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Abstract: The concept of oriented matroid is a combinatorial abstraction of many geometric objects such
as hyperplane arrangements. The problem to decide whether an oriented matroid has a geometric realization
or not is called the realizability problem. This is a fundamental problem in the oriented matroid theory,
and many important issues in combinatorial geometry such as stretchability of pseudoline arrangements [4]
can be reduced to this problem. The realizability problem is known to be NP-hard [12] and there are many
realizability certificates and non-realizability certificates based on sufficient conditions which can be checked
efficiently. However, they cannot decide the realizability of all oriented matroids. Therefore new certificates
are needed to determine the realizability of those that cannot be decided by existing methods. In this paper,
we propose a new certificate for non-realizability of oriented matroids based on semidefinite programming
relaxation of Grassmann-Plücker relations, and apply our method to oriented matroids with 8 elements and
rank 4, and 9 elements and rank 3.
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1 Introduction

The concept of oriented matroid is a combinatorial abstraction of hyperplane arrangements,
vector configurations, point configurations and digraphs, and it provides a unified combinato-
rial setting to treat these objects. A fundamental problem to decide whether a given oriented
matroid has a geometric realization (for example, hyperplane arrangements or equivalently,
vector configurations, point configurations) or not is called the realizability problem and has
been studied for a long time. The realizability problem shows a gap between the abstract
combinatorial model and the geometric objects, and many important problems in combi-
natorial geometry can be reduced to the realizability problem of oriented matroids. For
example, the realizability problem is known to be equivalent to that of specifying the gap
between pseudohyperplane arrangements and hyperplane arrangements [4]. The realizability
problem also has practical applications such as robust geometric computation as seen in [1].

By Mnëv’s universality theorem [12], the realizability problem is polynomially equivalent
to the decision problem for the existential theory of the reals, which is known to be NP-
hard. Therefore it is almost impossible to solve the realizability problem completely and
efficiently. On the other hand, some oriented matroids can be decided to be realizable
or non-realizable by simple certificates. For example, a solvability sequence method [2], a
reduction sequence method [17] and a realizability certificate using polynomial optimization
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and generalized mutation graphs [13, 15] were proposed as realizability certificates, and
non-Euclidean property [7], a biquadratic final polynomial method (BFP) [3] and non-HK*
property [8] as non-realizability certificates.

Since Finschi and Fukuda developed an enumeration algorithm of oriented matroids [6],
and made a database of oriented matroids [5] recently, the existing certificates were applied
to OM(8,4) and OM(9,3), the rank-4 oriented matroids with 8 elements and the rank-3
oriented matroids with 9 elements respectively [8, 13, 14, 15]. They are minimal cases having
non-realizable ones with respect to the number of elements for each rank. In these studies,
oriented matroids in OM(8,4) and OM(9,3) including non-uniform ones were classified with
respect to the realizability using the above certificates and the database of oriented matroids.
They determined 172183 of 181472 oriented matroids in OM(8,4) to be realizable and 3968
to be non-realizable as in Figure 1, and 452231 of 461053 oriented matroids in OM(9,3) to
be realizable and 274 to be non-realizable as in Figure 2. However, the remaining oriented
matroids are still unknown to be realizable or non-realizable. Therefore new realizability or
non-realizability certificates are needed to know the realizability of the remaining oriented
matroids.
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Figure 1: A classification of OM(8,4) w.r.t. certificates [8, 13, 14, 15]

#(9 elements, rank-3 oriented matroids) = 481053
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Figure 2: A classification of OM(9,3) w.r.t. certificates [8, 13, 14, 15]

In this paper, we propose a new certificate for non-realizability of oriented matroids based
on semidefinite programming (SDP). First, we focus attention on a realizability certificate
using polynomial optimization [13, 15]. In [13, 15], Nakayama, Moriyama and Fukuda
gave realizations of oriented matroids by solving the following system, which describes the
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conditions for realizability of an oriented matroid ({1, ..., n}, χ):

sign(det(vi1 , vi2 , ..., vir
)) = χ(i1, i2, ..., ir) for all 1 ≤ i1 < i2 < ... < ir ≤ n,

where χ : Er → {+1,−1, 0} is a chirotope which defines the oriented matroid and v1, ..., vn ∈
Rr, as a polynomial optimization problem. Polynomial optimization problems (POPs) are
optimization problems whose objective functions are polynomial and constraints are polyno-
mial inequalities and equalities. Recently, Lasserre [10] and Parrilo [16] developed algorithms
to solve POPs by SDP relaxation and there appeared solvers that solve POPs efficiently such
as SparsePOP [19, 23]. Nakayama, Moriyama and Fukuda succeeded to give realizations of
new oriented matroids by solving polynomial systems using SparsePOP as follows [13, 15].
They eliminated equality constraints from the above system as much as possible and solved
them using SparsePOP. A solution of the SDP sometimes gives a solution of the original
POP because most of the constraints of the POP are inequalities and they can be satisfied
even if there is a relaxation gap. Therefore they certified realizability of an oriented ma-
troid by computing an approximate solution of the above system by SDP relaxation and by
checking if it is also a solution of the original POP. However, non-realizability of an oriented
matroid cannot be certified by this approach even if this method fails to give a realization
of the oriented matroid.

On the other hand, if one proves infeasibility of the SDP system which is obtained as an
SDP relaxation of the original POP in some way, infeasibility of the original POP follows.
Therefore one can prove non-realizability of the oriented matroid by certifying infeasibility
of the SDP system. In this paper, we investigate this approach with another system, which
we call Grassmann-Plücker system:





∑r+1
s=1 (−1)s[i1...ir−1js][j1...js−1js+1...jr+1] = 0

for all 1 ≤ i1 < ... < ir−1 ≤ n, 1 ≤ j1 < ... < jr+1 ≤ n,

sign([i1i2...ir]) = χ(i1, i2, ..., ir) for all 1 ≤ i1 < i2 < · · · < ir ≤ n,

where all occurring brackets are variables. This system is the same system as that of BFP [3].
We choose this system for the following reasons (a non-realizability certificate based on SDP
relaxation of the formulation in [15] is studied in [11]). First of all, the Grassmann-Plücker
system has a rich algebraic structure. As demonstrating in Section 4, we can compute
minimal equality constraints of this system efficiently using this structure. Secondly, BFP
seems to be a very powerful certificate [14] and an SDP relaxation of this system may
produce a more powerful non-realizability certificate. BFP is a method that proves non-
realizability of oriented matroids as follows. First, we choose 3-term Grassmann-Plücker
relations supposing that all occurring brackets and indices are sorted to be positive.





[τ, a, b][τ, c, d]− [τ, a, c][τ, b, d] + [τ, a, d][τ, b, c] = 0,

[τ, a, b] > 0, [τ, c, d] > 0, [τ, a, c] > 0, [τ, b, c] > 0, [τ, a, d] > 0, [τ, b, c] > 0
for all a, b, c, d ∈ E, τ ∈ Er−2.

(For simplicity, we explain the uniform case). Then we make an LP system by relaxing
conditions by [τ, a, b][τ, c, d] < [τ, a, c][τ, b, d] and [τ, a, d][τ, b, c] < [τ, a, c][τ, b, d], and by
taking the logarithm of both sides of these inequalities and prove infeasibility of this LP
system. However, this special LP relaxation seems difficult to be extended to an SDP
relaxation. Hence in this paper we consider an SDP relaxation which is not an obvious
extension of this special LP relaxation of BFP. Taking the problem size into account, we
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investigate the case of relaxing Grassmann-Plücker system with relaxation order 1. This is
the first attempt to use SDP for a non-realizability certificate of oriented matroids.

We apply our method to oriented matroids in OM(8,4) and OM(9,3) which are not
decided to be realizable by the existing methods using Finschi and Fukuda’s database of
oriented matroids [5] and the SDP solver SeDuMi [18, 20]. Our method with relaxation
order 1 decides non-realizability of 440 oriented matroids in OM(8,4) and none of oriented
matroids in OM(9,3). Consequently we find that it cannot find new non-realizable oriented
matroids, but finds non-realizable oriented matroids which are not decided by non-Euclidean
property or non-HK* property.
Our main result. Relation between our method with relaxation order 1 and the existing
methods is as in Figure 3.

non-realizable ???

BFP   3968

non-Euclidean   3462

non-HK*

1382
our method

440

Figure 3: Comparison between our method and the existing methods (8 elements and rank
4)

Although our method with relaxation order 1 is weaker than BFP for OM(8,4) and
OM(9,3), this method with higher relaxation order may be available as a more powerful
method. Actually, observing dual solutions, we notice that in many cases, one can prove
non-realizability by much smaller number of constraints (This remarkable property is never
seen in [11]). Furthermore, if a given oriented matroid has some symmetries, one can apply
techniques used in [9] to reduce problem size.

2 Preliminaries on Oriented Matroids

In this section, we explain the concept of oriented matroids and the realizability problem
briefly. For more details, see [1].

Consider a vector configuration V = (vi)n
i=1 ∈ Rr×n. Then, it satisfies Grassmann-

Plücker relations:

[i1...ir][j1...jr]−
r∑

s=1

[jsi2...ir][j1...js−1i1js+1...jr] = 0,

where [i1, ..., ir] := det(vi1 , ..., vir
). Abstracting values of the r × r minors to sign patterns,

we obtain a chirotope χ that satisfies the following axioms.

Definition 2.1. Let E be a finite set and r ≥ 1 an integer. A chirotope of rank r on E is
a mapping χ : Er → {+1,−1, 0} which satisfies the following properties.
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1. χ is not identically zero.

2. χ(iσ(1), ..., iσ(r)) = sgn(σ)χ(i1, ..., ir) for all i1, ..., ir and every permutation σ.

3. For all i1, ..., ir, j1, ..., jr ∈ E such that

χ(js, i2, ..., ir) · χ(j1, ..., js−1, i1, js+1, ..., jr) ≥ 0

for s = 1, ..., r, we have
χ(i1, ..., ir) · χ(j1, ..., jr) ≥ 0.

We define an oriented matroid as a pair of a finite set E and a chirotope χ : Er →
{+1,−1, 0}, and it is called a uniform oriented matroid if χ(i1, ..., ir) 6= 0 for all 1 ≤ i1 <
... < ir ≤ n. If |E| = n, we call the pair (E, χ) rank-r oriented matroid with n elements.

By definition, oriented matroids can be regarded as an abstraction of vector configura-
tions. If an oriented matroid has a corresponding vector configuration, it is called a realizable
oriented matroid. The precise definition of a realizable oriented matroid is stated as follows.

Definition 2.2. (The realizability of oriented matroids)
Let M = (E, χ) be a rank-r oriented matroid with n elements. If there exists a vector
configuration V = (vi)n

i=1 ∈ Rr×n such that

sign(det(vi1 , vi2 , ..., vir
)) = χ(i1, i2, ..., ir)

for all i1, ..., ir ∈ E, M is said to be realizable, otherwise non-realizable.

3 Formulating Non-realizability Certificates by SDP

In this section, we formulate non-realizability certificates of oriented matroids as an infea-
sibility certificate of SDP. From now on, we will use the following notations throughout the
paper.

• A •B :=
∑n

i=1

∑n
j=1 aijbij , where A = (aij) and B = (bij) are n× n matrices.

Sn
+ := {X | X is an n× n positive semidefinite symmetric matrix}.

• Λ(n, r) := {[i1...ir] | 1 ≤ i1 < ... < ir ≤ n}.
• [iσ(1)iσ(2)...iσ(r)] := sgn(σ)[i1i2...ir], where [i1i2...ir] ∈ Λ(n, r) and σ is a permutation

on {1, ..., r}.
• [i1...ir] := 0, where there exist k, l ∈ {1, ..., r} (k 6= l) that satisfy ik = il.

• K[x1, ..., xn]: The polynomial ring over a field K in n variables x1, ..., xn.

• T ({x1, ..., xn}, d) := {xα1
1 ...xαn

n | α1 + ... + αn ≤ d, α1, ..., αn ∈ Z≥0}

Let M = (E, χ) be an oriented matroid of rank r where |E| = n. Suppose that M
is realizable. Then there exists a vector configuration V = (vi)n

i=1 ∈ Rr×n such that for
1 ≤ i1 < ... < ir ≤ n and 1 ≤ j1 < ... < jr ≤ n,





[i1...ir][j1...jr]−
∑r

k=1 [jki2...ir][j1...jk−1i1jk+1...jr] = 0,

(Grassmann-Plücker relations)

sign([i1...ir]) = χ(i1, ..., ir)

(Conditions of chirotope)
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where [i1...ir] := det(vi1 , ..., vir
). Then, we rewrite the above system as follows. For 1 ≤

i1 < ... < ir ≤ n and 1 ≤ j1 < ... < jr ≤ n,




x(i1,...,ir),(j1,...,jr) −
∑r

k=1 x(jki2...ir),(j1...jk−1i1jk+1...jr) = 0,

sign(x(i1,...,ir),(j1,...,jr)) = χ(i1, ..., ir) · χ(j1, ..., jr),

sign(x(i1,...,ir)) = χ(i1, ..., ir),

x(i1,...,ir),(j1,...,jr) = [i1...ir][j1...jr],

x(i1,...,ir) = [i1...ir]

where x(iσ(1),...,iσ(r)),(jτ(1),...,jτ(r)) denotes sgn(σ) · sgn(τ) · x(i1,...,ir),(j1,...,jr)

for 1 ≤ i1 < ... < ir ≤ n and 1 ≤ j1 < ... < jr ≤ n, and σ and τ are permutations on
{1, ..., r}.
Here we consider a vector u1 given by listing 1 and elements of Λ(n, r) in lexicographic order:

u1 := (1, [1, 2, ..., r], [1, 2, ..., r − 1, r + 1], ..., [n− r, n− r + 1, ..., n])T .

Then, under the constraints x(i1,...,ir),(j1,...,jr) = [i1...ir][j1...jr] and x(i1,...,ir) = [i1...ir] for
1 ≤ i1 < ... < ir ≤ n and 1 ≤ j1 < ... < jr ≤ n,

X :=




1 x(1,2,...,r) · · · x(n−r,n−r+1,...,n)

x(1,2,...,r) x(1,2,...r),(1,2,...,r) · · · x(1,2,...,r),(n−r,...,n)

x(1,2,...,r−1,r+1) x(1,2,...,r−1,r+1),(1,2,...,r) · · · x(1,2,...,r−1,r+1),(n−r,...,n)

...
...

. . .
...

x(n−r,...,n) x(n−r,...,n),(1,2,...,r) · · · x(n−r,...,n),(n−r,...,n)




(= u1u
T
1 ) should be a positive semidefinite symmetric matrix. Therefore if M is realizable,

the following system (SDP A) is feasible: for 1 ≤ i1 < ... < ir ≤ n and 1 ≤ j1 < ... < jr ≤ n,




x(i1,...,ir),(j1,...,jr) −
∑r

k=1 x(jki2...ir),(j1...jk−1i1jk+1...jr) = 0,

sign(x(i1,...,ir),(j1,...,jr)) = χ(i1, ..., ir) · χ(j1, ..., jr),

sign(x(i1,...,ir)) = χ(i1, ..., ir),

X is a positive semidefinite symmetric matrix,

(SDP A)

where x(iσ(1),...,iσ(r)),(jτ(1),...,jτ(r)) denotes sgn(σ) · sgn(τ) · x(i1,...,ir),(j1,...,jr) for all
i1, ..., ir, j1, ..., jr for 1 ≤ i1 < ... < ir ≤ n and 1 ≤ j1 < ... < jr ≤ n, and σ and τ are
permutations on {1, ..., r}.
By eliminating the constraints sign(x(i1,...,ir)) = χ(i1, ..., ir) and variables x(i1,...,ir) for 1 ≤
i1 < ... < ir ≤ n and 1 ≤ j1 < ... < jr ≤ n, we obtain the following system (SDP B). For
1 ≤ i1 < ... < ir ≤ n and 1 ≤ j1 < ... < jr ≤ n,





x(i1,...,ir),(j1,...,jr) −
∑r

k=1 x(jki2...ir),(j1...jk−1i1jk+1...jr) = 0,

sign(x(i1,...,ir),(j1,...,jr)) = χ(i1, ..., ir) · χ(j1, ..., jr),

X ′ is a positive semidefinite symmetric matrix

(SDP B)

where

X ′ :=




x(1,2,...r),(1,2,...,r) · · · x(1,2,...,r),(n−r,n−r+1,...,n)

x(1,2,...,r−1,r+1),(1,2,...,r) · · · x(1,2,...,r−1,r+1),(n−r,n−r+1,...,n)

...
. . .

...
x(n−r,n−r+1,...,n),(1,2,...,r) · · · x(n−r,n−r+1,...,n),(n−r,n−r+1,...,n)


 .
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Proposition 3.1. (SDP A) is feasible if and only if (SDP B) is feasible.

Before proving this proposition, we explain some terminologies. A polynomial f ∈
R[x1, ..., xn] is said to be square-free if for every monomials xα1

1 ...xαn
n in f , α1, ..., αn are

equal to 0 or 1. A matrix X is called a strictly feasible solution of an SDP system if X is a
feasible solution of the SDP system and is positive definite.

Proof of Proposition 3.1. Sufficiency is trivial and we prove necessity. Let X̂ be a feasible
solution of (SDP B). Taking into account that all Grassmann-Plücker relations are square-
free, we obtain a strictly feasible solution X̄ := X̂ + I, where I is a unit matrix whose size
is equal to that of X̂. Then, we see that




1 χ(1, 2, ..., r) · ε · · · χ(n− r, ..., n) · ε
χ(1, 2, ..., r) · ε

... X̄
χ(n− r, , ..., n) · ε




is a solution of (SDP A) for sufficiently small ε > 0.

If X is a feasible solution of (SDP B), αX is also a solution of (SDP B) for all α > 0.
Therefore the following system is feasible if and only if (SDP B) is feasible: for 1 ≤ i1 <
... < ir ≤ n and 1 ≤ j1 < ... < jr ≤ n,





x(i1,...,ir),(j1,...,jr) −
∑r

k=1 x(jki2...ir),(j1...jk−1i1jk+1...jr) = 0,

x(i1,...,ir),(j1,...,jr) − 1 ≥ 0 if χ(i1, ..., ir) · χ(j1, ..., jr) = +,

x(i1,...,ir),(j1,...,jr) = 0 if χ(i1, ..., ir) · χ(j1, ..., jr) = 0,

x(i1,...,ir),(j1,...,jr) + 1 ≥ 0 if χ(i1, ..., ir) · χ(j1, ..., jr) = −,

X ′ is a positive semidefinite symmetric matrix,

We transform the above system to a standard form of SDP by adding slack variables. For
1 ≤ i1 < ... < ir ≤ n and 1 ≤ j1 < ... < jr ≤ n,





x(i1,...,ir),(j1,...,jr) −
∑r

k=1 x(jki2...ir),(j1...jk−1i1jk+1...jr) = 0,

x(i1,...,ir),(j1,...,jr) − 1 = y(i1,...,ir),(j1,...,jr) if χ(i1, ..., ir) · χ(j1, ..., jr) = +1,

x(i1,...,ir),(j1,...,jr) = 0 if χ(i1, ..., ir) · χ(j1, ..., jr) = 0,

x(i1,...,ir),(j1,...,jr) + 1 = −y(i1,...,ir),(j1,...,jr) if χ(i1, ..., ir) · χ(j1, ..., jr) = −1

y(i1,...,ir),(j1,...,jr) ≥ 0,

X ′ is a positive semidefinite symmetric matrix,

where x(iσ(1),...,iσ(r)),(jτ(1),...,jτ(r)) denotes sgn(σ) · sgn(τ) · x(i1,...,ir),(j1,...,jr)

for 1 ≤ i1 < ... < ir ≤ n and 1 ≤ j1 < ... < jr ≤ n, and σ and τ are permutations on
{1, ..., r}.
Then, if one proves that the above SDP system has no feasible solution, M is decided to be
non-realizable.

The relaxation explained above corresponds with the SDP relaxation of a polynomial
system with relaxation order 1 which was introduced in [10]. When we construct an SDP
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relaxation with relaxation order d, we make equalities and inequalities system as follows.




([i1...ir][j1...jr]−
∑r

k=1 [jki2...ir][j1...jk−1i1jk+1...jr])m

=:
∑

m′∈T (Λ(n,r),2d) c
(i1,...,ir,j1,...,jr,m)
m′ m′ = 0

for 1 ≤ i1 < ... < ir ≤ n, 1 ≤ j1 < ... < jr ≤ n, and m ∈ T (Λ(n, r), 2d− 2),

sign([k1,1...k1,r]...[kl,1...kl,r]) = χ(k1,1, ..., k1,r) · . . . · χ(kl,1, ..., kl,r),

[k1,1...k1,r]...[kl,1...kl,r] = y[k1,1...k1,r]...[kl,1...kl,r]

for 1 ≤ k1,1 < ... < k1,r ≤ n, ..., 1 ≤ k2d,1 < ... < k2d,r ≤ n, and l ≤ 2d.

Then, we consider a vector ud given by listing all elements of T (Λ(n, r), d) by lexicographic
order:

ud := (1, [1, 2, ..., r], ..., [n− r, ..., n], [1, 2, .., r]2, ..., [n− r, ..., n]d)T .

Under the constraints [k1,1...k1,r]...[kl,1...kl,r] = y[k1,1,...,k1,r]...[kl,1,...,kl,r ] for 1 ≤ k1,1 < ... <

k1,r ≤ n, ..., 1 ≤ kl,1 < ... < kl,r ≤ n, a matrix Y = (yl,m)l,m∈T (Λ(n,r),2d) is equal to udu
T
d

and should be positive semidefinite. Therefore if M is realizable, the following SDP system
is feasible.





∑
m′∈T (Λ(n,r),2d) c

(i1,...,ir,j1,...,jr,m)
m′ ym′ = 0

for 1 ≤ i1 < ... < ir ≤ n, 1 ≤ j1 < ... < jr ≤ n, and m ∈ T (Λ(n, r), 2d− 2),

sign(y[k1,1...k1,r]...[kl,1...kl,r ]) = χ(k1,1, ..., k1,r) · . . . · χ(kl,1, ..., kl,r)

for 1 ≤ k1,1 < ... < k1,r ≤ n, ..., 1 ≤ k2d,1 < ... < k2d,r ≤ n, and l ≤ 2d,

Y = (yl,m)l,m∈T (Λ(n,r),2d) is a positive semidefinite symmetric matrix.

Hence, if we can prove infeasibility of the above SDP system, M is proved to be non-
realizable.

If we use the higher order relaxation, we will obtain a more powerful certificate. However,
the problem size will become very large. Therefore in this paper, we focus on the SDP
relaxation with relaxation order 1.

4 Eliminating Redundancy of Constraints

In the previous section, we formulated a non-realizability certificate by SDP. However, the
problem size becomes very large even if the number of elements and the rank of a given ori-
ented matroid are small. About 2000 variables and 3000 constraints are needed for OM(8,4),
and about 3000 variables and 4500 constraints are needed for OM(9,3). Therefore it is very
important to know which constraints are really needed. In this section, we discuss this is-
sue. To treat the case of higher order relaxation together, we investigate redundancy of the
original polynomial system, not that of SDP system.

First, we consider inequality constraints. Although discovering redundant inequalities
is sometimes achieved easily (for example, y > 0 is redundant for the system x − y + z =
0, x > 0, y > 0, z > 0), in general it is as hard task as the problem to decide emptiness
of semialgebraic sets. On the other hand, redundancy of equations can be discussed in a
relatively simple way by considering generating sets of the corresponding ideals. Therefore
we discuss redundancy of equalities in this section. To investigate redundancy of Grassmann-
Plücker relations, we explain Grassmann-Plücker ideal well known in invariant theory [21,
22]. We will explain terminologies in invariant theory such as K-algebra homomorphism,
K-vector space, total degree and homogeneous polynomial when we use these terminologies.
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Definition 4.1. ([21, 22])
For a field K, let f : K[Λ(n, r)] → K[x11, ..., x1r, x21, ..., xnr] be the K-algebra homo-

morphism that takes [i1...ir] to det




xi11 · · · xir1

...
. . .

...

xi1r · · · xirr


. Then, In,r := ker(f) is called

Grassmann-Plücker ideal.

A map φ : K[Λ(n, r)] → K[x11, ..., x1r, x21, ..., xnr] is called a K-algebra homomorphism
if it satisfies φ(a + b) = φ(a) + φ(b), φ(sab) = sφ(a)φ(b) for all a, b ∈ K[Λ(n, r)] and s ∈ K.

Thus, f described above is the map that substitutes [i1...ir] with det




xi11 · · · xir1

...
. . .

...

xi1r · · · xirr




and Grassmann-Plücker ideal In,r is the set of polynomial identities which consist of the

r × r minors of




x11 · · · xn1

...
. . .

...

x1r · · · xnr


.

Theorem 4.2. (The Second Fundamental Theorem of Invariant Theory [21])
Grassmann-Plücker ideal In,r is generated by Grassmann-Plücker polynomials:

r+1∑
s=1

(−1)s[i1...ir−1js][j1...js−1js+1...jr+1],

for 1 ≤ i1 < ... < ir−1 ≤ n, 1 ≤ j1 < ... < jr+1 ≤ n.

By this theorem, all polynomial equations which consist of the generic r × r minors are
generated by Grassmann-Plücker relations. However, not all Grassmann-Plücker relations
are needed. We will show an example of redundant relations.

[123][456]− [124][356] + [125][346]− [126][345] = 0 · · · (1)
[123][456]− [124][356] + [134][256]− [156][234] = 0 · · · (2)
[125][346]− [126][345]− [134][256] + [156][234] = 0 · · · (3)

Because (1)−(2)=(3), the above relations have redundancy.
To obtain a set of independent relations, we consider a minimal generating set of In,r.

In general, computing a minimal generating set of ideals is a very hard task, but it is not
too difficult in the case of In,r because it has the generating set which consists of quadratic
homogeneous polynomials. Before demonstrating how to compute a minimal generating
set efficiently, we explain some definitions. The total degree of a monomial xα1

1 · · ·xαn
n is

defined to be α1 + · · ·+ αn and the total degree of a polynomial is a maximum total degree
of monomials which appear in the polynomial. A polynomial is said to be homogeneous if
all monomials which appear in the polynomial have the same total degree. In addition, we
use the terminology K-vector space spanned by a set S ⊂ K[Λ(n, r)] for the following vector
space:

{a1s1 + · · ·+ aMsM | a1, ..., aM ∈ K, s1, ..., sM ∈ S,M ∈ N}.
Using these terminologies, we explain an algorithm to compute a minimal generating set of
In,r efficiently.



220 H. MIYATA, S. MORIYAMA AND H. IMAI

Proposition 4.3. For a field K, let h, g1, g2, ..., gm ∈ K[x1, ..., xn] be homogeneous polyno-
mials whose total degrees are d. Then, h ∈ 〈g1, g2, ..., gm〉 := {b1g1 + · · ·+bmgm | b1, ..., bm ∈
K[x1, ..., xn]} if and only if there exist a1, ..., am ∈ K such that h = a1g1+a2g2+ · · ·+amgm.

Proof. Sufficiency is trivial and we prove necessity. If h ∈ 〈g1, g2, ..., gm〉, we obtain h −
(b1g1 + b2g2 + · · · + bmgm) = 0 for b1, b2, · · · , bm ∈ K[x1, ..., xn]. Then, we obtain the
proposition by looking at the part of total degree d.

By this proposition, a minimal generating set of In,r is equal to a basis of the K-
vector space spanned by Grassmann-Plücker polynomials, denoted by Vn,r. It can be com-
puted efficiently using Gaussian Elimination. Furthermore, Vn,r can be decomposed to
Vn,r =

⊕
A V

(A)
n,r , where

⊕
denotes a direct sum, A runs over {k1, ..., kr, l1, ..., lr} that sat-

isfies [k1...kr], [l1...lr] ∈ Λ(n, r), and V
({k1,...,kr,l1,...,lr})
n,r is the K-vector space spanned by

Grassmann-Plücker polynomials:

r+1∑
s=1

(−1)s[i1...ir−1js][j1...js−1js...jr+1]

that satisfy {i1, ..., ir−1, j1, ..., jr+1} = {k1, ..., kr, l1, ..., lr}. It is because V
(A)
n,r and V

(A′)
n,r do

not include common monomials if A 6= A′. Therefore one can find a minimal generating
set of In,r more efficiently by computing bases of each V

(A)
n,r separately. Further observe, as

V
(σ·A)
n,r = σ · V (A)

n,r , where σ is a permutation on {1, 2, ..., n}, we only need to know bases of
V

({1,2,...,r+2})
n,r , ..., V

({1,2,...,min{n,2r}})
n,r .

Algorithm 4.4. (Computing a minimal generating set of In,r)

1. For m = r + 2, r + 3, ...,min{n, 2r} do

Tm := {∑r+1
s=1 (−1)s[i1...ir−1js][j1...js−1js+1...jr+1] | {i1, ..., ir+1, j1, ..., jr−1}

= {1, ..., m}, 1 ≤ i1 < i2 < ... < ir+1 ≤ n, 1 ≤ j1 < j2 < ... < jr−1 ≤ n} and compute
a basis Bm of the K-vector space spanned by Tm using Gaussian Elimination.

2. For m = r + 2, r + 3, ...,min{n, 2r} do

Um :=
⋃

1≤k1<...<km≤n

(
1 2 · · · m
k1 k2 · · · km

)
· Tm.

3. Output
⋃min{n,2r}

m=r+1 Um.

Using the above algorithm, we obtain systems whose numbers of constraints are about
2000 for OM(8,4), and 4000 for OM(9,3). We notice that the above algorithm preserves the
symmetry of the Grassmann-Plücker system. It will be desirable when we apply techniques
used in [9].

Example. (Computing a minimal generating set of I6,3)
By the Second Fundamental Theorem of Invariant Theory, I6,3 is generated by pi1i2,j1j2j3j4 :=
[i1i2j1][j2j3j4]− [i1i2j2][j1j3j4] + [i1i2j3][j1j2j4]− [i1i2j4][j1j2j3],
for 1 ≤ i1 < i2 ≤ 6 and 1 ≤ j1 < j2 < j3 < j4 ≤ 6. To obtain a minimal generating set
of I6,3, we compute a basis of the k-vector space V6,3 spanned by the above polynomials.
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First, look at the monomials in pi1i2,j1j2j3j4 . We notice that sets of indices which appear in
each monomial are all {i1, i2, j1, j2, j3, j4}. Then, we classify the above polynomials into the
following seven groups by index sets.

{1, 2, 3, 4, 5, 6} : {p12,3456, p13,2456, p14,2345, p15,2346, ..., p56,1234} (=: G123456)
{1, 2, 3, 4, 5} : {p12,1345, p12,2345, p13,1245, p13,2345, ..., p45,1235} (=: G12345)
{1, 2, 3, 4, 6} : {p12,1346, p12,2346, p13,1246, p13,2346, ..., p46,1236} (=: G12346)
{1, 2, 3, 5, 6} : {p12,1356, p12,2356, p13,1256, p13,2356, ..., p56,1236} (=: G12356)
{1, 2, 4, 5, 6} : {p12,1456, p12,2456, p14,1256, p14,2456, ..., p56,1246} (=: G12456)
{1, 3, 4, 5, 6} : {p13,1456, p13,3456, p14,1356, p14,3456, ..., p56,1346} (=: G13456)
{2, 3, 4, 5, 6} : {p23,2456, p23,3456, p24,2356, p24,3456, ..., p45,1235} (=: G23456)

We see that the elements of G123456 cannot be written as a linear combination of the elements
of G12345, G12346, ..., G23456. Therefore we can compute a maximal linear independent set
of the whole system by merging maximal linear independent sets of each group. Thus, we
consider linear dependency of each group separately. First, G123456 has the following linear
dependencies:

p12,3456 + p34,1256 + p56,1234 = 0, p13,2456 + p25,1346 + p46,1235 = 0,
p14,2356 + p26,1345 + p35,1246 = 0, p15,2346 + p24,1356 + p36,1245 = 0,
p16,2345 + p23,1456 + p45,1236 = 0.

Eliminating these dependencies, we obtain a maximal linearly independent set:

G′123456 = {p12,3456, p13,2456, p14,2356, p15,2346, p16,2345,

p34,1256, p25,1346, p26,1345, p24,1356, p23,1456}.
On the other hand, G12345 has no linear dependency. Next, let us focus on the following
relation.

p12,1346 = [123][146]− [124][136] + [126][134]

=
(

1 2 3 4 5 6
1 2 3 4 6 5

)
· ([123][145]− [124][135] + [125][134])

=
(

1 2 3 4 5 6
1 2 3 4 6 5

)
· p12,1345,

where the symmetry group S6 acts on K[[123], [124], ..., [456]] by the linear extension of the
following relations.

σ · [i1j1k1] · · · [imjmkm] = [σ(i1)σ(j1)σ(k1)] · · · [σ(im)σ(jm)σ(km)]

for i1, .., im, j1, ..., jm, k1, ..., km ∈ {1, 2, 3, 4, 5, 6} and σ ∈ S6.
In the same way,

G12346 =
(

1 2 3 4 5 6
1 2 3 4 6 5

)
·G12345,

G12356 =
(

1 2 3 4 5 6
1 2 3 5 6 4

)
·G12345,

...

G23456 =
(

1 2 3 4 5 6
2 3 4 5 6 1

)
·G12345,
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where the symmetry group S6 acts on the power set of K[[123], [124], ..., [456]] by

σ · {p1, ..., pm} = {σ · p1, ..., σ · pm}

for p1, ..., pm ∈ K[[123], [124], ..., [456]] and σ ∈ S6.
It follows that G12346, G12356, G12456, G13456, G23456 have no linear dependency, too. (Re-
call that G12345 has no linear dependency.) Therefore we conclude that G′123456 ∪G12345 ∪
G12346 ∪ ... ∪G23456 is a minimal generating set of I6,3.

Remark. Proposition 4.3 also implies that adding redundant equations whose total de-
grees are two to Grassmann-Plücker systems never strengthens SDP relaxations because
these redundant equations can be written as linear combinations of Grassmann-Plücker re-
lations. Similarly, eliminating redundant equations from Grassmann-Plücker systems does
not weaken SDP relaxations if one considers the case of relaxation order 1.

5 Proving Infeasibility of SDP Systems

In Section 3, we formulated a non-realizability certificate by SDP, but we cannot discern
infeasibility of the SDP system by the interior point method directly because of numerical
errors. In this section, we provide a way to resolve this issue.

To discern infeasibility of SDP system

(a) Ai •X = bi (i = 1, 2, ..., m), X ∈ Sn
+,

we consider the following SDP system.

(b)

Primal SDP:

min s(
Ai 0
0 bi

)
•

(
X 0
0 s

)
= bi (i = 1, 2, ..., m)

(
X 0
0 s

)
∈ Sn+1

+ .

Dual SDP:

max
m∑

i=1

bizi

Y :=
(

0 0
0 1

)
−

m∑

i=1

(
Ai 0
0 bi

)
zi ∈ Sn+1

+ .

Note that this SDP system has a trivial primal solution X = 0, s = 1 and a trivial dual

solution (Y, z1, ..., zm) = (
(

0 0
0 1

)
, 0, ..., 0), and (a) is feasible if and only if the primal

optimal value of (b) is 0. Therefore if one certifies the primal optimal value of (b) is larger
than 0, one can certify that (a) is infeasible. However, an exact primal optimal value cannot
be obtained efficiently, and we search a dual solution of (b) proving that the primal optimal
value of (b) is larger than 0 as follows. We apply the interior point method for SDP to (b),
and obtain an approximately dual feasible solution (z∗, Y ∗), at which objective function
may take large value and obtain an exact dual feasible solution (z∗∗, Y ∗∗) of (b), which
is sufficiently close to (z∗, Y ∗). We compute (z∗∗, Y ∗∗) by substituting z∗’s entries that

are nearly 0 with exact 0 and putting Y ∗∗ by Y ∗∗ :=
(

0 0
0 1

)
− ∑m

i=1

(
Ai 0
0 bi

)
z∗∗i (Of

course, this way does not always produce a dual feasible solution, but really works well in
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our particular case in which z∗∗ is often very sparse. See also next section). If (z∗∗, Y ∗∗) is
really dual feasible and the object function’s value at (z∗∗, Y ∗∗) is larger than 0, the primal
optimal value of (b) is larger than 0 by weak duality. In other words, one can decide that
(a) is infeasible.

6 Experimental Results

Using SeDuMi [18, 20] and Finschi and Fukuda’s database of oriented matroids [5], we apply
our method to 3968 oriented matroids in OM(8,4) decided to be non-realizable by non-HK*
property [8], non-Euclidean property [7] or BFP [3] and 5321 oriented matroids that could
not be decided to be realizable or non-realizable by the above methods, heuristics [13], a
solvability sequence [2], a reduction sequence (not-isolated point) [17] or a realizability cer-
tificate using POP and generalized mutation graphs [13, 15]. Our method with relaxation
order 1 decides non-realizability of 440 oriented matroids of the 3968 ones and no oriented
matroids of the 5321 ones in OM(8,4). In the same way, we apply our method to 8822 ori-
ented matroids in OM(9,3) which were not decided to be realizable by the existing methods,
but none of those is decided to be non-realizable by our method.

As a result, the number of oriented matroids decided to be non-realizable by our method
with relaxation order 1 is less than that of oriented matroids decided to be non-realizable by
BFP, but found non-realizable oriented matroids which were not decided to be non-realizable
by non-Euclidean property or non-HK* property (See Figure 3). IC(8,4,000018) in Finschi
and Fukuda’s database [5] is an example of an oriented matroid which is decided to be
non-realizable by our method, but cannot be decided to be non-realizable by non-Euclidean
property or non-HK* property. On the other hand, we observe the following property. In
many cases, while we solve an SDP with about 2000 constraints, the dual solutions that
prove non-realizability consist of many zero-entries and few non-zero entries, 8-48. This
property, which is never seen in [11], implies that we often need a very small number of
constraints to prove non-realizability and may be able to apply our method with higher
relaxation order.

7 Conclusion and Future Works

In this paper, we proposed a new non-realizability certificate of oriented matroids by using
SDP relaxation of Grassmann-Plücker relations. We have showed that our method with
relaxation order 1 is weaker than the existing method BFP for OM(8,4) and OM(9,3), but
found non-realizable rank-4 oriented matroids with 8 elements which were not decided to be
non-realizable by non-Euclidean property or non-HK* property.

We have considered SDP relaxations of Grassmann-Plücker relations with relaxation
order 1, but we expect that we can obtain a more powerful certificate with higher relaxation
order by reducing the problem sizes. To reduce the problem sizes, the following issues remain
as future works.

1. Developing techniques to predict Grassmann-Plücker relations unnecessary to prove
non-realizability.
By experiments, we have observed that the number of Grassmann-Pücker relations
necessary to prove non-realizability is often very small. Therefore if predicting some
of unnecessary relations, one can reduce the problem size largely.

2. Exploiting symmetry and reducing the sizes of SDP.
Some oriented matroids have non-trivial symmetries and they induce the same sym-
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metries to the polynomial systems which describe the conditions of the realizability.
Therefore reducing sizes of SDP using a technique introduced in [9] may be hopeful.
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