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Abstract: In this paper we propose a general framework of distribution-free models for N -person non-
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1 Introduction

Game theory is a mathematical methodology to analyze various decisions in economics or
societies [12, 21]. Nash [22, 23] proposed a concept of equilibrium, called Nash equilibrium,
for non-cooperative games. To define the Nash equilibrium, we usually assume that each
player has a complete knowledge about the game, that is, he† can estimate the opponents’
strategy and evaluate his own cost or profit exactly. This premise is called “complete in-
formation.” However, in the real situation, it is not always satisfied, and hence, we need to
define an alternative equilibrium concept.

There have been a large number of studies on games with uncertain data. Harsanyi [14,
15, 16] proposed a stochastic-based formulation for incomplete information games. He as-
sumed that each player estimates the probability distribution for the uncertain information
and maximizes his expected profit, or equivalently minimizes his expected cost. These
assumptions are called “Bayesian hypothesis.” Then, Harsanyi modeled incomplete infor-
mation games as “Bayesian games” under some assumptions on probability distributions.
Although Bayesian games are defined from incomplete information games, their elements
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from Japan Society for the Promotion of Science.

†In this paper, we assume that all players are male.
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(e.g., probability parameters) are actually the common knowledge, and hence, it is essen-
tially a complete information game. Incomplete information games and Bayesian games can
be considered to be equivalent from each player’s strategical viewpoint.

On the other hand, distribution-free models based on the worst-case analysis attract
much attention in recent years [1, 18]. In such models, each player makes a decision ac-
cording to the idea of robust optimization [5, 6, 7, 9]. Originally, robust optimization is
a technique for handling optimization problems with uncertain parameters, in which those
uncertain parameters are assumed to belong to so-called uncertainty sets, and then the ob-
jective function is minimized (or maximized) by taking into account the worst possible case.
An equilibrium resulting from the robust optimization by each player is called a robust Nash
equilibrium, and the problem of finding a robust Nash equilibrium is called a robust Nash
equilibrium problem. Aghassi and Bertsimas [1] considered the robust Nash equilibrium for
N -person games in which each player solves a linear programming (LP) problem‡. Moreover,
they proposed a method for solving the robust Nash equilibrium problem with convex poly-
hedral uncertain sets. Independently of their work, Hayashi, Yamashita, and Fukushima [18]
defined the concept of robust Nash equilibria for bimatrix games. Under the assumption
that uncertain sets are expressed by means of the Euclidean or the Frobenius norm, they
showed that each player’s problem reduces to a second-order cone program (SOCP) [2] and
the robust Nash equilibrium problem can be reformulated as a second-order cone comple-
mentarity problem (SOCCP) [13, 17]. In addition, Hayashi et al. [18] studied robust Nash
equilibrium problems in which uncertainty is contained in both opponents’ strategies and
each player’s cost parameters, whereas Aghassi et al. [1] studied only the latter case.

In this paper, we extend the definition of robust Nash equilibria in [1] and [18] to N -
person non-cooperative games with nonlinear cost functions. In particular, we show existence
of robust Nash equilibria under the assumption that each player’s cost function is convex
with respect to his strategy, while [1] and [18] only considered the linear case. Moreover, we
give some sufficient conditions for uniqueness of a robust Nash equilibrium. In order to solve
certain classes of robust Nash equilibrium problems, we reformulate them to second-order
cone complementarity problems.

This paper is organized as follows. In Section 2, we characterize the uncertainty in
the incomplete information non-cooperative game, and define the robust Nash equilibrium.
In Section 3, we give sufficient conditions under which the existence of Nash equilibria is
guaranteed. In Section 4, we discuss the uniqueness of a robust Nash equilibrium by way of
the generalized variational inequality problem. In Section 5, we reformulate certain classes
of robust Nash equilibrium problems as second-order cone complementarity problems, which
can be solved by some modern algorithms. In Section 6, we show some numerical results
and discuss the behavior of robust Nash equilibria.

Throughout the paper, we use the following notations. For a set X, P(X) denotes the
set consisting of all the subsets of X. <n

+ denotes the nonnegative orthant in <n, that is,
<n

+ := {x ∈ <n | xi ≥ 0 (i = 1, . . . , n)}. For a vector x ∈ <n, ‖x‖ denotes the Euclidean
norm defined by ‖x‖ :=

√
x>x. For a matrix M = (Mij) ∈ <n×m, ‖M‖F is the Frobenius

norm defined by ‖M‖F := (
∑n

i=1

∑m
j=1(Mij)2)1/2.

2 Robust Nash Equilibrium

In this paper, we consider an N -person non-cooperative game in which each player tries to
minimize his own cost. Let xi ∈ <mi , Si ⊆ <mi , and fi : <mi × <m−i → < be player i’s

‡In [1] a robust Nash equilibrium is called a robust-optimization equilibrium.
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strategy, strategy set, and cost function, respectively. Moreover, we denote

I := {1, . . . , N}, I−i := I \ {i}, m :=
∑

j∈I
mj , m−i :=

∑

j∈I−i

mj ,

x := (xj)j∈I ∈ <m, x−i := (xj)j∈I−i ∈ <m−i ,

S :=
∏

j∈I
Sj ⊆ <m, S−i :=

∏

j∈I−i

Sj ⊆ <m−i .

When the complete information is assumed, each player i decides his own strategy by solving
the following optimization problem with the opponents’ strategy x−i fixed:

minimize
xi

fi(xi, x−i)

subject to xi ∈ Si.
(2.1)

A tuple (x1, x2, . . . , xN ) satisfying xi ∈ argminxi∈Si
fi(xi, x−i) for each player i = 1, . . . , N

is called a Nash equilibrium. In other words, if each player i chooses the strategy xi, then no
player has an incentive to change his own strategy. The Nash equilibrium is well-defined only
when each player can estimate his opponents’ strategies and evaluate his own cost exactly.
In the real situation, however, any information may contain uncertainty such as observation
errors or estimation errors. Thus, in this paper, we focus on games with uncertainty.

To deal with such uncertainty, we introduce uncertainty sets Ui and Xi(x−i), and assume
the following statements for each player i ∈ I:

(A) Player i’s cost function involves a parameter ûi ∈ <νi , i.e., it can be expressed as
f ûi

i : <mi × <m−i → <. Although player i do not know the exact value of ûi itself, he
can estimate that it belongs to a given nonempty set Ui ⊆ <νi .

(B) Although player i knows his opponents’ strategies x−i, his actual cost is evaluated with
x−i replaced by x̂−i = x−i + δx−i, where δx−i is a certain error or noise. Player i
cannot know the exact value of x̂−i. However, he can estimate that x̂−i belongs to a
certain nonempty set Xi(x−i).

Then, each player is required to address the following family of problems involving uncertain
parameters ûi and x̂−i:

minimize
xi

f ûi

i (xi, x̂−i)

subject to xi ∈ Si,
(2.2)

where ûi ∈ Ui and x̂−i ∈ Xi(x−i). We further assume that each player chooses his strategy
according to the following criterion:

(C) Player i tries to minimize his worst cost under assumptions (A) and (B).

From assumption (C), each player considers the worst cost function f̃i : <mi × <m−i →
(−∞,+∞] defined by

f̃i(xi, x−i) := sup{f ûi

i (xi, x̂−i) | ûi ∈ Ui, x̂
−i ∈ Xi(x−i)}, (2.3)

and solves the following worst cost minimization problem:

minimize
xi

f̃i(xi, x−i)

subject to xi ∈ Si.
(2.4)
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Note that (2.4) is regarded as a complete information game with cost functions f̃i. Based
on the above discussions, we define the robust Nash equilibrium.

Definition 2.1. Let f̃i be defined by (2.3) for i = 1, . . . , N . A tuple (xi)i∈I is called a
robust Nash equilibrium of game (2.2), if xi ∈ argminxi∈Si

f̃i(xi, x−i) for all i, i.e., a Nash
equilibrium of game (2.4). The problem of finding a robust Nash equilibrium is called a
robust Nash equilibrium problem.

3 Existence of Robust Nash Equilibria

In this section, we give sufficient conditions for the existence of a robust Nash equilibria.
Note that Xi(x−i) given in (B) can be regarded as a set-valued mapping Xi(·) with variable
x−i.

In what follows, we suppose that Xi(·), Ui, fui

i and Si in (A) and (B) satisfy the following
assumption.

Assumption 3.1. For every i ∈ I, the following statements hold.

(a) The function Gi : <mi × <m−i × <νi → < defined by Gi(xi, x−i, ui) := fui

i (xi, x−i) is
continuous.

(b) The set-valued mapping Xi : <m−i → P(<m−i) is continuous, and Xi(x−i) is nonempty
and compact for any x−i ∈ S−i.

(c) The set Ui ⊆ <νi is nonempty and compact.

(d) The set Si is nonempty, compact and convex, and function fui

i (·, x−i) : <mi → < is
convex on Si for any fixed x−i and ui.

Under Assumption 3.1, the function f̃i(xi, x−i) defined by (2.3) has the following proper-
ties:

f̃i(xi, x−i) is continuous and finite at any (xi, x−i) ∈ Si × S−i.

For any fixed x−i ∈ S−i, function f̃i(·, x−i) : <mi → < is convex on Si.

The continuity and finiteness of f̃i can be verified from [4, Theorem 1.4.16], while the
convexity of f̃i(·, x−i) follows from [8, Proposition 1.2.4(c)].

The following lemma is a well-known result for N -person non-cooperative games.

Lemma 3.2. [3, Theorem 9.1.1] Suppose that, for every player i ∈ I, (i) the strategy set Si

is nonempty, convex and compact, (ii) the cost function fi : <mi ×<m−i → < is continuous,
and (iii) fi(·, x−i) is convex for any x−i ∈ S−i. Then, game (2.1) has at least one Nash
equilibrium.

By this lemma, we obtain the following theorem for the existence of a robust Nash equilib-
rium in game (2.2).

Theorem 3.3. Suppose that Assumption 3.1 holds. Then, game (2.2) has at least one robust
Nash equilibrium.

Proof. Let i be chosen from I arbitrarily. From Assumption 3.1, f̃i(xi, x−i) is continuous
and finite at any (xi, x−i) ∈ Si × S−i. Moreover, function f̃i(·, x−i) is convex on Si for any
x−i ∈ S−i. Therefore, from Lemma 3.2, game (2.4) has a Nash equilibrium, that is, game
(2.2) has a robust Nash equilibrium.
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4 Uniqueness of the Robust Nash Equilibrium

In the previous section, we have studied sufficient conditions for existence of robust Nash
equilibria. Under such conditions, there exist a number of robust Nash equilibria in general,
and it is difficult to find them all. In this section, we therefore study conditions for uniqueness
of a robust Nash equilibrium.

For complete information games, Rosen [24] gave some conditions for the uniqueness of
a Nash equilibrium. Those conditions are essentially equivalent to the strict monotonic-
ity of the vector-valued function involved in the equivalent variational inequality problem
(VIP) [10]. Moreover, such a vector-valued function is defined by using the derivatives of
all players’ cost functions. However, since the worst cost function f̃i defined by (2.3) is in
general nondifferentiable, the VIP reformulation approach cannot be applied directly. This
fact prompts us to consider the generalized VIP (GVIP), which is defined by means of a
set-valued mapping. Then, by using the uniqueness results for GVIP, we establish sufficient
conditions for the uniqueness of a robust Nash equilibrium.

For a given set-valued mapping F : <n → P(<n) and a nonempty closed convex set Ω,
GVIP(F ,Ω) is to find a vector x ∈ Ω such that

GVIP(F ,Ω) : ∃ξ ∈ F(x), 〈ξ, y − x〉 ≥ 0 ∀y ∈ Ω. (4.1)

If the set-valued mapping F is given by F(x) = {F (x)} for a vector-valued function F :
<n → <n, then the GVIP reduces to the following VIP:

VIP(F, Ω) : 〈F (x), y − x〉 ≥ 0 ∀y ∈ Ω. (4.2)

It is well known that if the function F is strictly monotone, then VIP (4.2) has at most
one solution [10]. In fact, a similar result holds for GVIP [11]. Recall that the set-valued
mapping F : <n → P(<n) is said to be monotone (strictly monotone) on a nonempty convex
set Ω ⊆ <n if

〈x− y, ξ − η〉 ≥ (>) 0

for all x, y ∈ Ω (x 6= y) and ξ ∈ F(x), η ∈ F(y).

Proposition 4.1. Suppose that the set-valued mapping F : <n → P(<n) is strictly mono-
tone on Ω. Then, GVIP (4.1) has at most one solution.

Next, we reformulate a robust Nash equilibrium problem as a GVIP. Specifically, the
robust Nash equilibrium problem (2.4) is equivalent to GVIP(F̃ ,Ω) with F̃ : <m → P(<m)
and Ω defined by

F̃(x) :=
(
∂if̃i(xi, x−i)

)
i∈I

(4.3)

and

Ω := S = S1 × · · · × SN ,

respectively. Here, ∂if̃i denotes the subdifferential of f̃i with respect to player i’s strategy
xi.

If Assumption 3.1 holds, then there exists at least one robust Nash equilibrium from
Theorem 3.3. Moreover, by Proposition 4.1, if the set-valued mapping F̃ defined by (4.3) is
strictly monotone, then game (2.2) has a unique robust Nash equilibrium.

Next, we give sufficient conditions for F̃ to be strictly monotone. To this end, we
introduce the following assumption:
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Assumption 4.2. For each i ∈ I, the following conditions hold:

(a) The set Xi(x−i) is given by Xi(x−i) = x−i+Di for a nonempty compact set Di ⊆ <m−i .

(b) Function fui

i is expressed as fui

i (xi, x−i) := gui

i (xi) +
∑

j∈I−i
(xi)>Aijx

j with a convex

function gui

i : <mi → < and matrices Aij ∈ <mi×mj (j ∈ I−i).

(c) Either of the following statements holds:

(c-i) For any ui ∈ Ui and i ∈ I, the function gui

i is strongly convex with modulus
γ > −λmin(A0), where λmin(A0) denotes the minimum eigenvalue of A0 := (A0 +
A>0 )/2 with

A0 :=




0 A12 · · · A1N

A21 0 A2N

...
. . .

...
AN1 AN2 · · · 0


 .

(c-ii) Ui is a singleton, i.e., Ui = {ui}, and the set-valued mapping F : <m → P(<m)
defined by

F(x) := (∂if
ui

i (xi, x−i))i∈I (4.4)

is strictly monotone.

Under the above assumption, we have the following lemma.

Lemma 4.3. Suppose that Assumption 4.2 holds. Then, the set-valued mapping F̃ defined
by (4.3) is strictly monotone.

Proof. For simplicity, we denote A−i := [Ai1 · · ·Ai i−1 Ai i+1 · · ·AiN ] ∈ <mi×m−i . Then,
from Assumption 4.2(a)(b), we have

f̃i(x) = max
{

gui

i (xi) + (xi)>A−i(x−i + δx−i)
∣∣∣ ui ∈ Ui, δx

−i ∈ Di

}

= g̃i(xi) + (xi)>A−ix
−i + ψi(xi),

where g̃i(xi) := maxui∈Ui
gui

i (xi) and ψi(xi) := maxδx−i∈Di
(xi)>A−iδx

−i. Hence, we obtain

F̃(x) =
(
∂if̃i(xi, x−i)

)
i∈I

=
(
∂g̃i(xi) + A−ix

−i + ∂ψi(xi)
)
i∈I

=
(
∂g̃i(xi)

)
i∈I + A0x +

(
∂ψi(xi)

)
i∈I ,

where the second equality holds from [8, Proposition 4.2.4].
We first consider the case where (c-i) holds. Since g̃i is strongly convex with modulus

γ, ∂g̃i is strongly monotone with modulus γ [3]. Also, the convexity of ψi implies the



ROBUST NASH EQUILIBRIA IN N -PERSON NON-COOPERATIVE GAMES 243

monotonicity of ∂ψi. Hence, for any x, y ∈ <m with x 6= y, we have

min
{

(x− y)>(ξ − η)
∣∣ ξ ∈ F̃(x), η ∈ F̃(y)

}

=min

{∑

i∈I
(xi − yi)>(ξi − ηi)

∣∣∣∣∣
ξi ∈ ∂g̃i(xi) + A−ix

−i + ∂ψi(xi), i ∈ I
ηi ∈ ∂g̃i(yi) + A−iy

−i + ∂ψi(yi), i ∈ I

}

=(x− y)>A0(x− y) +
∑

i∈I
min

{
(xi − yi)>(ξi

α − ηi
α)

∣∣ ξi
α ∈ ∂g̃i(xi), ηi

α ∈ ∂g̃i(yi)
}

+
∑

i∈I
min

{
(xi − yi)>(ξi

β − ηi
β)

∣∣ ξi
β ∈ ∂ψi(xi), ηi

β ∈ ∂ψi(yi)
}

≥(x− y)>A0(x− y) +
∑

i∈I
γ‖xi − yi‖2 > 0,

where the first inequality follows from the strong monotonicity of ∂g̃i and the monotonicity
of ∂ψi, and the last inequality is due to γ > −λmin(A0) and x 6= y. Thus, the set-valued
mapping F̃ is strictly monotone.

We next consider the case where (c-ii) holds. Then, we can rewrite F̃(x) as

F̃(x) =
(
∂if

ui

i (xi, x−i) + ∂ψi(xi)
)
i∈I

= F(x) + (∂ψi(xi))i∈I .

From the strict monotonicity of F and the monotonicity of ∂ψi, the set-valued mapping F̃
is strictly monotone.

By the above lemmas, we obtain the following theorem on the uniqueness of a robust
Nash equilibrium.

Theorem 4.4. Suppose that Assumptions 3.1 and 4.2 hold. Then, game (2.2) has a unique
robust Nash equilibrium.

Proof. By Assumption 3.1 and Theorem 3.3, game (2.2) has at least one robust Nash
equilibrium. On the other hand, by Proposition 4.1 and Lemma 4.3, game (2.2) cannot have
multiple robust Nash equilibria. Hence, game (2.2) has a unique robust Nash equilibrium.

5 SOCCP Formulation of Robust Nash Equilibrium Problem

In this section, we focus on the game in which each player takes a mixed strategy and
minimizes a convex quadratic cost function with respect to his own strategy. We show
that the robust Nash equilibrium problem then reduces to an SOCCP. We also discuss the
existence and uniqueness properties by using the results obtained heretofore.

Recall that SOCCP [13, 17] is a problem to find a triple (ξ, η, ζ) ∈ <l × <l × <ν such
that

K 3 ξ ⊥ η ∈ K, G(ξ, η, ζ) = 0, (5.1)

where G : <l ×<l ×<ν → <l ×<ν is a given function, ξ ⊥ η means ξ>η = 0, K is a closed
convex cone defined by K = Kl1 × Kl2 × · · · × Klm with lj-dimensional second-order cones
Klj := {(ζ1, ζ2) ∈ < × <lj−1 | ‖ζ2‖ ≤ ζ1}, j = 1, . . . , m, and l =

∑m
j=1 lj . SOCCP can
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be solved by some existing algorithms such as a smoothing and regularization method [17].
Here, we consider an SOCCP of the form

K 3 Mζ + q ⊥ Nζ + r ∈ K, Cζ = d (5.2)

with variable ζ ∈ <l+τ and constants M, N ∈ <l×(l+τ), q, r ∈ <l, C ∈ <τ×(l+τ) and d ∈ <τ .
Note that, by introducing auxiliary variables ξ, η ∈ <l, SOCCP (5.2) reduces to SOCCP (5.1)
with G : <3l+τ → <2l+τ defined by

G(ξ, η, ζ) :=




ξ −Mζ − q
η −Nζ − r

Cζ − d


 .

Throughout this section, the cost functions and the strategy sets are given as follows.

(i) Player i’s cost function f ûi

i is given by

f ûi

i (xi, x̂−i) =
1
2
(xi)>Âiix

i + (xi)>
( ∑

j∈I−i

Âij x̂
j + ĉi

)
, (5.3)

where Âij ∈ <mi×mj (j ∈ I) and ĉi ∈ <mi are given constants involving uncertainties.

(ii) Player i takes a mixed strategy, i.e.,

Si = {xi | xi ≥ 0, e>mi
xi = 1}, (5.4)

where emi
denotes the vector (1, 1, . . . , 1)> ∈ <mi .

We call Âij and ĉi a cost matrix and a cost vector, respectively. Note that these constants
correspond to the cost function parameter ûi, i.e.,

ûi = vec [Âi1 · · · ÂiN ĉi] ∈ <mi(m+1) (5.5)

where vec denotes the vectorization operator that creates an nm-dimensional vector [(pc
1)
>

· · · (pc
m)>]> from a matrix P ∈ <n×m with column vectors pc

1, . . . , p
c
m.

5.1 Uncertainty in the Opponents’ Strategy

In this subsection, we consider the case where each player knows the cost matrices and
vectors exactly but the opponents’ strategies uncertainly. More specifically, we suppose the
following assumption holds.

Assumption 5.1. For each i ∈ I, uncertainty sets Xi(·) and Ui (i ∈ I) are given as follows.

(a) Xi(x−i) =
∏

j∈I−i
Xij(xj), where Xij(xj) := {xj + δxij | ‖δxij‖ ≤ ρij , e>mj

δxij = 0}
with a given constant ρij ≥ 0.

(b) Ui is a singleton, i.e., Ui := {ui} =
{
vec [Ai1 · · ·AiN ci]

}
. Moreover, Aii is symmetric

and positive semidefinite.
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In Assumption 5.1(a), the condition e>mj
δxij = 0 is provided so that e>mj

(xj +δxij) = 1 holds
for xj ∈ Sj . Under this assumption, the worst cost function f̃i can be expressed explicitly
as follows:

f̃i(xi, x−i) = max
{

1
2
(xi)>Aiix

i + (xi)>
∑

j∈I−i

Aij(xj + δxij) + (ci)>xi

∣∣∣∣

‖δxij‖ ≤ ρij , e
>
mj

δxij = 0 (j ∈ I−i)
}

=
1
2
(xi)>Aiix

i + (xi)>
∑

j∈I−i

Aijx
j

+(ci)>xi +
∑

j∈I−i

max
{

(xi)>Aijδx
ij

∣∣∣ ‖δxij‖ ≤ ρij , e
>
mj

δxij = 0
}

=
1
2
(xi)>Aiix

i + (xi)>
∑

j∈I−i

Aijx
j + (ci)>xi +

∑

j∈I−i

ρij‖Ã>ijxi‖, (5.6)

where Ãij := Aij(Imj −m−1
j emj e

>
mj

), and the last equality follows since Ã>ijx
i is the pro-

jection of A>ijx
i onto the hyperplane πj := {xj | e>mj

xj = 0} and hence the maximum is
attained when δxij = ρij(Ã>ijx

i)/‖Ã>ijxi‖.

5.1.1 Reformulation as SOCCP

We first show that the robust Nash equilibrium problem reduces to the SOCCP (5.2). By
using the explicit expression (5.6) of f̃i and auxiliary variables yij ∈ < (j ∈ I−i), player i’s
worst cost minimization problem (2.4) can be reformulated as the following SOCP:

minimize
xi,yij

1
2
(xi)>Aiix

i + (xi)>
∑

j∈I−i

Aijx
j + (ci)>xi +

∑

j∈I−i

ρijyij

subject to ‖Ã>ijxi‖ ≤ yij (j ∈ I−i), xi ≥ 0, e>mi
xi = 1.

Moreover, the Karush-Kuhn-Tucker (KKT) conditions of this problem can be written as the
following SOCCP:

Kmj+1 3
[
µij

λij

]
⊥

[
1 0
0 Ã>ij

] [
yij

xi

]
∈ Kmj+1 (j ∈ I−i)

<mi
+ 3 xi ⊥ Aiix

i +
∑

j∈I−i

(
Aijx

j − Ãijλ
ij

)
+ ci + emisi ∈ <mi

+ , e>mi
xi = 1,

µij = ρij (j ∈ I−i),

where λij ∈ <mj and si ∈ < are Lagrange multipliers, and µij ∈ < are auxiliary variables.
Noticing that the above KKT conditions hold for all players simultaneously, the robust Nash
equilibrium problem can be reformulated as the SOCCP (5.2) with

l = N(m + N − 1), τ = N(N + 1), K =
∏

i∈I

( ∏

j∈I−i

Kmj+1

)
×

∏

i∈I
<mi

+ ,



246 R. NISHIMURA, S. HAYASHI AND M. FUKUSHIMA

ζ =
[

y1 (x1)> · · · yN (xN )> (Λ1)> · · · (ΛN )> s1 · · · sN

]>
,

M =
[

0 M12 0
M21 0 0

]
, q = 0, N =

[
N11 0 0
N21 N22 N23

]
, r =

[
0
r2

]
,

C =
[
C11 0 0
0 C22 0

]
, d =

[
1 · · · 1 ρ1 · · · ρN

]>
,

where

yi = (yij)j∈I−i
∈ <N−1, Λi =

[
µij

λij

]

j∈I−i

∈ <m−i+N−1,

ρi = (ρij)j∈I−i
∈ <N−1, r2 = (ci)i∈I ∈ <m,

for i ∈ I. Moreover, N21 is a block matrix whose (i, j)-block elements are

(N21)ij =
[
0 Aij

] ∈ <mi×(mj+N−1) (i, j ∈ I),

and M12,M21, N11, N22, N23, C11 and C22 are block diagonal matrices whose block diagonal
elements are

(M12)ii = Im−i+N−1, (M21)ii =
[
0 Imi

] ∈ <mi×(mi+N−1),

(N11)ii =




1 0 0 · · · 0 0
0 0 0 · · · 0 Ã>i1
0 1 0 · · · 0 0
0 0 0 · · · 0 Ã>i2
...

...
...

...
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 Ã>iN




∈ <(m−i+N−1)×(mi+N−1),

(N22)ii =
[
0 −Ãi1 · · · 0 −ÃiN

] ∈ <mi×(m−i+N−1), (N23)ii = emi
∈ <mi ,

(C11)ii =
[
0 e>mi

] ∈ <1×(mi+1), (C22)ii = Γi ∈ <(N−1)×(m−i+1)

with Γi being the block diagonal matrix whose block diagonal elements are

(Γi)jj =
[
1 0

] ∈ <1×(mj+1) (j ∈ I−i).

5.1.2 Existence and Uniqueness of Robust Nash Equilibrium

Next, we study existence and uniqueness of the robust Nash equilibrium under Assump-
tion 5.1. In the following analyses, we make use of the results from Theorems 3.3 and
4.4.

Theorem 5.2. Suppose that the cost functions and the strategy sets are given by (5.3) and
(5.4), respectively. Suppose further that Assumption 5.1 holds. Then, there exists at least
one robust Nash equilibrium.

Proof. From Theorem 3.3, it suffices to show Assumption 3.1 holds. Assumption 3.1(a) holds
since Gi(xi, x−i, ui) = Gi(xi, x−i, (Aij)j∈I , ci) = 1

2 (xi)>Aiix
i + (xi)>(

∑
j∈I−i

Aijx
j + ci).

It is easily seen that Assumption 5.1 implies Assumption 3.1(b)(c). Moreover, Assump-
tion 3.1(d) holds since Aii º 0 and each player takes a mixed strategy. This completes the
proof.
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Theorem 5.3. Suppose that the cost functions and the strategy sets are given by (5.3) and
(5.4), respectively. Suppose further that Assumption 5.1 holds. Then there exists a unique
robust Nash equilibrium, provided that

A :=




A11 A12 · · · A1N

A21 A22

...
...

. . .
...

AN1 · · · · · · ANN



Â 0. (5.7)

Proof. From Theorem 4.4, it suffices to show that Assumptions 3.1 and 4.2 hold. Notice that
Assumption 3.1 holds from the proof of Theorem 5.2. Assumption 4.2(a)(b) readily follows
from (5.3) and Assumption 5.1(a) with Di = {δx−i = (δxij)j∈I−i | ‖δxij‖ ≤ ρij , e>mj

δxij =
0, j ∈ I−i}. Assumption 4.2(c-ii) also holds from (5.7) and ∇F(x)> = A.

5.2 Uncertainty in the Cost Matrices and Vectors

In this subsection, we consider the case where each player can estimate the opponents’
strategies exactly, but estimates his cost matrices and vectors uncertainly. We first make
the following assumption.

Assumption 5.4. For each i ∈ I, uncertainty sets Xi(·) and Ui (i ∈ I) are given as follows.

(a) Xi(x−i) := {x−i}.
(b) Ui := (

∏
j∈I DAij

) × Dci with DAij
:= {Aij + δAij | ‖δAij‖F ≤ ρij} ⊆ <mi×mj and

Dci := {ci + δci | ‖δci‖ ≤ γi} ⊆ <mi for some nonnegative scalars ρij and γi. Moreover,
Aii + ρiiI is symmetric and positive semidefinite.

Under this assumption, the worst cost function f̃i in (2.4) can be rewritten as follows:

f̃i(xi, x−i) = max
{

1
2
(xi)>Âiix

i +
∑

j∈I−i

(xi)>Âijx
j + (ĉi)>xi

∣∣∣∣ Âij ∈ DAij
, ĉi ∈ Dci (j ∈ I)

}

=
1
2
(xi)>Aiix

i +
∑

j∈I−i

(xi)>Aijx
j + (ci)>xi

+ max
‖δAij‖F ≤ ρij

j∈I

{
1
2
(xi)>δAiix

i +
∑

j∈I−i

(xi)>δAijx
j

}
+ max
‖δci‖≤γi

{(δci)>xi}

=
1
2
(xi)>(Aii + ρiiI)xi + (ci)>xi +

∑

j∈I−i

(
(xi)>Aijx

j + ρij‖xi‖‖xj‖) + γi‖xi‖.

(5.8)

The last equality follows from

max
‖M‖F≤ρ

y>Mz = max
‖M‖F≤ρ

(z ⊗ y)>vec (M) = ‖z ⊗ y‖ρ = ρ‖y‖‖z‖,

for any y ∈ <n, z ∈ <m and ρ ≥ 0, where ⊗ denotes the Kronecker product [20, Sections
4.2 and 4.3].
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5.2.1 Reformulation as SOCCP

We first reformulate the robust Nash equilibrium problem as SOCCP (5.2) under Assump-
tion 5.4. By using (5.8) and an auxiliary variable yi ∈ <, the minimization problem (2.4)
can be rewritten as the following SOCP:

minimize
xi,yi

1
2
(xi)>(Aii + ρiiI)xi + (ci)>xi +

∑

j∈I−i

(
(xi)>Aijx

j + ρij‖xj‖yi

)
+ γiyi

subject to ‖xi‖ ≤ yi, xi ≥ 0, e>mi
xi = 1,

(5.9)

and its KKT conditions are given by

Kmi+1 3
[
yi

xi

]
⊥

[ ∑
j∈I−i

ρij‖xj‖+ γi

(Aii + ρiiI)xi +
∑

j∈I−i
Aijx

j + emi
si − λi + ci

]
∈ Kmi+1

<mi
+ 3 λi ⊥ xi ∈ <mi

+ , e>mi
xi = 1,

(5.10)

where λi ∈ <mi and si ∈ < are Lagrange multipliers. It is not straightforward to reformulate
the robust Nash equilibrium problem as SOCCP (5.2), since the KKT conditions (5.10)
contains the nonlinear term ‖xj‖. However, by introducing auxiliary variables zj ∈ <, uj ∈
<mj , we can rewrite (5.10) as follows:

Kmi+1 3
[
yi

xi

]
⊥

[ ∑
j∈I−i

ρijzj + γi

(Aii + ρiiI)xi +
∑

j∈I−i
Aijx

j + emi
si − λi + ci

]
∈ Kmi+1, e>mi

xi = 1,

<mi
+ 3 λi ⊥ xi ∈ <mi

+ , Kmj+1 3
[
zj

xj

]
⊥

[
yj

uj

]
∈ Kmj+1 (j ∈ I−i).

(5.11)

In fact, the equivalence between (5.10) and (5.11) can be verified as follows. If SOCCP (5.10)
holds, then we readily obtain (5.11) by letting

zj := ‖xj‖, uj := −xjyj

‖xj‖ .

Conversely, suppose that (5.11) holds for any i ∈ I. Then, by the complementarity condition

Kmj+1 3
[
zj

xj

]
⊥

[
yj

uj

]
∈ Kmj+1 (5.12)

in (5.11), we have

0 = zjyj + (xj)>uj ≥ zjyj − ‖xj‖‖uj‖ ≥ zjyj − ‖xj‖yj , (5.13)

where the inequalities follow from the Cauchy-Schwarz inequality and
[ yj

uj

] ∈ Kmj+1. More-
over, we must have yj > 0 since e>mj

xj = 1 and
[ yj

xj

] ∈ Kmj+1 from (5.11) with i replaced
by j. Dividing (5.13) by yj > 0, we obtain ‖xj‖ ≥ zj . However, since ‖xj‖ ≤ zj from (5.12),
we obtain ‖xj‖ = zj . This implies (5.10) holds.

Now, we can reformulate the robust Nash equilibrium problem as SOCCP (5.2) with

l = 3m + 2N, τ = N, K =
∏

i∈I
Kmi+1 ×

∏

i∈I
<mi

+ ×
∏

i∈I
Kmi+1,
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ζ =
[
y1 (x1)> z1 (u1)> · · · yN (xN )> zN (uN )> (λ1)> · · · (λN )> s1 · · · sN

]>
,

M =




M11 0 0
0 M22 0

M31 0 0


 , q = 0, N =




N11 N12 N13

N21 0 0
N31 0 0


 , r =




r1

0
0


 ,

C =




0 e>m1
0 0

· · ·
0 e>mN

0 0


 , d =




1
...
1


 ,

where N11 is a block matrix whose (i, j)-block elements are given by

(N11)ij =





[
0 0 0 0
0 Aii + ρiiI 0 0

]
(i = j)

[
0 0 ρij 0
0 Aij 0 0

]
(i 6= j)

(i, j ∈ I),

M11,M22,M31, N12, N13, N21 and N31 are block diagonal matrices whose block diagonal
elements are

(M11)ii =
[
1 0 0 0
0 Imi

0 0

]
∈ <(mi+1)×2(mi+1), (M22)ii = Imi

,

(M31)ii =
[
0 0 1 0
0 Imi 0 0

]
∈ <(mi+1)×2(mi+1),

(N12)ii =
[

0
−Imi

]
, (N13)ii =

[
0

emi

]
,

(N21)ii =
[
0 Imi

0 0
]
, (N31)ii =

[
1 0 0 0
0 0 0 Imi

]
,

and r1 =
[
γi

ci

]

i∈I
∈ <m+N .

5.2.2 Existence and Uniqueness of Robust Nash Equilibrium

Next, we study existence and uniqueness of the robust Nash equilibrium under Assump-
tion 5.4. Unlike the analyses in Subsection 5.1.2, Assumption 5.4 does not imply Assumption
3.1(d), 4.2(b) or 4.2(c). So, we do not use the results from Theorems 3.3 and 4.4. Instead
of them, we exploit the concrete structure (5.8) of the worst cost function f̃i.

Theorem 5.5. Suppose that the cost functions and the strategy sets are given by (5.3) and
(5.4), respectively. Suppose further that Assumption 5.4 holds. Then, there exists at least
one robust Nash equilibrium.

Proof. From (5.8), for arbitrarily fixed x−i ∈ S−i, the function f̃i can be expressed as
f̃i(xi, x−i) = 1

2 (xi)>(Aii + ρiiI)xi + α‖xi‖ + ξ>xi with some α ∈ < and ξ ∈ <mi not
depending on xi. Since Aii +ρiiI º 0 and α ≥ 0, f̃i(·, x−i) is convex for any fixed x−i ∈ S−i.
Hence, letting θi(xi, x−i) := f̃i(xi, x−i) in Lemma 3.2 yields the desired result.
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Note that Theorem 3.3 cannot be applied to the proof, since Assumption 5.4 does not imply
Assumption 3.1(d). In fact, Aii + δAii is not necessarily positive semidefinite even if Aii is
positive semidefinite, that is, fui

i (·, x−i) may be nonconvex for some δAii and x−i ∈ S−i.
We next give sufficient conditions for the uniqueness of a robust Nash equilibrium. To

simplify the notations, we define the following vector and matrices:

A := (Aij)i∈I, j∈I , P := (ρij)i∈I, j∈I

Q(x) := diag

[(
1

‖xi‖
N∑

j=1

ρij‖xj‖
)(

I − vi(vi)>
)]

,

V (x) := diag
(
v1, . . . , vN

)
, where vi := xi/‖xi‖.

Then, we have the following lemma.

Lemma 5.6. For each i ∈ I, let f̃i : <mi → < and Si ⊂ <m be given by (5.8) and
(5.4), respectively. Then, for any x ∈ S, the set-valued mapping F̃ given by (4.3) satisfies
F̃(x) = {F̃ (x)} with F̃ (x) :=

(∇if̃i(xi, x−i)
)
i∈I . Moreover, the following statements hold.

(a) Function F̃ is differentiable at any x ∈ S with the Jacobian

∇F̃ (x)> = A + V (x)P V (x)> + Q(x).

(b) Q(x) º 0 for any x ∈ S.

(c) If P Â 0, then V (x)PV (x)> + Q(x) Â 0 for any x ∈ S.

Proof. In what follows, we write V = V (x) and Q = Q(x) for convenience.
First, we show (a). Since 0 6∈ Si for all i ∈ I, the derivative of f̃i with respect to xi is

given by

∇if̃i(xi, x−i) = (Aii + ρiiI)xi +
∑

j∈I−i

(
Aijx

j + ρij‖xj‖ xi

‖xi‖
)

+ ci.

Moreover, for each i ∈ I, the partial derivative of ∇if̃i(xi, x−i) with respect to xk is given
by

∇kif̃i(xi, x−i) =





Aii + ρiiI +
1

‖xi‖
( ∑

j∈I−i

ρij‖xj‖
)

(I − vi(vi)>) (k = i)

A>ik + ρikvk(vi)> (k 6= i).
(5.14)

Arraying (5.14) for (k, i) = (1, 1), (1, 2), . . . , (N, N), we obtain (a).
Next, we show (b). Let w = (w1, . . . , wN ) ∈ <m1 × · · · × <mN be an arbitrary vector.

Then, we have

w>Qw =
N∑

i=1

(
1

‖xi‖
N∑

j=1

ρij‖xj‖
)

(‖wi‖2 − ((wi)>vi)2
) ≥ 0, (5.15)

where the inequality is due to ‖vi‖ = 1 and the Cauchy-Schwarz inequality. Hence, Q is
positive semidefinite.
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Finally, we show (c). Let w = (w1, . . . , wN ) ∈ <m1 × · · · ×<mN be an arbitrary nonzero
vector. Since V PV > º 0 from P Â 0, we have w>(V PV >)w ≥ 0, where the equality holds
only when w ∈ kerV >. In addition, from (5.15) we have w>Qw ≥ 0, where the equality holds
only when wi = λiv

i for some λi ∈ < (i ∈ I). Therefore, we have w>(V PV > + Q)w ≥ 0,
and the equality holds only if w ∈ kerV > and wi = λiv

i (i ∈ I). However, there is no vector
satisfying these two conditions except zero. Hence, we have w>(V PV > + Q)w > 0.

We now obtain the following theorem.

Theorem 5.7. Suppose that the cost functions and the strategy sets are given by (5.3) and
(5.4), respectively. Suppose further that Assumption 5.4 holds. Then, there exists a unique
robust Nash equilibrium, if either (i) A Â 0 and P º 0 or (ii) A º 0 and P Â 0 holds.

Proof. If (i) holds, then we have A + V PV > + Q Â 0, since V PV > º 0 and Q º 0 from
Lemma 5.6(b). If (ii) holds, then we also have A + V PV > + Q Â 0, since V PV > + Q Â 0
from Lemma 5.6(c). Hence, by Lemma 5.6(a), we have ∇F̃ (x) Â 0 for any x ∈ S, i.e., F
is strictly monotone on S. Thus, from Proposition 4.1 and Theorem 5.5, the game has a
unique robust Nash equilibrium.

Remark. As mentioned in the beginning of this subsection, we have not used the results
of Theorems 3.3 and 4.4 to show Theorems 5.5 and 5.7, since Assumption 3.1(d), 4.2(b) or
4.2(c) need not hold under Assumption 5.4. Note that, if we further assume (1) ρij = 0 for
all i 6= j, and (2) (Aii− ρiiI) + λmin(A0)I Â 0 for all i ∈ I, then Assumptions 3.1(d), 4.2(b)
and 4.2(c-i) hold. However, condition (i) in Theorem 5.7 is strictly weaker than conditions
(1) and (2). This is actually another reason why we did not use Theorems 3.3 and 4.4.

Proposition 5.8. Suppose that the cost functions and the strategy sets are given by (5.3)
and (5.4), respectively, and Assumption 5.4 holds. If (1) ρij = 0 for all i 6= j, and (2)
(Aii − ρiiI) + λmin(A0)I Â 0 for all i ∈ I, then (A) Assumptions 3.1 and 4.2 hold, and (B)
A Â 0 and P º 0.

Proof. We first show (A). Since Assumptions 1(a)–(c) and 2(a) hold evidently, we show
Assumptions 1(d), 2(b) and 2(c-i) hold. Choose i ∈ I arbitrarily, and let δAii be any
matrix such that ‖δAii‖F ≤ ρii. Then, it suffices to show Aii + δAii + λmin(A0)I Â 0 and
Aii + δAii º 0.

For any v ∈ <mi , we have

v>(ρiiI + δAii)v ≥ (ρii − ‖δAii‖)‖v‖2 ≥ (ρii − ‖δAii‖F )‖v‖2 ≥ 0,

where the second inequality follows since ‖M‖F ≥ ‖M‖ := max‖v‖6=0 ‖Mv‖/‖v‖ for any
matrix M [19, Section 5.6]. Hence, by assumption (2), we have

Aii + δAii + λmin(A0)I =
(
Aii − ρiiI + λmin(A0)I

)
+ (ρiiI + δAii) Â 0.

Now, notice that A0 cannot be positive definite, i.e., λmin(A0) ≤ 0, since the block diagonal
elements of A0 are zero matrices. Hence, we have Aii + δAii º 0.

Next we show (B). Since P º 0 is evident from (1) and ρii ≥ 0, we show A Â 0. From
assumption (2), we have diag (Aii)i∈I − diag (ρiiI)i∈I + λmin(A0)I Â 0. Hence,

A = diag (Aii)i∈I + A0 Â diag (ρiiI)i∈I + (A0 − λmin(A0)I) º 0

where A and Aii denote the symmetric parts of A and Aii, respectively. Thus, we have
A Â 0.
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6 Numerical Experiments

In this section, we solve some robust Nash equilibrium problems with various sizes of uncer-
tainty sets, by using the SOCCP reformulation approaches discussed in the previous section.
Then, we observe some properties of obtained equilibria and values of the cost functions.
For solving the reformulated SOCCPs, we apply the Newton-type method combined with a
smoothing regularization technique [17]. All programs are coded in MATLAB 7 and run on
a computer with 3.06GHz CPU and 1GB memories.

6.1 Relationship between Actual Costs and Size of Uncertain Sets

In the first experiment, we consider a three-person game where the cost functions are given
by (5.3) with cost matrices and vectors:

Aii =




8 2 −4
2 7 −2
−4 −2 13


 , Aij =




2 −1 0
−4 0 −2
−3 1 2


 , ci =



−3
2
−3


 (j ∈ I−i)

for each i = 1, 2, 3. We note that each player has the same cost function.
We first consider the case where Assumption 5.1 holds and each player i ∈ I chooses

parameters ρij as

(ρij) =



∗ 0.0001 0.0001

0.02 ∗ 0.02
0.05 0.05 ∗


 . (6.1)

This implies that player 1 hardly takes the uncertainty into consideration, whereas player
3 is more careful in choosing his strategy. Under such assumptions, the game has a unique
robust Nash equilibrium x̃ = (x̃1, x̃2, x̃3) given by

x̃1 = (0.310, 0.318, 0.372), x̃2 = (0.353, 0.284, 0.363), x̃3 = (0.410, 0.240, 0.350).

As assumed in (B) of Section 2, each player’s actual cost is evaluated with x̃−i replaced
by x̃−i + δx−i with a certain noise vector δx−i ∈ <6. In our experiment, we generate
δx−i := (δxij)j∈I−i

∈ <6 as follows: we first generate random vectors δyij ∈ <2 for each
j ∈ I−i so that each component follows the normal distribution N(0, 0.01), and then, map
them onto the hyperplane {x ∈ <3 | x1 +x2 +x3 = 0} by using an appropriate orthonormal
transformation.

For each i = 1, 2, 3, we generate 10000 different samples of noise vector δx−i, and observe
the distribution of the actual cost fi(x̃i, x̃−i + δx−i). Moreover, we compare the actual cost
fi(x̃i, x̃−i + δx−i) with the presumed worst cost f̃i(x̃). The results are shown in Table 1 and
Figures 1 – 3.

Table 1: Uncertainty in the opponents’ strategy
player 1 player 2 player 3

f̃i(x̃i, x̃−i) −1.5105 −1.2782 −0.9680
E(fi(x̃i, x̃−i + δx−i)) −1.5087 −1.4316 −1.3346

Percentage of worse cases 50.98% 20.90% 0.63%
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Figure 1: Player 1’s cost
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Figure 2: Player 2’s cost
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Figure 3: Player 3’s cost

In each row of Table 1, we give the values of f̃i(x̃), the mean values of 10000 samples
of fi(x̃i, x̃−i + δx−i), and the percentage of which the value of fi(x̃i, x̃−i + δx−i) is greater
than f̃i(x̃i, x̃−i) among 10000 samples. From Table 1, we can see that the mean value of
player 1’s cost is smaller than that of player 3, though player 3 take the uncertainty into
account more than player 1. In fact, such a result does not always hold, and we can see an
opposite result in another game. However, the last row of the table shows that, as a player
considers the region of uncertainty larger, the possibility of avoiding the presumed worst
case becomes higher. Figures 1 – 3 are histograms which show each player’s actual costs for
10000 cases. The width of each bar is 0.1 and a vertical line represents the value of f̃i(x̃).
Indeed, the histograms show that player 1’s actual cost exceeds the presumed worst cost for
almost a half of 10000 samples, whereas player 3’s actual cost seldom exceeds the presumed
one. Moreover, even if it becomes worse, its difference is very small.

Next, we consider the case where Assumption 5.4 holds with the following parameters:



ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33


 =




0.0001 0.0001 0.0001
0.50 0.50 0.50
1.50 1.50 1.50


 ,




γ1

γ2

γ3


 =




0.0001
0.50
1.50


 (6.2)

Then the robust Nash equilibrium x̃ = (x̃1, x̃2, x̃3) is uniquely given by

x̃1 = (0.364, 0.272, 0.365), x̃2 = (0.344, 0.294, 0.362), x̃3 = (0.334, 0.309, 0.358).

Similarly to the previous experiment, we generate 10000 samples of noise matrix δA =
(δAij)(i,j)∈I×I and vector δc = (δci)i∈I so that each element follows the standard normal
distribution. The results are shown in Table 2 and Figures 4 – 6, where the width of each
bar is 0.2.

Table 2: Uncertainty in the cost matrices and vectors
player 1 player 2 player 3

f̃i(x̃i, x̃−i) −1.3713 −0.9512 −0.0692
E

(
fui+δui

i (x̃i, x̃−i)
) −1.3690 −1.3838 −1.4038

Percentage of worse cases 50.50% 28.54% 3.65%

The table and figures show, like in the previous experiment, that the actual cost of player
3 is rarely worse than the presumed worst cost. However, the mean of player 3’s actual cost
is smaller than player 1’s mean cost.
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Figure 6: Player 3’s cost

6.2 Relationship between Size of Uncertain Sets and Robust Nash Equilibria

In this subsection, we change the size of uncertain sets variously, and see the trajectory of
the robust Nash equilibria.

First, we consider the three-person game where the cost functions are defined by (5.3)
with the following cost matrices and vectors:

A11 =




27 −4 9
−4 18 0
9 0 19


 , A12 =




6 2 13
−3 −10 0
−4 −4 3


 , A13 =



−10 6 10
−19 0 −7
12 −10 −1




A21 =




5 −3 −2
0 −12 −2
13 2 3


 , A22 =




18 −7 2
−7 41 0
2 0 18


 , A23 =



−4 −9 1
0 5 12
1 5 −3




A31 =



−7 17 10
7 −4 −13
−10 −10 0


 , A32 =



−3 4 0
−13 3 4
3 9 1


 , A33 =




24 9 −17
9 28 −5
−17 −5 31




c1 = c2 = c3 =
[
0 0 0

]>
.

Then, the game has a unique Nash equilibrium x = (x1, x2, x3) given by

x1 = (0.0000, 0.4967, 0.5033), x2 = (0.7036, 0.0000, 0.2964), x3 = (0.0831, 0.4304, 0.4866).

We also consider the robust Nash equilibrium problem under Assumption 5.1 with ρij = ρ
for all i, j = 1, 2, 3(j 6= i), where ρ is chosen as 0.05, 0.1 and 0.2. Table 3 and Figure 7 show
the change of the robust Nash equilibria with the choice of ρ. In Figure 7, the horizontal and
vertical axes denote the first and second components of each player’s strategy, respectively§.
This figure intimates that the robust Nash equilibria move continuously as the sizes of
uncertainty sets change continuously.

Next, we consider another game where the cost functions are defined by (5.3) with cost
matrices and vectors:

A11 =

[
12.486 1.249 5.650
1.249 2.516 4.361
5.650 4.361 13.980

]
, A12 =

[−5.095 −7.403 −4.152
−1.459 −8.215 −2.511
−6.228 −3.783 −5.306

]
, A13 =

[−8.250 −8.514 −7.015
−8.178 −2.222 −1.091
−2.004 −5.367 −4.486

]

§Since each player takes the mixed strategy, the third component is uniquely determined.
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Table 3: Sizes of uncertainty sets and robust Nash equilibria
ρ robust Nash equilibrium (x̃1, x̃2, x̃3)

0.05
(
(0.0000,0.5230,0.4770), (0.6978,0.0283,0.2738), (0.0394,0.4938,0.4668)

)
0.10

(
(0.0000,0.5348,0.4652), (0.6659,0.0244,0.3097), (0.0677,0.4521,0.4802)

)
0.20

(
(0.0000,0.5396,0.4604), (0.6100,0.0228,0.3673), (0.1162,0.3812,0.5026)

)

−0.2 0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

xi
1

xi 2

 

 

player 1
player 2
player 3

Figure 7: Trajectory of each player’s strategy at the robust Nash equilibria

A21 =

[−7.236 −2.175 −5.223
−1.980 −7.579 −3.141
−3.180 −4.678 −1.155

]
, A22 =

[
2.064 3.041 3.228
3.041 6.563 2.341
3.228 2.341 14.720

]
, A23 =

[−5.420 −1.153 −1.514
−4.874 −6.610 −3.609
−7.741 −7.763 −5.577

]

A31 =

[−2.338 −2.981 −6.197
−7.629 −4.076 −4.096
−5.475 −6.967 −6.298

]
, A32 =

[−3.912 −3.988 −1.043
−4.867 −1.407 −1.981
−4.844 −7.212 −3.992

]
, A33 =

[
34.478 −13.084 −1.478
−13.084 17.336 −1.243
−1.478 −1.243 20.047

]

c1 = c2 = c3 =
[
0 0 0

]>
.

This game has the following three Nash equilibria¶:

1: (x1, x2, x3) =
(
(0.490, 0.510, 0.000), (0.000, 0.688, 0.312), (0.195, 0.360, 0.443)

)
.

2: (x1, x2, x3) =
(
(0.715, 0.011, 0.274), (1.000, 0.000, 0.000), (0.234, 0.501, 0.266)

)
,

3: (x1, x2, x3) =
(
(0.671, 0.304, 0.025), (0.596, 0.208, 0.196), (0.208, 0.456, 0.335)

)
,

Moreover, we consider the robust Nash equilibrium problems under Assumption 5.4 with
parameters




ρ11 ρ12 ρ13

ρ21 ρ22 ρ21

ρ31 ρ32 ρ33


 =




0.01 + k 0.01 0.01
0.01 0.01 + k 0.01
0.01 0.01 0.01 + k


 , γ1 = γ2 = γ3 = 0,

¶We can find all Nash equilibria by using a branch and bound based approach.
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where k is chosen as k = 0.1, 0.5, 1.0, 1.1485, 1.5. In order to obtain as many equi-
libria as possible, we solve the equivalent SOCCP with randomly generated 100 start-
ing points‖. Table 4 shows the concrete values of obtained robust Nash equilibria. For
k = 0.1, 0.5, 1.0, 1.1485, we obtain three robust Nash equilibria. However, for k = 1.5, we
obtain only one robust Nash equilibrium. Figure 8 shows the trajectory of player 1’s strate-
gies at the robust Nash equilibria for each k∗∗, in which the vertical and horizontal axes
denote the first and second components of the robust Nash equilibria, respectively. Figure 8
indicates that two of the three equilibria are getting closer to each other as k increases, and
they almost coincide at k = 1.1485. Furthermore, at k = 1.5, the two equilibria disappear
and only one equilibrium is obtained.

Table 4: Sizes of uncertainty sets and obtained robust Nash equilibria
k robust Nash equilibria

0.1
1:

`
(0.490, 0.510, 0.000), (0.000, 0.685, 0.315), (0.198, 0.360, 0.442)

´
2:

`
(0.708, 0.020, 0.272), (1.000, 0.000, 0.000), (0.234, 0.499, 0.267)

´
3:

`
(0.667, 0.294, 0.039), (0.608, 0.200, 0.193), (0.210, 0.457, 0.333)

´

0.5
1:

`
(0.492, 0.508, 0.000), (0.000, 0.676, 0.324), (0.199, 0.363, 0.439)

´
2:

`
(0.684, 0.057, 0.259), (0.949, 0.000, 0.051), (0.232, 0.491, 0.277)

´
3:

`
(0.657, 0.252, 0.091), (0.660, 0.161, 0.179), (0.216, 0.460, 0.325)

´

1.0
1:

`
(0.493, 0.507, 0.000), (0.000, 0.666, 0.334), (0.201, 0.363, 0.436)

´
2:

`
(0.658, 0.094, 0.249), (0.895, 0.000, 0.105), (0.231, 0.483, 0.286)

´
3:

`
(0.650, 0.155, 0.195), (0.800, 0.059, 0.141), (0.226, 0.473, 0.301)

´

1.1485
1:

`
(0.494, 0.506, 0.000), (0.000, 0.664, 0.336), (0.202, 0.364, 0.435)

´
2:

`
(0.6507, 0.1026, 0.2467), (0.8810, 0.0000, 0.1190), (0.2312, 0.4807, 0.2881)

´
3:

`
(0.6507, 0.1027, 0.2466), (0.8809, 0.0001, 0.1190), (0.2312, 0.4807, 0.2881)

´
1.5 1:

`
(0.507, 0.493, 0.000), (0.052, 0.619, 0.329), (0.204, 0.372, 0.425)

´

7 Concluding Remarks

In this paper, we have extended the concept of robust Nash equilibrium to N -person non-
cooperative games with nonlinear cost functions, and derived sufficient conditions for exis-
tence and uniqueness of the robust Nash equilibria by means of the GVIP or VIP reformu-
lation techniques. In addition, we have shown that the robust Nash equilibrium problems
with quadratic cost functions and uncertainty sets can be reformulated as SOCCPs. We also
solved some examples of the robust Nash equilibrium problem, and observed some numerical
properties.

We still have some future issues to be addressed. One important issue is to weaken the
sufficient conditions for uniqueness of the robust Nash equilibrium. In fact, the uniqueness
conditions shown in the paper are rather restrictive, and there seems to remain much room
for the improvement. Another issue is to consider the SOCCP reformulation for the robust
Nash equilibrium problem in which both the cost function parameters and the opponents’
strategies are uncertain. In this paper, we have only considered the case where either of
them is uncertain. However, in the real situation, it would be natural to assume that both
of them involve uncertainties.

‖Since we employ an iterative method, we can choose an arbitrary starting point. Indeed, it is expected
that a different starting point can lead to a different solution when the SOCCP has multiple solutions.
∗∗We omit the other players’ trajectories since they are similar to player 1’s.
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Figure 8: Trajectory of player 1’s strategies at the robust Nash equilibria
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