CR alone being changed to 0.5, 0.6, 0.7, 0.8, 0.9 and 0.95 from standard settings using δ = 0.
In the cases of CR = 0.5, 0.6, the results for g02, g03, g05, g07, g09 and g10 are worse than
the other results. Also, in the case of CR = 0.7, the results for g02, g03, g05, g07 and g10
are a little worse than the results when CR is higher than 0.7. These results show that the
εDE is fairly stable for selection of the crossover rate, and that a crossover rate between 0.7
and 0.95 is an appropriate setting for many problems.

6.3 Effect of the Parameter for Controlling the ε Level

In the εDE, a feasible region can be expanded by relaxing the ε level. The expanded feasible
region can be reduced to the original feasible region by decreasing the ε level to 0. The
parameter cp in the equation (4.2) adjusts the speed of decreasing the ε level and the speed
of reducing the expanded feasible region. If cp is properly selected, the ε level approaches
to 0 gradually and the risk that the search points converge to a local optimum becomes low.
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Table 7: Comparison of the standard deviations among εDE, SR, SMES and αSimplex
algorithms

f εDE SR SMES αSimplex

g01 0 0 0 6.4e-06
↑g02 5.6e-06 2.0e-02 1.67e-02 1.3e-02
↑g03 6.5e-09 1.9e-04 2.09e-04 8.5e-14
g04 0 2.0e-05 0 4.2e-11
g05 0 3.5 50.06 3.5e-11
g06 0 1.6e+02 1.85 1.3e-10
g07 4.3e-09 6.6e-02 1.32e-01 1.3e-04
↑g08 0 2.6e-17 0 3.8e-13
g09 0 3.4e-02 1.55e-02 2.9e-10
g10 0 5.3e+02 136.02 4.7e-06
g11 0 8.0e-05 1.52e-04 4.9e-16
↑g12 0 0 0 3.9e-10
g13 0 3.1e-02 1.77e-01 6.9e-02

Table 8: Experimental results on the 13 benchmark problems with varying F ; 30 independent
runs were performed

F 0.5 0.6 0.7 0.8 0.9 1.0
g01 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000
↑g02 0.799559 0.803251 0.803613 0.803401 0.802345 0.799869
↑g03 0.999997 0.999998 0.999991 0.999867 0.997852 0.991508
g04 -30665.538670 -30665.538670 -30665.538670 -30665.538670 -30665.538670 -30665.538670
g05 5126.736741 5126.498638 5126.498119 5126.498138 5126.498411 5126.499120
g06 -6591.521053 -6961.813876 -6961.813876 -6961.813876 -6961.813876 -6961.813876
g07 24.306674 24.306210 24.306209 24.306209 24.306215 24.344551
↑g08 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825
g09 680.630177 680.630057 680.630057 680.630057 680.630057 680.631202
g10 7049.392502 7049.248266 7049.248021 7049.248021 7049.248780 7087.910946
g11 0.750000 0.750000 0.750000 0.750000 0.750000 0.750000
↑g12 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
g13 0.066780 0.053950 0.053950 0.053950 0.053950 0.053950

Table 10 summarizes the mean of the objective values in the cases of the control pa-
rameter cp alone being changed to 3, 4, 5, 6, 7 and 9 from standard settings for problems
with equality constraints. In the case of cp = 3, the results for g03, g05 and g13 are a little
worse than the results of higher cp, but the difference is small. Thus, the value of cp did
not affect the results much. In this study, cp = 5 is selected to avoid too fast convergence to
a feasible region, but from the results, a larger cp gives better results. These results show
that a control parameter cp greater than 3 is an appropriate setting for many problems.

7 Conclusions

Differential evolution is a recently proposed variant of an evolutionary strategy. DE is known
as a simple, efficient and robust search algorithm that can solve unconstrained optimization
problems. In this study, we proposed the εDE by applying the ε constrained method to
DE and showed that the εDE can solve constrained optimization problems. Also, to solve
problems with equality constraints, which are very difficult problems for numerical opti-
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Table 9: Experimental results on 13 benchmark problems with varying CR; 30 independent
runs were performed

CR 0.5 0.6 0.7 0.8 0.9 0.95
g01 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000
↑g02 0.790441 0.795309 0.798266 0.801206 0.803613 0.803251
↑g03 0.918676 0.948491 0.976485 0.998252 0.999991 0.999999
g04 -30665.538670 -30665.538670 -30665.538670 -30665.538670 -30665.538670 -30665.538670
g05 5126.545569 5126.501069 5126.498416 5126.498139 5126.498119 5126.498115
g06 -6961.813876 -6961.813876 -6961.813876 -6961.813876 -6961.813876 -6961.813876
g07 24.520028 24.348820 24.309285 24.306219 24.306209 24.306209
↑g08 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825
g09 680.830787 680.630061 680.630057 680.630057 680.630057 680.630057
g10 7152.161161 7067.708219 7050.626313 7049.248526 7049.248021 7049.248021
g11 0.750000 0.750000 0.750000 0.750000 0.750000 0.750000
↑g12 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
g13 0.054007 0.053956 0.053950 0.053950 0.053950 0.053950

Table 10: Experimental results on 4 benchmark problems which have equality constraints
with varying cp; 30 independent runs were performed

cp 3 4 5 6 7 9
↑g03 0.999541 0.999955 0.999991 0.999998 0.999999 1.000000
g05 5126.503352 5126.498257 5126.498119 5126.498110 5126.498110 5126.498110
g11 0.750000 0.750000 0.750000 0.750000 0.750000 0.750000
g13 0.053951 0.053950 0.053950 0.053950 0.053950 0.053950

mization, we proposed a simple way of controlling the relaxation of the equality constraints
without changing the equality constraints to relaxed inequality constraints. We showed that
the εDE could solve thirteen standard benchmark problems very fast. Also, by comparing
the εDE with a stochastic ranking method, a simple multimembered evolution strategy and
the α constrained simplex method, which are high performance algorithms for constrained
optimization, it was shown that the εDE was a more efficient and stable algorithm than the
other methods. Experiments for parameter settings were performed and it was shown that
the εDE could search for high quality solutions when the parameters were changed among
appropriate ranges.

In the future, we will apply the εDE to various real world problems that have large
numbers of decision variables and constraints.
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Appendix

Here, we summarize 13 test problems used as benchmark test problems in this paper. The
first 12 problems, g01 ∼ g12, are taken from Koziel and Michalewicz [16] and the 13th
problem g13 from Michalewicz [19]. For the reference, the source paper of each problem is
cited.
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The problems g02, g03, g08 and g12 are maximization problems and the other problems
are minimization problems. The problems g03, g05, g11 and g13 contain the equality
constraints. The problem g12 is a difficult problem where feasible region consists of 93

disjointed spheres, each with the radius of 0.25.

g01 [8]: minimize f(x) = 5
P4

i=1 xi − 5
P4

i=1 x2
i −

P13
i=5 xi,

subject to g1(x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0,
g2(x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0,
g3(x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0,
g4(x) = −8x1 + x10 ≤ 0,
g5(x) = −8x2 + x11 ≤ 0,
g6(x) = −8x3 + x12 ≤ 0,
g7(x) = −2x4 − x5 + x10 ≤ 0,
g8(x) = −2x6 − x7 + x11 ≤ 0,
g9(x) = −2x8 − x9 + x12 ≤ 0,
0 ≤ xi ≤ 1 (i = 1, · · · , 9), 0 ≤ xi ≤ 100 (i = 10, 11, 12), 0 ≤ x13 ≤ 1

The optimal solution is x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1) and the optimal value is
f(x∗) = −15.

g02 [16]: maximize f(x) =
˛̨Pn

i=1 cos4 xi − 2
Qn

i=1 cos2 xi

˛̨ .pPn
i=1 i x2

i ,

subject to g1(x) = 0.75−Q20
i=1 xi ≤ 0, g2(x) =

P20
i=1 xi − 7.5n ≤ 0,

0 ≤ xi ≤ 10 (i = 1, · · · , n), n = 20

The maximal value is unknown. The known best value is f(x) = 0.803619 [28].

g03 [22]: maximize f(x) = (
√

n)nQn
i=1 xi,

subject to h1(x) =
Pn

i=1 x2
i − 1 = 0, 0 ≤ xi ≤ 1 (i = 1, · · · , n), n = 10

The optimal solution x∗i =
1√
n

(i = 1, · · · , n) and the optimal value f(x∗) = 1.

g04 [10]: minimize f(x) = 5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141,

subject to g1(x) = 85.334407 + 0.0056858x2x5

+0.0006262x1x4 − 0.0022053x3x5 − 92 ≤ 0,
g2(x) = −85.334407− 0.0056858x2x5

−0.0006262x1x4 + 0.0022053x3x5 ≤ 0,
g3(x) = 80.51249 + 0.0071317x2x5

+0.0029955x1x2 + 0.0021813x2
3 − 110 ≤ 0,

g4(x) = −80.51249− 0.0071317x2x5

−0.0029955x1x2 − 0.0021813x2
3 + 90 ≤ 0,

g5(x) = 9.300961 + 0.0047026x3x5

+0.0012547x1x3 + 0.0019085x3x4 − 25 ≤ 0,
g6(x) = −9.300961− 0.0047026x3x5

−0.0012547x1x3 − 0.0019085x3x4 + 20 ≤ 0,
78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ xi ≤ 45 (i = 3, 4, 5)

The optimal solution x∗ = (78, 33, 29.995256025682, 45, 36.775812905788) and the optimal
value f(x∗) = −30665.539.
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g05 [11]: minimize f(x) = 3x1 + 0.000001x3
1 + 2x2 + 0.000002

3
x3

2,
subject to g1(x) = x3 − x4 − 0.55 ≤ 0, g2(x) = −x3 + x4 − 0.55 ≤ 0,

h3(x) = 1000 sin(−x3 − 0.25) + 1000 sin(−x4 − 0.25) + 894.8− x1 = 0,
h4(x) = 1000 sin(x3 − 0.25) + 1000 sin(x3 − x4 − 0.25) + 894.8− x2 = 0,
h5(x) = 1000 sin(x4 − 0.25) + 1000 sin(x4 − x3 − 0.25) + 1294.8 = 0,
0 ≤ xi ≤ 1200 (i = 1, 2), −0.55 ≤ xi ≤ 0.55 (i = 3, 4)

The minimum value is unknown. The known best value is f(x) = 5126.4981 [16].

g06 [8]: minimize f(x) = (x1 − 10)3 + (x2 − 20)3,
subject to g1(x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0,

g2(x) = (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0,
13 ≤ x1 ≤ 100, 0 ≤ x2 ≤ 100

The optimal solution x∗ = (14.095, 0.84296) and the optimal value f(x∗) = −6961.81388.

g07 [11]: minimize f(x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2

+2(x6 − 1)2 + 5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45,

subject to g1(x) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0,
g2(x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0,
g3(x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0,
g4(x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2

3 − 7x4 − 120 ≤ 0,
g5(x) = 5x2

1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0,
g6(x) = x2

1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0,
g7(x) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2

5 − x6 − 30 ≤ 0,
g8(x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0,
−10 ≤ xi ≤ 10 (i = 1, · · · , 10)

The optimal solution is x∗ = (2.171996, 2.63683, 8.773926, 5.095984, 0.9906548, 1.430574,
1.321644, 9.828726, 8.280092, 8.375927) and the optimal value f(x∗) = 24.306209.

g08 [16]: maximize f(x) =
sin3(2πx1) sin(2πx2)

x3
1(x1 + x2)

,

subject to g1(x) = x2
1 − x2 + 1 ≤ 0, g2(x) = 1− x1 + (x2 − 4)2 ≤ 0, 0 ≤ xi ≤ 10 (i = 1, 2)

The optimal solution x∗ = (1.2279713, 4.2453733) and the optimal value f(x∗) = 0.095825.

g09 [16]: minimize f(x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2 + 10x6

5 + 7x2
6

+x4
7 − 4x6x7 − 10x6 − 8x7,

subject to g1(x) = −127 + 2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 ≤ 0,

g2(x) = −282 + 7x1 + 3x2 + 10x2
3 + x4 − x5 ≤ 0,

g3(x) = −196 + 23x1 + x2
2 + 6x2

6 − 8x7 ≤ 0,
g4(x) = 4x2

1 + x2
2 − 3x1x2 + 2x2

3 + 5x6 − 11x7 ≤ 0,
−10 ≤ xi ≤ 10 (i = 1, · · · , 7)

The optimal solution x∗ = (2.330499, 1.951372, −0.4775414, 4.365726, −0.6244870, 1.038131,
1.594227) and the optimal value f(x∗) = 680.6300573.
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g10 [11]: minimize f(x) = x1 + x2 + x3,
subject to g1(x) = −1 + 0.0025(x4 + x6) ≤ 0, g2(x) = −1 + 0.0025(x5 + x7 − x4) ≤ 0,

g3(x) = −1 + 0.01(x8 − x5) ≤ 0,
g4(x) = −x1x6 + 833.33252x4 + 100x1 − 83333.333 ≤ 0,
g5(x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0,
g6(x) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0,
100 ≤ x1 ≤ 10000, 1000 ≤ xi ≤ 10000 (i = 2, 3),

10 ≤ xi ≤ 1000 (i = 4, · · · , 8)

The maximal value is unknown. The known best value is f(x) = 7049.3307.

g11 [16]: minimize f(x) = x2
1 + (x2 − 1)2,

subject to h(x) = x2 − x2
1 = 0, −1 ≤ xi ≤ 1 (i = 1, 2)

The optimal solution is x∗ = (± 1√
2
,
1

2
) and the optimal value f(x∗) = 0.75.

g12 [16]: maximize f(x) =
1

100
{100− (x1 − 5)2 − (x2 − 5)2 − (x3 − 5)2}

subject to g(x) = (x1 − p)2 + (x2 − q)2 + (x3 − r)2 − 0.0625 ≤ 0,
0 ≤ xi ≤ 10 (i = 1, 2, 3), p, q, r = 1, 2, · · · , 9

The optimal solution is x∗ = (5, 5, 5) and the optimal value f(x∗) = 1.

g13 [11]: minimize f(x) = ex1x2x3x4x5 ,
subject to h1(x) = x2

1 + x2
2 + x2

3 + x2
4 + x2

5 − 10 = 0,
h2(x) = x2x3 − 5x4x5 = 0,
h3(x) = x3

1 + x3
2 + 1 = 0,

−2.3 ≤ xi ≤ 2.3 (i = 1, 2), −3.2 ≤ xi ≤ 3.2 (i = 3, 4, 5)

The optimal solution is x∗ = (−1.717143, 1.595709, 1.827247, −0.7636413, −0.763645) and
the optimal value f(x∗) = 0.0539498.
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