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Abstract: A multicriteria location problem with rectilinear norm in Rn and quasiefficient solutions of
the problem are considered. In applications, for example, the problem is important and applicable to the
development of new products. Algorithms to find all quasiefficient solutions of the problem in R2 and R3

are known. However, the algorithms to find all quasiefficient solutions of the problem with n ≤ 3 cannot
be applied straightforwardly to the problem with n > 3. We give some properties of quasiefficient solutions
of the problem. Based on the obtained properties and known algorithms to find all efficient solutions of
the problem, we give a procedure to find all quasiefficient solutions of the problem. Furthermore, we give a
numerical example.
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1 Introduction

In a general continuous location model, finitely many points called demand points, modeling
existing factories or customers, are given. The aim of decision makers is to decide the location
of a new facility. In many situations, decision makers usually have conflicting objectives,
e.g., on the priorities to be put on the demand points. Then the problem is naturally
formulated as a multicriteria location problem. Distances between the facility to be located
and demand points are considered as the typical objectives. Furthermore, rectilinear norm
is considered as one of typical distance measures. In multicriteria location problems, one
of main interests is to find efficient or quasiefficient solutions, which will be defined later
and are very important concepts of solutions for general multicriteria optimization. In
terminology for the efficiency, efficient solutions are also called Pareto optimal solutions,
and quasiefficient solutions are also called weak Pareto optimal solutions or weak efficient
solutions. For a comprehensive overview, see [11] and references therein. In this article,
we consider quasiefficient solutions of multicriteria location problems with rectilinear norm.
Note that sets of all quasiefficient solutions of multicriteria location problems are different
according to distance measures which are used in the problems. Because decision making
depends on the sets, these differences are important for applications. For example, Euclidean
norm and rectilinear norm are very different in the sense of the difference of the sets.

In [8], an application to the development of new products is considered for an artificial
data set by using efficient solutions of multicriteria location problems with block norm in R2.
Block norm is a class of norms containing rectilinear norm as a special case. In [5], a public
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opinion survey on home education is considered for an actual data set, and new learning
contents which are near required learning contents as much as possible are determined by
using efficient solutions of multicriteria location problems with rectilinear norm in R2 and
R3, where R2 and R3 correspond to Rn when n = 2 and n = 3, respectively. The limitations
of n = 2 and n = 3 are due to the results of the quantification method of type III for the
results of the questionnaire on home education. Because learning contents can be considered
as products, it is a kind of the development of new products. Within our knowledge, it is the
first application of location problems to the development of new products for an actual data
set. The results in [5] suggest that rectilinear norm is suitable for measuring the differences
between human preferences which are represented as points in Rn, and that efficient and
quasiefficient solutions of multicriteria location problems with rectilinear norm in Rn(n > 3)
are important and applicable to the development of new products.

Algorithms to find all efficient solutions of multicriteria location problems with rectilinear
norm in R2,R3 and Rn(n > 3) were proposed, respectively, in [1], [4] and [6]. All quasieffi-
cient solutions of multicriteria location problems with block norm in R2 can be determined
by using an algorithm proposed in [3], and all quasiefficient solutions of multicriteria location
problems with rectilinear norm in R3 can be determined by using an algorithm proposed in
[7]. However, the algorithms to find all quasiefficient solutions of the problems with n ≤ 3
cannot be applied straightforwardly to those with n > 3.

In this article, our main interest is to find all quasiefficient solutions of multicriteria
location problems with rectilinear norm in Rn. Of course, our results are available to the
case n = 1, 2 and 3. However, it is trivial when n = 1, and one had better use algorithms
in [3] and [7] when n = 2 and 3, respectively, because of the efficiency of algorithms. Our
results are meaningful in the case n > 3.

In section 2, we formulate a multicriteria location problem, and give some properties of
quasiefficient solutions of the problem and a procedure to find all quasiefficient solutions of
the problem. In section 3, we give a numerical example. Finally, we give some conclusions
in section 4.

2 Formulation and Quasiefficient Solutions

In this section, we formulate a multicriteria location problem, and give some properties of
quasiefficient solutions of the problem and a procedure to find all quasiefficient solutions of
the problem.

Given demand points in Rn, a problem to locate a new facility in Rn is called a single
facility location problem. The problem is usually formulated as a minimization problem
with an objective function involving distances between the facility and demand points. It is
assumed that m demand points di ≡ (d1

i , d2
i , · · · , dn

i )T ∈ Rn, i ∈ I ≡ {1, 2, · · · , m} and
rectilinear norm ‖ · ‖1 defined on Rn are given. Let x ≡ (x1, x2, · · · , xn)T ∈ Rn be the
variable location of the facility. We put J ≡ {1, 2, · · · , n} and D ≡ {di: i ∈ I}. Our main
problem is a multicriteria location problem formulated as follows:

(P) min
x∈Rn

f(x) ≡ (‖x− d1‖1, ‖x− d2‖1, · · · , ‖x− dm‖1)T .

(P) is a problem to find an efficient or quasiefficient solution. A point x0 ∈ Rn is called an
efficient solution of (P) if there is no x ∈ Rn such that f(x) ≤ f(x0) and f(x) 6= f(x0),
and x0 is called a quasiefficient solution of (P) if there is no x ∈ Rn such that f(x) <
f(x0), where f(x) < f(x0) (f(x) ≤ f(x0)) means that ‖x−di‖1 < ‖x0−di‖1 (‖x−di‖1
≤ ‖x0 − di‖1, respectively) for all i ∈ I. Let E(D) and QE(D) be the set of all efficient
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solutions of (P) and the set of all quasiefficient solutions of (P), respectively. By the above
definition, it can be seen that D ⊂ E(D) ⊂ QE(D). Our aim is to find QE(D). In order
to characterize quasiefficient solutions of (P), we also consider a minisum location problem
formulated as follows:

(Pλ) min
x∈Rn

g(x) ≡
m∑

i=1

λi‖x− di‖1

where each λi, i ∈ I is a non-negative weight associated with di, and not all λi’s are zero.
We put λ ≡ (λ1, λ2, · · · , λm)T .

First, recall the following relationships among efficient and quasiefficient solutions of (P)
and optimal solutions of (Pλ).

Theorem 2.1 ([9]). A point x0 ∈ Rn is an efficient solution of (P) if and only if x0 is an
optimal solution of (Pλ) for some λ > 0, where λ > 0 means that λi > 0 for all i ∈ I.

Theorem 2.2 ([10]). A point x0 ∈ Rn is a quasiefficient solution of (P) if and only if x0

is an optimal solution of (Pλ) for some λ ≥ 0 with λ 6= 0.

Corollary 2.3 ([10]). We put D ≡ {D′ ⊂ D : D′ 6= ∅}. For each D′ = {di1 ,di2 , · · · ,dik
} ∈

D, let E(D′) be the set of all efficient solutions of the following multicriteria location problem:

min
x∈Rn

(‖x− di1‖1, ‖x− di2‖1, · · · , ‖x− dik
‖1)T . (2.1)

Then
QE(D) =

⋃

D′∈D
E(D′).

Next, we give some properties of quasiefficient solutions of (P) and a procedure to find
all quasiefficient solutions of (P).

Since the objective function of (Pλ), g, can be rewritten as

g(x) =
m∑

i=1

λi‖x− di‖1 =
m∑

i=1

λi
n∑

j=1

|xj − dj
i | =

n∑

j=1

m∑

i=1

λi|xj − dj
i |,

(Pλ) reduces to n independent one-dimensional problems. Namely, x∗ ≡ (x1∗, x2∗, · · ·
xn∗)T is an optimal solution of (Pλ) if and only if each xj∗, j ∈ J is an optimal solution of
the following one-dimensional problem:

(Pj) min
x∈R

gj(x) ≡
m∑

i=1

λi|x− dj
i |.

These one-dimensional problems can be solved by using an algorithm in [2].

Lemma 2.4 ([6]). For j ∈ J and any fixed λ > 0, min{dj
i : i ∈ I} ≤ x∗ ≤ max{dj

i : i ∈
I}, where x∗ is any optimal solution of (Pj).

Theorem 2.5. We put

B ≡ {(x1, x2, · · · , xn)T ∈ Rn : min{dj
i : i ∈ I} ≤ xj ≤ max{dj

i : i ∈ I}, j ∈ J}.

Then any quasiefficient solution of (P) belongs to B. Namely, QE(D) ⊂ B.
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Proof. From Theorem 2.1 and Lemma 2.4, E(D′) ⊂ B for any D′ ∈ D. Therefore, QE(D) ⊂
B from Corollary 2.3.

In the case n = 1, E(D) = QE(D) = B from definitions of the efficiency and the
quasiefficiency. In the case n = 2, it is known that QE(D) = B (see [3]). In the case n ≥ 3,
the following example shows that QE(D) 6= B in general.

Example. In Rn, n ≥ 3, we put di = ei, i ∈ J , where {ei: i ∈ J} is the canonical basis
of Rn, that is, for each ei, i ∈ J , the ith component is one and the others are zero. In this
case, B = [0, 1]n, where [0, 1] ≡ {x ∈ R: 0 ≤ x ≤ 1}. We put x0 = ( 1

2 , 1
2 , · · · , 1

2 )T ∈ B.
From Theorem 2.2, x0 ∈ QE(D) if and only if x0 is an optimal solution of (Pλ) for some
λ = (λ1, λ2, · · · , λn)T such that λ ≥ 0 and λ 6= 0. The latter condition holds if and only if
λ satisfies

−λj +
∑

i 6=j

λi = 0, j ∈ J (2.2)

and
λ ≥ 0, λ 6= 0. (2.3)

From (2.2), we have
n∑

i=1

λi = 0.

Since λ ≥ 0, we have λi = 0, i ∈ J . Thus, there does not exist λ which satisfies (2.2) and
(2.3) simultaneously. Therefore, x0 /∈ QE(D).

Theorem 2.6. Assume that m ≥ n + 1. Then

QE(D) =
⋃

{i1,i2,··· ,in+1}⊂I

QE({dik
: k ∈ J1})

where J1 ≡ {1, 2, · · · , n + 1} and each QE({dik
: k ∈ J1}) is the set of all quasiefficient

solutions of (2.1) when D′ = {dik
: k ∈ J1} in Corollary 2.3.

Proof. For x0 ∈ Rn, x0 ∈ QE(D) if and only if

m⋂

i=1

{x ∈ Rn : ‖x− di‖1 < ‖x0 − di‖1} = ∅.

Since each ‖x− di‖1, i ∈ I is a convex function in x ∈ Rn, the above intersection is empty
if and only if there exist i1, i2, · · · , in+1 ∈ I such that

n+1⋂

k=1

{x ∈ Rn : ‖x− dik
‖1 < ‖x0 − dik

‖1} = ∅

(by Corollary 21.6.1 in [12]), and this is equivalent to x0 ∈ QE({dik
: k ∈ J1}). Thus, the

result follows.

In the case m ≤ n + 1, QE(D) can be determined by using Corollary 2.3, where E(D′)
in Corollary 2.3 can be determined by using an algorithm in [6] (or [4] or [1]). In the case
m > n + 1, by Theorem 2.6, it is essential to determine QE(D′) for D′ ⊂ D which has
n + 1 elements. As a direct consequence of the results of this section, we have the following
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pseudoalgorithm to determine QE(D) in the case m ≥ n + 1.

Input: di ∈ Rn, i ∈ I: demand points.

Output: QE(D).

Steps:

1. Compute QE({dik
: k ∈ J1}) for all i1, i2, · · · , in+1 ∈ I.

2. Compute QE(D) =
⋃
{i1,i2,··· ,in+1}⊂I QE({dik

: k ∈ J1}).

3. END.

Now, we consider the computational time of the above procedure for fixed n. For each
i1, i2, · · · , in+1 ∈ I, determining E(D′) in Corollary 2.3 by using an algorithm in [6] (or [4]
or [1]) and determining QE({dik

: k ∈ J1}) by using Corollary 2.3 require O(1) computa-
tional time. Therefore, determining QE(D) by using the above procedure requires O(mn+1)
computational time.

Remark. For x0 ≡ (x1
0, x

2
0, · · · , xn

0 )T ∈ Rn, x0 is called an intersection point if xj
0 ∈

{dj
i : i ∈ I}, j ∈ J . It has been mentioned before that QE(D) can be determined by

using an algorithm proposed in [7] when n = 3. The idea of its algorithm is to trace
quasiefficient adjacent intersection points from some initial point. When n > 3, its frame-
work is available if it can be checked that a given intersection point is quasiefficient or
not. In [7], when n = 3, it is checked that a given intersection point x0 ∈ R3 is quasief-
ficient or not by using the concept of the summary diagram. Roughly speaking, the sum-
mary diagram represents locations of demand points from x0. It means that some demand
point is contained in a cone x0 + C({αe1, βe2, γe3}) or not, where α, β, γ ∈ {−1,+1} and
C({αe1, βe2, γe3}) ≡ {µ1αe1 + µ2βe2 + µ3γe3 : µ1 ≥ 0, µ2 ≥ 0, µ3 ≥ 0}. In order to check
that a given intersection point is quasiefficient or not, it seems to be useless to extend the
summary diagram in the case n = 3 to that in the case n > 3. It is due to the difficulty
of the extension of the necessary and sufficient condition for a given intersection point to
be quasiefficient in [7]. Therefore, our approach is to use Corollary 2.3 and Theorem 2.6
and algorithms in [6] (or [4] or [1]), and is not to use the summary diagram. It is the main
difference in approaches between this article and [7].

3 Numerical Example

In this section, we give a numerical example.
Consider the following multicriteria location problem:

min
x∈R4

(‖x− d1‖1, ‖x− d2‖1, ‖x− d3‖1, ‖x− d4‖1, ‖x− d5‖1)T

where d1 = (3, 0, 4, 1)T , d2 = (4, 2, 0, 2)T , d3 = (2, 1, 3, 3)T , d4 = (0, 4, 5, 4)T and d5 =
(1, 5, 2, 5)T . Then we have QE(D) illustrated in the following figures.
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Figure 1. QE(D)(1). Figure 2. QE(D)(η) with 1 < η < 2.
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Figure 3. QE(D)(2). Figure 4. QE(D)(η) with 2 < η < 3.
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Figure 5. QE(D)(3). Figure 6. QE(D)(η) with 3 < η < 4.
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Figure 7. QE(D)(4). Figure 8. QE(D)(η) with 4 < η < 5.
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Figure 9. QE(D)(5).

In Figures 1–9, QE(D)(η) ≡ {x ∈ R4 : x ∈ QE(D), x4 = η} for η ∈ R, where x =
(x1, x2, x3, x4)T ∈ R4. In this case, QE(D)(η) = ∅ for η < 1 or η > 5, and QE(D) =
QE(D)(1)∪QE(D)(η1)∪QE(D)(2)∪QE(D)(η2)∪QE(D)(3)∪QE(D)(η3)∪QE(D)(4)∪
QE(D)(η4) ∪ QE(D)(5) with 1 < η1 < 2, 2 < η2 < 3, 3 < η3 < 4, 4 < η4 < 5 . Each
QE(D)(η) in Figures 1–9 is the union of all drawn line segments, which connect two adjacent
intersection points, and the set of all points surrounded by such line segments in {x ∈ R4 :
x4 = η}, where “a point is surrounded by such line segments” means that the point is a
(relative) interior point of a rectangle constituted by four drawn line segments or a (relative)
interior point of a rectangular parallelepiped constituted by twelve drawn line segments.

4 Conclusions

We dealt with a multicriteria location problem (P) with rectilinear norm in Rn. Our main
interest was to find the set QE(D) of all quasiefficient solutions of (P). First, as Theorem
2.5 and 2.6, we gave properties of quasiefficient solutions of (P). Next, based on Theorem
2.6, we gave a procedure to compute QE(D).

For multicriteria location problems (P) with rectilinear norm in Rn, it is known that all
efficient solutions for n = 2, 3 and n > 3 can be determined by using algorithms proposed,
respectively, in [1], [4] and [6], and that all quasiefficient solutions for n = 2 and 3 can be
determined by using algorithms proposed in [3] and [7], respectively. A procedure to find
QE(D), which we proposed, is meaningful for n > 3 and requires O(mn+1) computational
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time for fixed n. If n is large, it is a hard task to find QE(D) by using the proposed procedure.
Thus, future research could be conducted to construct a more efficient algorithm. On the
other hand, in practical applications to the development of new products, the results in
[5] suggest that, in some cases, efficient and quasiefficient solutions of multicriteria location
problems (P) with rectilinear norm in Rn are effective and important, where n is not so
large. Thus, the proposed procedure is useful and important for such cases.
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