
DISCRETE L-CONVEX FUNCTION MINIMIZATION BASED
ON CONTINUOUS RELAXATION

Satoko Moriguchi and Nobuyuki Tsuchimura

Abstract: We consider the problem of minimizing a nonlinear discrete function with L\-convexity proposed
in the theory of discrete convex analysis. For this problem, a steepest descent algorithm and a steepest
descent scaling algorithm are known. In this paper, we propose a continuous relaxation approach which
first minimizes the continuous variable version in order to find a good initial solution of the steepest descent
algorithm. For discrete L\-convex functions, we give a proximity theorem showing that a discrete global
minimizer exists in a neighborhood of a continuous global minimizer. This proximity theorem affords a
theoretical guarantee for the efficiency of the proposed algorithm.
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1 Introduction

In recent research towards a unified framework of discrete convex analysis [12], the concept of
L\-convex functions was proposed as a generalization of the Lovász extension of submodular
set functions [9]. The concept of M\-convex functions was also proposed as an extension of
that of valuations on matroids invented by Dress and Wenzel [2]. These two concepts of
discrete convexity are conjugate to each other, and a Fenchel-type duality theorem holds for
L\- and M\-convex/concave functions [12]. Applications of L\-/M\-convexity can be found
in mathematical economics with indivisible commodities [1,14,15], system analysis by mixed
polynomial matrices [11], etc. These two discrete convexities play central roles in the theory
of discrete convex analysis [12] and provide a nice framework of nonlinear combinatorial
optimization; global optimality is guaranteed by local optimality and descent algorithms
work for minimization. Steepest descent algorithms, which terminate in pseudo-polynomial
time, and steepest descent scaling algorithms, which terminate in polynomial time with
the aid of a scaling technique, are also known. The proximity theorems on a scaled local
optimum for L\-convexity and M\-convexity guarantee the efficiency of scaling algorithms.

The objective of this paper is to show that we can minimize an L\-convex function
more efficiently, in the case where the continuous variable version which can be minimized
tractably is available. Rescent progress of continuous optimization enables us today to
solve convex minimization problems in a practical time [16]. We propose a continuous
relaxation approach which first minimizes the continuous variable version, i.e., a continuous
convex function, in order to find a good initial solution of a steepest descent algorithm.
In general, for discrete function minimization, we can say that the rounded continuous
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relaxation solution is almost certainly nonoptimal and may be very far away from the optimal
integer solution. For separable convex optimization problems, proximity results between
the continuous and integral optimal solutions were obtained [4, 5]. In this paper, for the
discrete L\-convex function minimization problem, which is a nonseparable optimization
problem, we give a proximity theorem showing that a discrete global minimizer exists in a
neighborhood of a continuous global minimizer. On the basis of our new proximity, we can
minimize a discrete L\-convex function efficiently by using continuous relaxation. In order
to compare the performance of our new continuous relaxation approach with those of the
previously proposed algorithms, we make numerical experiments with randomly generated
test problems. It is observed from numerical results that our new approach, when applicable,
is much faster than the previously proposed algorithms.

2 Preliminaries

Let g : Rn → R ∪ {+∞} be a function. The effective domain, the epigraph and the set of
minimizers of g are given by

dom g = {p ∈ Rn | g(p) < +∞},
epi g = {(p, α) ∈ Rn ×R | α ≥ g(p)},

arg min g = {p ∈ Rn | g(p) ≤ g(q) (∀q ∈ Rn)},

respectively. For a function g : Zn → Z ∪ {+∞}, we use the notation

domZ g = {p ∈ Zn | g(p) < +∞},
arg minZ g = {p ∈ Zn | g(p) ≤ g(q) (∀q ∈ Zn)}

for the effective domain and the set of minimizers of g, respectively.
A convex function g : Rn → R ∪ {+∞} is said to be proper if dom g 6= ∅, and closed if

epi g is a closed set. For a closed proper convex function g : Rn → R∪{+∞}, arg min g 6= ∅
if dom g is bounded.

For vectors p, q ∈ Rn, we write p ∨ q and p ∧ q for their componentwise maximum and
minimum. We write 1 = (1, 1, . . . , 1) ∈ Zn. Functions defined on integer points are said to
be discrete functions. A discrete function g : Zn → R ∪ {+∞} is called L-convex [12] if it
satisfies

(SBF[Z]) g(p) + g(q) ≥ g(p ∨ q) + g(p ∧ q) (p, q ∈ Zn),
(TRF[Z]) ∃r∈R such that g(p+1) = g(p)+r (p∈Zn),

where it is understood that the inequality (SBF[Z]) is satisfied if g(p) or g(q) is equal to
+∞.

A function g : Zn → R ∪ {+∞} is called L\-convex [3, 12] if there exists an L-convex
function g̃ : Zn+1 → R ∪ {+∞} such that

g(p1, . . . , pn) = g̃(0, p1, . . . , pn) (2.1)

for each (p1, . . . , pn) ∈ Zn. It turns out that L\-convexity can be characterized by a kind of
generalized submodularity:

(SBF\[Z]) g(p) + g(q) ≥ g((p− α1) ∨ q) + g(p ∧ (q + α1)) (0 ≤ α ∈ Z, p, q ∈ Zn),
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which is called translation submodularity.
The concepts of L-/L\-convexity can also be defined for functions in real variables through

an appropriate adaptation of the conditions (SBF[Z]) and (TRF[Z]). Namely, we call a
function ḡ : Rn → R ∪ {+∞} L-convex [12] if ḡ is convex and satisfies

(SBF[R]) ḡ(p) + ḡ(q) ≥ ḡ(p ∨ q) + ḡ(p ∧ q) (p, q ∈ Rn),
(TRF[R]) ∃r∈R such that ḡ(p+1) = ḡ(p)+r (p∈Rn).

L\-convex functions are defined as the restriction of L-convex functions, as in (2.1), and are
characterized by

(SBF\[R]) ḡ(p) + ḡ(q) ≥ ḡ((p− α1) ∨ q) + ḡ(p ∧ (q + α1)) (0 ≤ α ∈ R, p, q ∈ Rn).

Throughout the paper, we assume that a continuous L\-convex function is a closed proper
convex function. It is known that a closed proper L\-convex function is continuous on the
effective domain [13].

Minimization of a continuous L\-convex function is tractable with a firm theoretical basis
provided by convex analysis. For minimization of a discrete L\-convex function, we have the
following optimality criterion, which shows that global minimality is characterized by local
minimality. The characteristic vector of a subset X ⊆ {1, 2, . . . , n} is denoted by

χX(i) =

{
1 (i ∈ X),
0 (i ∈ {1, 2, . . . , n} \X).

Theorem 2.1 (Theorem 7.14 in [12]). Let g : Zn → R ∪ {+∞} be a discrete L\-convex
function. For p ∈ domZ g, g(p) ≤ g(q) (q ∈ Zn) if and only if

g(p) ≤ g(p± χX) (X ⊆ {1, 2, . . . , n}). (2.2)

3 Proposed Algorithm

For discrete L\-convex function minimization, our continuous relaxation approach and prox-
imity theorems between the discrete minimizer and the relaxation solution are given in
Section 3.1. Section 3.2 is devoted to the proofs of proximity theorems.

3.1 Algorithms and Proximity Theorems

The local characterization of global minimality for discrete L\-convex functions (Theorem
2.1) naturally leads to the following steepest descent algorithm [12, Sec. 10.3.1].

Steepest descent algorithm for an L\-convex function: SD(g, p)
Input: a discrete L\-convex function g and p ∈ domZ g
Output: a minimizer of g

S1: Find ε ∈ {1,−1} and X ⊆ {1, 2, . . . , n} that minimize g(p + εχX).
S2: If g(p) ≤ g(p + εχX), then return p (p is a minimizer of g).
S3: Set p := p + εχX and go to S1.

Step S1, i.e., the verification of (2.2), amounts to minimizing a pair of submodular set
functions which can be done in polynomial time [6,17,18]. If the effective domain is bounded,
the number of iterations is O(K̂∞) where

K̂∞ = max{‖p− q‖∞ | p, q ∈ domZ g}
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[7]. We assume that the minimizer of a submodular set function can be computed in
O(S) function evaluations. Then, the steepest descent algorithm finds a minimizer of g
with O(SK̂∞) function evaluations. Furthermore, the steepest descent algorithm, which is
a pseudo-polynomial time algorithm, can be made more efficient with the aid of a scaling
technique. The resulting steepest descent scaling algorithm [12, Sec. 10.3.2] terminates in
polynomial time. This is guaranteed by the proximity theorem (Theorem 7.18 in [12]) on a
scaled local optimum for L-convexity.

Now, we propose a continuous relaxation approach which is the steepest descent algo-
rithm starting with a continuous relaxation solution as the initial solution. We assume that
a continuous L\-convex function ḡ : Rn → R ∪ {+∞} with

g(p) = ḡ(p) (p ∈ Zn) (3.1)

and arg min ḡ 6= ∅ is known. Note that the existence of a continuous L\-convex function ḡ
with (3.1) is guaranteed by the convex extensibility of a discrete L\-convex function (Theo-
rem 7.20 in [12]). If a continuous L\-convex function ḡ which can be minimized tractably is
available, our continuous relaxation approach minimizes g efficiently.

Continuous relaxation algorithm for an L\-convex function: RELAX(g, ḡ)
Input: a discrete L\-convex function g and a continuous L\-convex function ḡ with (3.1)
Output: a minimizer of g

S1: Find p̄ ∈ arg min ḡ.
S2: Round off p̄ to obtain p ∈ domZ g.
S3: Return SD(g, p).

We have to take care of the proximity between p̄ and a minimizer of g before we can
assert that this approach is efficient. First, we obtain the following “proximity theorem,”
showing that a continuous relaxation solution of a discrete L\-convex function minimization
problem exists in a neighborhood of the integer minimizer.

Theorem 3.1. Let g : Zn → R ∪ {+∞} be a discrete L\-convex function and ḡ : Rn →
R ∪ {+∞} be a continuous L\-convex function with arg min ḡ 6= ∅. We assume that

g(p) = ḡ(p) (p ∈ Zn).

Then, for any p∗ ∈ arg minZ g, there exists some p̄ ∈ arg min ḡ such that

p∗ − n1 ≤ p̄ ≤ p∗ + n1.

The proof of Theorem 3.1 is given later in Section 3.2.
What is really needed for the proposed algorithm is a kind of reverse direction of Theorem

3.1, that is, a theorem that shows a minimizer of a discrete L\-convex function g exists in a
neighborhood of the continuous relaxation solution. As the main theorem of this paper we
obtain the following proximity theorem. We assume now the boundedness of the effective
domain of ḡ.

Theorem 3.2. Let g : Zn → R ∪ {+∞} be a discrete L\-convex function and ḡ : Rn →
R ∪ {+∞} be a continuous L\-convex function with arg min ḡ 6= ∅. We assume that

g(p) = ḡ(p) (p ∈ Zn),

and dom ḡ is bounded. For any p̄ ∈ arg min ḡ, there exists some p∗ ∈ arg minZ g such that

p̄− n1 ≤ p∗ ≤ p̄ + n1.
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The proof of Theorem 3.2 is also given later in Section 3.2.
Theorem 3.2 guarantees that our continuous relaxation approach is efficient if the relax-

ation solution can be found fast. In order to find the relaxation solution p̄ in step S1, we
can utilize continuous convex minimization algorithms for ḡ since a continuous L\-convex
function is convex by the definition. The number of iterations in step S3 is O(n) from The-
orem 3.2, while, in the steepest descent algorithm starting with an arbitrary solution in the
effective domain, it is O(K̂∞). Thus the continuous relaxation algorithm, denoting by T
an upper bound on the number of function evaluations to find a relaxation solution, finds
minimizer of g with O(nS + T ) function evaluations.

3.2 Proofs

We give proofs of Theorems 3.1 and 3.2.

Proof of Theorem 3.1. For an integer s ≥ 2, we define gs : Zn → R ∪ {+∞} as

gs(p) := ḡ(
p

s
) (p ∈ Zn).

We have
g(p) = gs(sp) (p ∈ Zn). (3.2)

For all p, q ∈ Zn and 0 ≤ α ∈ Z, we have

gs(p) + gs(q) = ḡ(
p

s
) + ḡ(

q

s
)

≥ ḡ((
p

s
− α

s
1) ∨ q

s
) + ḡ(

p

s
∧ (

q

s
+

α

s
1))

= ḡ(
(p− α1) ∨ q

s
) + ḡ(

p ∧ (q + α1)
s

)

= gs((p− α1) ∨ q) + gs(p ∧ (q + α1)),

where the inequality is by translation submodularity (SBF\[R]). This means discrete L\-
convexity of gs.

Let p∗ be a minimizer of g. Optimality criterion for g, i.e., (2.2), yields

gs(sp∗) ≤ gs(sp∗ ± sχX) (X ⊆ {1, 2, . . . , n})

from (3.2). By applying L-proximity theorem on a scaled local optimum (Theorem 7.18 (2)
in [12]) to gs and sp∗, there exists ps ∈ arg minZ gs with

sp∗ − (s− 1)n1 ≤ ps ≤ sp∗ + (s− 1)n1. (3.3)

Dividing all parts of (3.3) by s shows

p∗ − n1 ≤ p∗ − s− 1
s

n1 ≤ ps

s
≤ p∗ +

s− 1
s

n1 ≤ p∗ + n1.

Put K := {p ∈ Rn | p∗ − n1 ≤ p ≤ p∗ + n1}. Since K is compact, every sequence in
K has a convergent subsequence, the limit point of which belongs to K. For k ∈ Z with
k ≥ 1, we suppose sk = 2k, psk

∈ arg minZ gsk
and psk

sk
∈ K. From the sequence {psk

sk
},

we take a convergent subsequence {pski

ski
} and put limi→∞

pski

ski
= p′ ∈ K. Continuity of ḡ
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implies limi→∞ ḡ(
pski

ski
) = ḡ(limi→∞

pski

ski
) = ḡ(p′). Note that {ḡ(

pski

ski
)} is a monotonically

decreasing sequence (ḡ(
psk1
sk1

) ≥ ḡ(
psk2
sk2

) ≥ · · · ≥ ḡ(
pski

ski
) ≥ · · · ) and

ḡ(p′) ≤ ḡ(
p2ki

2ki
) = min g2ki (i ∈ Z, i ≥ 1). (3.4)

Now, we prove ḡ(p′) = min ḡ, i.e., p′ ∈ arg min ḡ, by contradiction. Assume that ḡ(p′) >
min ḡ and put ε0 := ḡ(p′) − min ḡ > 0. We fix p̄ ∈ arg min ḡ arbitrarily. For any number
δ > 0, there exist a number N ∈ {ki | i = 1, 2, . . .} and a sequence {bk} with b0 = bp̄c
and bk ∈ {0, 1}n for k = 1, 2, . . . , N such that |p̄ − q| < δ where q :=

∑N
k=0

bk

2k . Note that
2Nq ∈ Z. Continuity of ḡ gives

∀ε′ > 0,∃δε′ > 0 : |x− y| < δε′ ⇒ |ḡ(x)− ḡ(y)| < ε′. (3.5)

Now, we suppose that x = p̄ and ε′ = ε0
2 in (3.5) and choose as above y = q such that

|p̄− q| < δε′ . Then we have

min g2N ≤ ḡ(q) < min ḡ +
ε0

2
< min ḡ + ε0 = ḡ(p′),

which contradicts (3.4). This proves ḡ(p′) = min ḡ.

Proof of Theorem 3.2. To use Theorem 3.1 in the reverse direction, we consider the case
where ḡ : Rn → R ∪ {+∞} has a unique minimizer p̄. Then, the fact that the condition

p∗ − n1 ≤ p̄ ≤ p∗ + n1

holds for all p∗ ∈ arg minZ g is immediate from Theorem 3.1. In particular, there exists
p∗ ∈ arg minZ g satisfying this condition.

We consider a perturbation of ḡ so that we can use this fact. We arbitrarily fix a
minimizer p̄ ∈ arg min ḡ. For any number ε > 0, we define functions ḡε : Rn → R ∪ {+∞}
and gε : Zn → R ∪ {+∞} as

ḡε(p) := ḡ(p) +
n∑

i=1

ε(p(i)− p̄(i))2 (p ∈ Rn)

and
gε(p) := ḡε(p) (p ∈ Zn).

The functions ḡε and gε are L\-convex by Theorem 7.11(1) in [12] and ḡε has a unique
minimizer p̄. Now, we explain that we can fix sufficiently small ε such that p∗ε ∈ arg minZ gε

is also a minimizer of g. Recall that we assume now the boundedness of the effective domain
of ḡ and put K̃∞ = max{‖p − q‖∞ | p, q ∈ dom ḡ}. Assume that g(p′) = min{g(p) | p ∈
domZ g \ arg minZ g}. We fix ε < {g(p′) −min g}/{nK̃2

∞}. From p∗ε ∈ arg minZ gε and the
definition of gε, for p ∈ arg minZ g, we have

g(p∗ε) ≤ g(p) + ε
n∑

i=1

{(p(i)− p̄(i))2 − (p∗ε(i)− p̄(i))2},

where the last term is nonnegative because of p ∈ arg minZ g. Hence, it holds that

g(p∗ε) ≤ g(p) +
g(p′)−min g

nK̃2∞

n∑

i=1

{(p(i)− p̄(i))2 − (p∗ε(i)− p̄(i))2}

< g(p) + g(p′)−min g = g(p′).
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This means p∗ε ∈ arg minZ g.
Now, we apply the fact in the case of a unique continuous minimizer to show that there

exists p∗ε ∈ arg minZ g such that p∗ε − n1 ≤ p̄ ≤ p∗ε + n1.

4 Numerical Experiments

We here mainly compare the performance of our new continuous relaxation approach with
those of the previously proposed algorithms. We observe from numerical experiments that
our approach is much faster than the previous algorithms.

We implemented three algorithms for minimization of a discrete L\-convex function
shown in Table 1 in the C language to compare the performance of these algorithms.

Table 1: Algorithms we implemented for L\-convex function minimization.

symbol algorithm
SD steepest descent algorithm [12, Sec. 10.3.1]
SCALING steepest descent scaling algorithm [12, Sec. 10.3.2]
RELAX our new continuous relaxation approach

We use the following libraries:

• ‘L-BFGS’ by J. Nocedal∗ with its C++ wrapper by T. Kudo†, which is an imple-
mentation of quasi-Newton method for continuous function optimization [8]. As the
routine requires the gradient of the objective function, we calculate a finite-difference
approximation by calling the function evaluation oracle n + 1 times. We use this only
in RELAX (our new continuous relaxation approach).

• ‘SFM8’ by S. Iwata, which is an implementation of Iwata–Fleischer–Fujishige [6]. This
minimizes a submodular function with O(n5 log2 M) function evaluations, where M is
the maximum absolute value of the submodular function.

• ‘SIMD-oriented Fast Mersenne Twister’ developed by M. Saito and M. Matsumoto‡,
which generates pseudorandom numbers. We make use of this to generate test prob-
lems.

As test problems, we consider the following function:

g(p) =
n∑

i=1

hi(p(i)) +
∑

1≤i<j≤n

hij(p(i)− p(j)) (p ∈ Zn),

where hi(z) = ai(z − ci)2 + bi(z − ci) and hij(z) = aijz
2 + bijz are univariate functions. In

our continuous relaxation approach, we use

ḡ(p) =
n∑

i=1

hi(p(i)) +
∑

1≤i<j≤n

hij(p(i)− p(j)) (p ∈ Rn).

∗http://www.ece.northwestern.edu/~nocedal/lbfgs.html
†http://chasen.org/~taku/software/misc/lbfgs/
‡http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/
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Figure 1: The number of oracle calls for L\-convex function minimization.

Table 2: Observed computational complexity for L\-convex function minimization.
algorithm SD SCALING RELAX

oracle calls C n3.3 n2.8 n2.5

For each n, we generate ten test problems with randomly chosen integer variables 1 ≤
ai, aij ≤ n, −n2 ≤ bi, ci, bij ≤ n2. For each problem, we randomly choose an initial
discrete solution p0 satisfying −10n ≤ p0(i) ≤ 10n.

Our computational environment is the following: HP dx5150 SF/CT, AMD Athlon 64
3200+ processor (2.0GHz, 512KB L2 cache), 4GB memory, Vine Linux 4.1 (kernel 2.6.16),
gcc 3.3.6.

All the algorithms implemented here provide an optimal solution under the assumption
that an oracle for computing L\-convex function values is available. We measure the number
of oracle calls for each problem. Our numerical result is summarized in Figure 1 which shows
the relationship between the number of oracle calls C and dimension n for L\-convex function
minimization. In all the algorithms the relationship is linear in log C and log n, which implies
C = O(nl) for some l. This result is displayed in Table 2.

By numerical experiments with randomly generated test problems, we can conclude that
our continuous relaxation approach is faster than the previously proposed algorithms.
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