
A SET COVERING APPROACH FOR THE PICKUP AND
DELIVERY PROBLEM WITH GENERAL CONSTRAINTS ON

EACH ROUTE

Hideki Hashimoto, Youichi Ezaki, Mutsunori Yagiura, Koji Nonobe,
Toshihide Ibaraki and Arne Løkketangen

Abstract: In this paper, we generalize the pickup and delivery problem with time windows by allowing
general constraints on each route, and propose a heuristic algorithm. Our algorithm first generates a set of
feasible routes, and repeats modifying the set by using the information from a Lagrangian relaxation of the
set covering problem that corresponds to the current set. It then solves the resulting set covering problem
to construct a good feasible solution for the original problem. We conduct computational experiments for
instances with various constraints, and confirm the flexibility of our algorithm.

Key words: pickup and delivery problem, general constraints, set covering

Mathematics Subject Classification: 05B40, 90B06, 90C27

1 Introduction

The pickup and delivery problem with time windows (PDPTW) is a problem that asks to
find optimal routes and schedules of a fleet of vehicles serving all requests [5, 6, 14]. Each
request signifies the delivery of a demand from an origin to a destination. The origin and
destination of each request must be visited by the same vehicle in the order of origin and
destination. Each service (i.e., pickup at an origin or delivery at a destination) must start
within a given time window (time window constraint). Each vehicle has a capacity, and
the total amount of loads of a vehicle must always be kept within its capacity (capacity
constraint).

Exact and heuristic algorithms for this problem have widely being studied. Savelsbergh
and Sol [16] proposed a branch and price algorithm based on a set partitioning formulation.
Dumas, Desrosiers and Soumis [7] proposed a column generation scheme using a constrained
shortest path as a subproblem. Nanry and Barnes [11] presented a reactive tabu search ap-
proach. A variant of the genetic algorithm called a grouping genetic algorithm was presented
by Pankratz [12]. Li and Lim [10] proposed a tabu-embedded simulated annealing. They
also generated new benchmark instances, and tested the performance of their algorithm
on them. Bent and van Hentenryck [2] and Ropke and Pisinger [15] proposed large neigh-
borhood search based algorithms, and obtained good results on the benchmarks of Li and
Lim.

186 H. HASHIMOTO,Y.EZAKI, M. YAGIURA,K.NONOBE, T. IBARAKI,A. LØKKETANGEN

In this paper, we further generalize the pickup and delivery problem with time windows
by allowing general constraints on each route (abbreviated as PDPG) such as the Last-
In-First-Out constraint (abbreviated as LIFO), renewable or nonrenewable multi resources
and so on. The LIFO constraint says that a load being picked up is always placed at the
rear of the vehicle while only the load at the rear can be unloaded. As these constraints
on a route that appear in real world applications are diverse, it is not realistic to develop
solution methods in individual cases. Hence we try to develop a method which treats those
constraints in an integrated way, where we assume that all constraints have the monotone
property:

If a route covering a set of requests satisfies a given constraint on the route, then
any subroute obtainable by deleting one request (i.e., a route covering a subset of
the requests, visiting them in the same order as the original route) also satisfies
the constraint.

We note that many constraints that appear in practice are monotone, and that their feasibil-
ity can be determined easily. The LIFO is an example of such constraints. Cordeau et al. [4]
and Carrabs et al. [3] addressed the pickup and delivery traveling salesman problem with
the LIFO constraints. If we assume that the traveling times satisfy the triangle inequalities,
then it implies that time window constraints also satisfy the monotone property.

In our approach, we formulate the problem as a set covering problem (abbreviated as
SCP), such that all requests must be covered by a set of feasible routes. Since enumerating
all feasible routes is not realistic, we try to construct a set of good feasible routes which
is of manageable size, but has sufficient diversity. It constructs an initial set of routes by
the insertion method, and then repeats reconstructing the set of candidate routes. In the
reconstruction procedure, we estimate the attractiveness of a route by its relative cost of
the Lagrangian relaxation of the set covering problem with the current set of routes. It then
generates new routes from those with small relative costs by applying five types of opera-
tions. The resulting SCP instance is then solved to find a good feasible solution of PDPG.
Although a solution of SCP may cover a request more than once, we can easily transform it
into a feasible solution of the original problem as a result of the monotone property of con-
straints. This type of approach, called column generation, is known to be useful for problems
with complicated or tight constraints. Indeed, for problem instances with such constraints,
it is difficult for local search type algorithms to find a feasible neighborhood solution, and
in contrast, such cases are advantageous for our approach since a high quality solution is
expected to be obtained from the small set of feasible routes. Note that our algorithm is
heuristic though the column generation method is usually used for exact algorithms. For
PDPTW, Savelsbergh and Sol [16] and Dumas, Desrosiers and Soumis [7] proposed exact
algorithms using the column generation approach based on a set partitioning formulation of
the problem.

To confirm the flexibility and efficiency of our algorithm, we conducted computational
experiments. We first confirmed the usefulness of using the Lagrangian relaxation, and then
tested our algorithm on available benchmark instances of PDPTW as well as some new
instances with additional and/or modified constraints. We compared our algorithm with a
local search type algorithm which we prepared for the purpose of comparison, and confirmed
the flexibility of our algorithm.

THE PICKUP AND DELIVERY PROBLEM WITH GENERAL CONSTRAINTS 187

2 Problem Definition

We formulate PDPG as follows. Let G = (V, E) be a complete directed graph with vertex
set V = {0, 1, . . . , 2n} and edge set E = {(i, j) | i, j ∈ V, i 6= j}. In this graph, vertex 0 is
the depot. Vertices from 1 to n are customers where loads are picked up and vertices from
n + 1 to 2n are customers where loads are delivered. Each edge (i, j) ∈ E has a traveling
cost cij ≥ 0 and a traveling time tij ≥ 0. The traveling costs and times satisfy the triangle
inequalities,

cik + ckj ≥ cij and tik + tkj ≥ tij , ∀i, j, k ∈ V. (2.1)

Let H = {1, 2, . . . , n} be a given set of requests. Each request h ∈ H signifies the delivery
from the origin h ∈ V to the destination h + n ∈ V (for convenience, we call a request and
its origin by the same symbol h). The vertices h and h + n must be visited by the same
vehicle (coupling constraint), and h must be visited before h + n (precedence constraint).
All requests are served by a fleet of homogeneous vehicles. Each vehicle must start from the
depot, serve some requests and return to the depot. Let Sr be the set of requests served by
its route r, mr = |Sr|, and σr be the sequence of customers to be visited, where σr(k) = i
(equivalently, σ−1

r (i) = k) signifies that the kth customer in the route r is i. For convenience,
we assume σr(0) = σr(2mr + 1) = 0 .

In this paper, we consider various constraints imposed on each route. Each customer
i ∈ V has a handling time si for the service and a time window [ei, li], where ei is the
release time to serve i and li is the deadline of the service. For convenience, we say that a
route satisfies the time window constraints if there exist start times of services that satisfy
the time window constraints for all customers in the route. It is clear that the feasibility
of time window constraints for a route can be determined in O(mr) time and the triangle
inequalities make the time window constraint monotone.∗ Serving a request h consumes
the resource, which are classified into renewable and nonrenewable resources. For example,
the weight of loads can be treated as renewable resources, and the workload for pickup and
delivery of loads can be treated as nonrenewable resources. Each request h consumes qre

hp

units of renewable resources (p = 1, 2, . . . , ρ) while it is loaded, and consumes qnon
hp′ units

of nonrenewable resources (p′ = 1, 2, . . . , π). Each vehicle has capacities Qre
p for renewable

resources p and Qnon
p′ for nonrenewable resources p′. The total load of each renewable

resource p at each customer k in route r must not exceed the capacity Qre
p ; i.e.,

∑

h∈Sr:σ−1
r (h)≤k<σ−1

r (h+n)

qre
hp ≤ Qre

p for any k = 0, 1, . . . , 2mr.

The total load of each nonrenewable resource p′ in route r must be within Qnon
p′ ; i.e.,

∑

h∈Sr

qnon
hp′ ≤ Qnon

p′ .

We further introduce the LIFO constraint. That is, if a request h is picked up before
a request h′, either h is delivered before the pickup of h′ or after the delivery of h′; i.e.,
σ−1

r (h) < σ−1
r (h′) implies either

σ−1
r (h) < σ−1

r (h′) < σ−1
r (h′ + n) < σ−1

r (h + n)

∗When a request is deleted, use the same start times of services for the remaining customers. Then it is
obvious that such start times are feasible.

188 H. HASHIMOTO,Y.EZAKI, M. YAGIURA,K.NONOBE, T. IBARAKI,A. LØKKETANGEN

or
σ−1

r (h) < σ−1
r (h + n) < σ−1

r (h′) < σ−1
r (h′ + n).

The standard PDPTW has the time window constraint and only the one dimensional renew-
able resource (i.e., ρ = 1 and π = 0). In this paper, we permit the time window constraint
and and more general resource constraints (i.e., ρ > 1 and π > 0 are allowed). As for
the LIFO constraint, we consider both cases in which it is imposed and not. In addition
to the above constraints, any monotone constraint a route can be imposed, assuming that
we have an algorithm to efficiently test its feasibility. We remark that the following prop-
erty for a route holds since all constraints are monotone and the costs satisfy the triangle
inequalities (2.1).

Property 2.1. Given a feasible route, any request can be deleted from the route without
violating the constraints on the route and without increasing the cost of the route.

By using this property repeatedly, the same result also holds in the case where more
than one requests are deleted.

Let ν be the number of vehicles used in a solution. A feasible solution is a set
{σ1, σ2, . . . , σν} of routes such that each σr satisfies all the given constraints and each request
is serviced exactly once. In the literature, it is often considered that the primary objective
is to reduce the number of vehicles, and the secondary objective is to minimize the total
traveling cost. However, for convenience, we adopt the following objective function:

ν∑
r=1

Cr,

where

Cr = α +
2mr∑

i=0

cσr(i)σr(i+1)

(i.e., Cr is the sum of the fixed cost α for using one vehicle and the traveling cost of r).
If we need to reduce the number of vehicles, we set α to a large value compared with the
traveling cost.

3 Set Covering Formulation

The PDPG can be formulated as the following set covering problem:

SCP(R∗) minimize
∑

r∈R∗
Crxr

subject to
∑

r∈R∗
ahrxr ≥ 1, ∀h ∈ H

xr ∈ {0, 1}, ∀r ∈ R∗

where R∗ is the set of all feasible routes, and

ahr =

{
1, if request h is in route r in R∗

0, otherwise.

Note that in this formulation we can write
∑

r∈R∗ ahrxr ≥ 1 instead of
∑

r∈R∗ ahrxr = 1
by Property 2.1.

THE PICKUP AND DELIVERY PROBLEM WITH GENERAL CONSTRAINTS 189

However, enumerating all feasible routes is not realistic because the size of R∗ is expo-
nentially large. We therefore choose a subset R (⊆ R∗) of manageable size and solve the
corresponding set covering problem SCP(R). The obtained solution may not be optimal to
SCP(R∗) but is feasible. If R is cleverly constructed to represent R∗, the solution would
be a good feasible solution to SCP(R∗). In order to solve SCP(R), we use the algorithm
proposed by Yagiura et al. [17]. Finally we construct a solution of PDPG from the solution
of SCP(R). The solution to SCP(R) may contain more than one route serving the same
request. In this case, based on Property 2.1, we can remove the over-covered requests one
by one in a greedy way until no such request remains.

The following is the outline of our algorithm:

1. Generate a set R of feasible routes.

2. Solve the resulting instance of SCP(R).

3. Construct a feasible solution of PDPG from the solution obtained in 2.

The main part of our algorithm is how to generate the set R. To obtain a good solution,
we need to choose R very carefully. For instance, if we generate a large set R that has only
similar routes, it will take a large amount of time to solve SCP(R) and the quality of a
solution may be poor. On the other hand, if we can construct a small set R of good routes
having sufficient diversity, then we can expect to get a good solution in short computation
time. The route generation will be described in Section 4.

4 Route Generation

Our route generation algorithm consists of two phases. The first phase is the initial con-
struction phase, which generates a certain number of routes for each request by an insertion
method. The second phase is the reconstruction phase, which chooses good routes from the
current set of routes, and add their neighboring routes. To estimate the attractiveness of
a route, we use its relative cost of the Lagrangian relaxation of SCP(R), where R is the
current set of routes. The algorithm executes the initial construction phase once, and then
repeats the reconstruction phase until a given time limit is reached.

The algorithm may possibly generate duplicate routes in the sense of covering the same
set of requests. To avoid such duplication, we use a hash table, and check whether such a
route already exists in R or not, whenever a new route is added in R. If a route with the
same set of requests exits, we choose the one having the lower cost.

4.1 Initial Construction Phase

The initial construction phase starts from the empty set R = ∅, and applies an insertion
method to generate β (a parameter) routes for each request. The insertion method first
prepares a route that contains only the specified request and the depot, and then repeats
inserting requests into the route by the criteria as described below, as far as the feasibility
of constraints is maintained. When the route becomes maximal (i.e., no more request can
be inserted to it), we add it to R.

The insertion method proceeds as follows. We define the insertion cost of a request h
into route r, when its origin h is inserted between σr(k) and σr(k + 1) and its destination

190 H. HASHIMOTO,Y.EZAKI, M. YAGIURA,K.NONOBE, T. IBARAKI,A. LØKKETANGEN

n + h is inserted between σr(k′) and σr(k′ + 1) (k′ ≥ k), by

δr(h, k, k′) =





cσr(k)h + ch,h+n + ch+n,σr(k+1) − cσr(k)σr(k+1), if k = k′

cσr(k)h + chσr(k+1) − cσr(k)σr(k+1)

+cσr(k′),h+n + ch+n,σr(k′+1) − cσr(k′)σr(k′+1), otherwise.

We then define δmin
r (h) as the minimum of δr(h, k, k′) among all k and k′ whose resulting

routes are feasible. If all combinations of k and k′ are infeasible, we set δmin
r (h) = ∞. If

request h is chosen and δmin
r (h) < ∞, we thus insert h to the best positions k and k′ which

attains δmin
r (h) = δr(h, k, k′). Next we describe how to choose requests h to insert. If the

algorithm always chooses the request that achieves the minimum insertion cost, the resulting
set of routes may not have sufficient diversity, which is not desirable in order to achieve high
performance. We therefore incorporate randomness in the manner as often used in GRASP
(greedy randomized adaptive search procedure) [8]. Let Dr be the set of requests h with
the κ (κ is a parameter) smallest values of δmin

r (h)(< ∞) among those in H \ Sr (i.e., the
requests not in route r). Then, in each iteration, the algorithm chooses a request h randomly
from Dr, until a maximal route is reached. In this way, we usually obtain different routes
by this insertion method, even if it starts from the same initial request. Let Construct(β)
be the set of routes output in this phase.

4.2 Reconstruction Phase

In the reconstruction phase, it modifies the given set of routes by using the Lagrangian
relaxation of the set covering problem SCP(R). It first calculates the Lagrangian multipliers
by applying a subgradient method, and, based on them, selects some routes from the current
set R (Section 4.2.1). Then it generates additional routes by applying five types of operations
to the selected routes, and updates the set R (Section 4.2.2 and 4.2.3). This procedure is
repeated until no new route is generated or until it reaches the time limit.

4.2.1 Selection of Routes

From the current set R, the algorithm selects some number of routes for two purposes:

1. to choose a set of routes from which new routes are generated, and

2. to reduce the number of routes in R when the size of R becomes too large in progress.

We estimate the attractiveness of a route by its relative cost for the Lagrangian relaxation
problem of SCP(R). See for example the review by Fisher [9] for the Lagrangian relaxation.

The Lagrangian relaxation of SCP(R) with a given n = |H| dimensional nonnegative
Lagrangian multiplier vector u= (u1, u2, . . . , un) is defined as follows:

L(u) = minx∈{0,1}|R|
∑

r∈R

Crxr +
∑

h∈H

uh

(
1−∑

r∈R ahrxr

)

= minx∈{0,1}|R|
∑

r∈R

cr(u)xr +
∑

h∈H

uh,
(4.1)

where
cr(u) = Cr −

∑

h∈H

ahruh

THE PICKUP AND DELIVERY PROBLEM WITH GENERAL CONSTRAINTS 191

is the relative cost associated with r. An optimal solution x(u) to problem (4.1) is easily
obtained by

xr(u) =





1, if cr(u) < 0
0 or 1, if cr(u) = 0
0, if cr(u) > 0.

The value L(u) gives a lower bound on the optimal value of problem SCP(R). The La-
grangian dual is the problem of finding a Lagrangian multiplier vector u∗ that maximizes
L(u). It is known that an optimal multiplier vector u∗ can be obtained as an optimal
solution to the dual of the LP relaxation of SCP:

maximize
∑

h∈H

uh

subject to
∑

h∈H

uhahr ≤ Cr, ∀r ∈ R

uh ≥ 0, ∀h ∈ H.

If a good Lagrangian multiplier vector u is obtained, the relative cost cr(u) gives reliable
information on the attractiveness of fixing xr = 1, because it is reported that all r with
xr = 1 in an optimal solution of SCP tend to have small cr(u) values.

We calculate the Lagrangian multiplier u for SCP(R) by a heuristic approach called the
subgradient method [1, 9, 17], because computing an optimal u∗ of the above LP problem
is usually quite expensive. We evaluate a route r by its relative cost cr(u) of the obtained
Lagrangian multiplier u. Let R′ be the set of routes with an (a is a parameter) smallest
values of cr(u) among those in R. Furthermore, for each request h ∈ H, let R′′h be the set of
routes with the b (b is a parameter) smallest values of cr(u) among those in R that include
h. Finally let R′′ =

⋃
h∈H R′′h. Our procedure Selection(R, u, a, b) outputs the set R′ ∪R′′.

4.2.2 Neighboring Routes of a Route

We introduce three operations to generate neighboring routes of a route r.

Insertion This operation inserts a new request h into r at the best position (i.e., at the
pair of positions that achieves δmin

r (h)). The algorithm applies this operation for each
request (which is not in r), and all feasible routes obtained by these operations are
output. Let Insertion(r) be the set of routes output by applying this procedure to r,
whose size is

∣∣Insertion(r)
∣∣ = O(n).

Deletion This operation deletes one request from r. The algorithm applies this operation
for each request in r, and all routes obtained by these operations are output. Note that
the feasibility after deletion is preserved by Property 2.1. Let Deletion(r) be the set
of routes output by applying this procedure to r, whose size is

∣∣Deletion(r)
∣∣ = O(mr).

Swap This operation deletes one request from r and then inserts one request which is not
in r at the best position. The algorithm applies this operation for all pairs of a request
in r and another not in r. All feasible routes obtained by these operations are output.
Let Swap(r) be the set of routes output by applying this procedure to r, whose size is∣∣Swap(r)

∣∣ = O(mrn).

192 H. HASHIMOTO,Y.EZAKI, M. YAGIURA,K.NONOBE, T. IBARAKI,A. LØKKETANGEN

4.2.3 Neighboring Routes of Two Routes

In addition, we use two operations to generate neighboring routes of two routes r and r′.

2-opt∗ method This operation is similar to the 2-opt* neighborhood operation proposed
by Potvin et al. [13]. Given two routes r and r′ satisfying Sr∩Sr′ = ∅, it first constructs
a route by concatenating the former part of r and the latter part of r′, cut at k and
k′:

(σr(0), σr(1), . . . , σr(k), σr′(k′), σr′(k′ + 1), . . . , σr′(2mr′ + 1)).

For this, it chooses a random position k of r, and then chooses the minimum k′ such
that the resulting concatenated route is feasible with respect to the time window
constraint. However, the resulting route may not satisfy the coupling or other con-
straints, and some modification may be necessary for remedy. To recover the coupling
constraints, for example, it inserts for each violating customer in the route the corre-
sponding customer not in the route at the best position under the feasibilities of other
constraints. Otherwise it deletes the violating customer from the route. Similar reme-
dies are applied to recover other constraints. It repeats this process until all requests
in the route satisfy the given constraints. Let 2-opt∗(r, r′) be the generated route by
applying this procedure to r and r′ if it exists; otherwise it denotes the empty set.

Mixing two routes Given two routes r and r′, and a Lagrangian multiplier vector u, this
operation starts from σmix := σr and repeats modifying the current σmix so that its
set of requests becomes closer to that of σr′ , by inserting or deleting different requests
between σmix and σr′ . Similarly to δmin

r (h), we denote by δmin
mix(h) the minimum

increase in the cost when request h is inserted into σmix. In each iteration, an insertion
is first tried: It chooses the request h that minimizes δmin

mix(h)−uh (i.e., the increase in
the relative cost) among those requests which are in σr′ but not in σmix, and inserts it
at the best position of σmix provided that the resulting route is feasible. If there is no
such request or all inserting positions make the resulting route infeasible for all such
requests, then it turns to the deletion operation with the following rule. Let

δ−mix(h) =





cσmix(k−1)σmix(k+2) − cσmix(k−1),h

−ch,h+n − ch+n,σmix(k+2), if k′ = k + 1
cσmix(k−1)σmix(k+1) + cσmix(k′−1)σmix(k′+1)

−cσmix(k−1),h − ch,σmix(k+1)

−cσmix(k′−1),h+n − ch+n,σmix(k′+1), otherwise

where σmix(k) = h and σmix(k′) = h + n. Then the operation chooses the request h
with the minimum δ−mix(h) + uh (i.e., the increase of the relative cost) among those
not in σr′ but in σmix, and removes it from σmix.

Letting σmix be the new route obtained either by the insertion or the deletion, the
algorithm executes another iteration (that starts with insertion and then deletion if
insertion is impossible) unless σmix = σr′ holds.

All routes obtained during the above modifications are considered as candidates to be
added into R. Let Mixing(r, r′, u) be the set of all feasible routes output by this
procedure from routes r and r′. Its size is

∣∣Mixing(r, r′,u)
∣∣ = O(mr + mr′).

4.2.4 Reconstruction Algorithm

The entire reconstruction algorithm by the above five operations is summarized as follows.

THE PICKUP AND DELIVERY PROBLEM WITH GENERAL CONSTRAINTS 193

Algorithm Reconstruction(R, a, b, a′, b′, µ)

Input: A set R of routes, parameters a, b, a′, b′ and µ.

Output: A set R′ of routes.

Step 1. Calculate the Lagrangian multiplier u by the subgradient method.

Step 2. Let R̂ :=Selection(R, u, a, b) and R′ := R.

Step 3. Let R′ := R′ ∪ (∪r∈R̂(Insertion(r) ∪Deletion(r) ∪ Swap(r))
)
.

Step 4. For all pairs of routes r, r′ ∈ R̂,

R′ :=

{
R′ ∪ 2-opt∗(r, r′), if Sr ∩ Sr′ = ∅
R′ ∪Mixing(r, r′, u), otherwise.

Step 5. If |R′| > µ, let R′ := Selection(R′, u, a′, b′).

Step 6. Return R′.

As described before, the algorithm reconstructs the set of routes by calling algorithm
Reconstruction repeatedly until it reaches a given time limit.

4.3 Overall Algorithm

Let ζ be an upper limit of computation time of constructing routes. We use a heuristic SCP
solver by Yagiura et al. [17] (denoted SCP-YKI) whose time limit can be set arbitrarily. Let
ζ ′ be an upper limit of computation time of SCP-YKI. Then overall algorithm is described
as follows:

Algorithm RouteGeneration(I, ζ, ζ ′, β, µ, a, b, a′, b′)

Input: A PDPG instance I, parameters ζ, ζ ′, β, µ, a, b, a′ and b′.

Output: A set R of routes.

Step 1. Let R′ :=Construction(β) and rep := 0.

Step 2. If total computing time reaches ζ, then go to Step 4.

Step 3. R′ :=Reconstruction(R′, a, b, a′, b′, µ) and rep := rep + 1. Return to Step 2.

Step 4. Convert R′ into an instance of SCP, and solve it by SCP-YKI with time limit
ζ ′. Let R̂ be the output solution of the SCP.

Step 5. Construct a solution R of the PDPG from R̂.

Step 6. Return R.

194 H. HASHIMOTO,Y.EZAKI, M. YAGIURA,K.NONOBE, T. IBARAKI,A. LØKKETANGEN

 70000

 72000

 74000

 76000

 78000

 80000

 82000

 84000

 1 2 3 4 5 6 7 8 9 10

number of calls to Reconstruction

ob
je

ct
iv

e
va

lu
e

Relative Cost
Incumbent Solution
Random Selection

Figure 1: Comparison of the three selection methods of routes (type-RC instance)

5 Computational Experiment

We conducted computational experiments to evaluate the proposed algorithm, which was
coded in C and run on a PC (Intel Pentium4, 2.8 GHz, 1 GB memory). We used the instance
groups having 100 to 400 customers from the PDPTW benchmarks of Li and Lim [10]. The
instances are categorized into the type-C1, C2, R1, R2, RC1, RC2. The types C, R and RC
represent the distribution of the customers in each instance. The customers are distributed
as clusters in type-C and distributed randomly in type-R. In type-RC, the customers are
partially distributed as clusters and the rest is distributed randomly. The types 1 and 2
represent the severeness of the time window and the capacity constraints of the instances;
the type 1 instances have severer constraints than the type 2 instances (hence more vehicles
are needed). The instances with 100 customers consist of 9 type-C1 instances, 12 type-R1
instances, 8 type-RC1 instances, 8 type-C2 instances, 11 type-R2 instances and 8 type-RC2
instances. The instances with 200 and 400 customers consist of 10 instances for each of
type-C1, C2, R1, R2, RC1, RC2.

5.1 Efficiency of Using Lagrangian Multiplier

In the reconstruction phase of the route generation, relative cost is used to choose a subset
R̂ (⊆ R) for generating new routes. To confirm the effectiveness of this approach, we
tested two other methods for selecting a set of routes in the reconstruction phase. For
comparison purpose, we solved SCP(R) with the algorithm SCP-YKI whenever algorithm
Reconstruction outputs R, and observe the quality of the solution. The first method selects
the set of routes appearing in the best solution of SCP(R) found by SCP-YKI, and the
second method selects a set of routes randomly from the current R. We conducted the
comparison of these two methods with the method in Section 4.2 that uses the relative cost.

Figure 1 shows the objective values of the solutions of SCP(R) obtained by SCP-YKI
against the number of iterations of algorithm Reconstruction for a type-RC instance. In

THE PICKUP AND DELIVERY PROBLEM WITH GENERAL CONSTRAINTS 195

Table 1: Results on Li and Lim’s instances
Ours RP

2n type CNV CDIST TIME CNV CDIST TIME
100 1 322 33650.65 1000 322.0 33599.02 41
100 2 85 29557.69 1000 81.0 24650.45 92
200 1 470 103763.05 2000 469.1 100940.60 158
200 2 150 100435.79 2000 139.0 80766.76 369
400 1 914 258333.55 4000 904.4 241015.00 543
400 2 311 250065.39 4000 263.4 184801.80 1219

the figure, as the number of calls to Reconstruction increases, the result of “Relative Cost”
becomes better than the others. We also conducted experiments for different type instances
and observed similar results. We therefore adopted the method based on the relative cost
in the algorithm Reconstruction.

5.2 Results on Benchmark Instances

Next, we tested our algorithm on the PDPTW benchmarks of Li and Lim [10] as explained
in the beginning of Section 5. Since the primary objective of these instances is to minimize
the number of vehicles, we set α = 1000, which is a large value compared with the traveling
cost. We set parameters to κ = 5, β = 200, a = 3, b = 4, a′ = 150, 000, b′ = 600, 000/|H|
and µ = 600, 000. The time limit ζ of constructing routes (i.e., excluding the time for solving
the set covering problem) is set to 600 seconds for the instances with 100 customers, 1400
seconds for the instances with 200 customers and 2500 seconds for the instances with 400
customers. We set the time limit ζ ′ for solving a set covering instance to 400 seconds for
100 customers, 600 seconds for 200 customers and 1500 seconds for 400 customers instances.
Therefore, in total, we spend 1000, 2000 and 4000 seconds for the instances with 100, 200
and 400 customers, respectively. Table 1 shows the results of our algorithm in column
“Ours”, and the one proposed by Ropke and Pisinger [15] in “RP”. Their algorithm is based
on Large Neighborhood Search. They ran their algorithm for each instance ten times on a
1.5 GHz PC with 256 MB memory. We compare our results with their average results of
the ten runs. In Table 1, column “2n” represents the number of customers in the instance
group and column “type” represents the type of the instance group. Columns “CNV” and
“CDIST” represent the cumulative number of vehicles and the cumulative traveling cost for
the instances. Column “TIME” of “Ours” represents the computation time in seconds for
each instance and that of “RP” represents the average computation time.

In Table 1, we observe that our method could not obtain better results than those of
Ropke and Pisinger. Note that the algorithm of Ropke and Pisinger is specialized to the
PDPTW while our algorithm can treat a variety of constraints. For type 2 instances, the
difference in solution quality is large, while for type 1 instances (having severer constraints
than type 2), the difference is rather small both in the number of vehicles and in the traveling
cost.

Tables 2–4 show the detailed results of our algorithm for Li and Lim’s instances. In
Tables 2–4, column “INSTANCE” represents the name of each instance, column “NV”
represents the number of vehicles used in the solution and column “DIST” represents the
total traveling cost of the solution. We could obtain a new best known solution for LRC122
(see Table 3).

196 H. HASHIMOTO,Y.EZAKI, M. YAGIURA,K.NONOBE, T. IBARAKI,A. LØKKETANGEN

Table 2: Detailed results for Li and Lim’s instances with 100 customers

INSTANCE NV DIST INSTANCE NV DIST
LRC101 14 1708.80 LRC201 4 1474.59
LRC102 12 1558.07 LRC202 4 1567.42
LRC103 11 1270.25 LRC203 3 1248.19
LRC104 10 1128.40 LRC204 3 1258.69
LRC105 13 1637.62 LRC205 4 1469.34
LRC106 11 1424.73 LRC206 3 1288.17
LRC107 11 1230.14 LRC207 3 1240.47
LRC108 10 1147.43 LRC208 3 1247.26
LR101 19 1650.80 LR201 4 1404.51
LR102 17 1487.57 LR202 3 1296.87
LR103 13 1292.68 LR203 3 1327.00
LR104 9 1013.39 LR204 3 1113.74
LR105 14 1377.11 LR205 3 1248.19
LR106 12 1252.62 LR206 3 1338.78
LR107 10 1111.31 LR207 3 1195.89
LR108 9 968.97 LR208 3 1082.20
LR109 11 1208.96 LR209 3 1215.74
LR110 10 1159.35 LR210 3 1211.70
LR111 10 1108.90 LR211 3 1236.07
LR112 9 1003.77
LC101 10 828.94 LC201 3 591.56
LC102 10 828.94 LC202 3 591.56
LC103 9 1062.97 LC203 3 662.24
LC104 9 873.57 LC204 3 729.90
LC105 10 828.94 LC205 3 602.95
LC106 10 828.94 LC206 3 619.23
LC107 10 828.94 LC207 3 706.72
LC108 10 827.61 LC208 3 588.71
LC109 9 1000.94
total 322 33650.65 total 85 29557.69

THE PICKUP AND DELIVERY PROBLEM WITH GENERAL CONSTRAINTS 197

Table 3: Detailed results for Li and Lim’s instances with 200 customers

INSTANCE NV DIST INSTANCE NV DIST
LRC121 19 3629.53 LRC221 7 3421.64
LRC122 15 3671.09 LRC222 6 3704.40
LRC123 13 3458.61 LRC223 5 4162.36
LRC124 10 3090.32 LRC224 4 3902.52
LRC125 16 3844.61 LRC225 5 3568.73
LRC126 17 3516.95 LRC226 5 3381.56
LRC127 15 3465.00 LRC227 5 3498.97
LRC128 13 3364.63 LRC228 4 3491.23
LRC129 13 3400.83 LRC229 4 3609.59
LRC1210 12 3158.63 LRC2210 4 3091.12
LR121 20 4819.12 LR221 5 4606.60
LR122 17 4688.99 LR222 5 4545.73
LR123 15 3803.66 LR223 4 4990.97
LR124 10 3519.23 LR224 4 3825.64
LR125 17 4398.25 LR225 4 4661.25
LR126 14 4432.55 LR226 4 4254.22
LR127 12 3766.99 LR227 4 4633.12
LR128 9 3159.57 LR228 3 3320.01
LR129 14 4634.69 LR229 4 4549.69
LR1210 11 3807.51 LR2210 4 4240.01
LC121 20 2704.57 LC221 6 1931.44
LC122 19 2764.56 LC222 6 2064.43
LC123 17 3352.44 LC223 6 2258.95
LC124 17 2732.63 LC224 6 2247.20
LC125 20 2702.05 LC225 6 1962.55
LC126 20 2701.04 LC226 6 2060.00
LC127 20 2701.04 LC227 6 2072.11
LC128 20 2773.32 LC228 6 2143.14
LC129 18 2728.57 LC229 6 2211.49
LC1210 17 2972.07 LC2210 6 2025.09
total 470 103763.05 total 150 100435.79

198 H. HASHIMOTO,Y.EZAKI, M. YAGIURA,K.NONOBE, T. IBARAKI,A. LØKKETANGEN

Table 4: Detailed results for Li and Lim’s instances with 400 customers

INSTANCE NV DIST INSTANCE NV DIST
LRC141 36 10366.61 LRC241 14 8846.32
LRC142 31 8589.50 LRC242 12 10810.68
LRC143 26 9171.18 LRC243 10 10611.07
LRC144 19 6910.35 LRC244 7 8543.08
LRC145 35 10291.25 LRC245 12 10588.14
LRC146 31 8613.53 LRC246 11 9906.08
LRC147 29 8279.46 LRC247 10 9439.34
LRC148 29 9036.54 LRC248 10 9555.37
LRC149 26 8350.51 LRC249 8 7940.92
LRC1410 24 7674.92 LRC2410 11 9235.98
LR141 40 10639.75 LR241 10 11816.98
LR142 31 10720.68 LR242 10 13105.45
LR143 24 9429.38 LR243 8 10791.81
LR144 19 8118.35 LR244 7 9322.34
LR145 30 10398.33 LR245 9 11684.75
LR146 27 10740.34 LR246 8 10484.72
LR147 20 8957.98 LR247 7 9822.19
LR148 17 7433.60 LR248 6 8995.07
LR149 25 9955.49 LR249 8 10275.45
LR1410 21 8844.11 LR2410 8 10932.00
LC141 40 7413.68 LC241 12 4132.93
LC142 39 7426.59 LC242 12 4570.39
LC143 33 8510.85 LC243 13 5135.67
LC144 30 7158.40 LC244 12 5397.45
LC145 40 7150.00 LC245 13 4522.84
LC146 40 7154.02 LC246 13 4778.67
LC147 42 8882.94 LC247 12 4488.36
LC148 39 7126.51 LC248 13 4627.49
LC149 36 7565.41 LC249 13 4973.01
LC1410 35 7423.29 LC2410 12 4730.83
total 914 258333.55 total 311 250065.39

THE PICKUP AND DELIVERY PROBLEM WITH GENERAL CONSTRAINTS 199

Table 5: Constraints of instances
Resource Capacity

INSTANCE ρ π Q1 Q2 TW LIFO
GC1 1 0 200 1000 [ei, li] 0
GC2 3 1 200 1000 [ei, li] 1
GC3 1 0 200 1000 [e′i, l

′
i] 0

GC4 1 1 200 1000 [0,∞) 0
GC5 1 1 200 1000 [0,∞) 1
GC6 2 0 200 200 [ei, li] 0

Table 6: Comparison for GC1–GC6
Ours LS

INSTANCE CNV CDIST CNV CDIST
GC1 208 65624.54 224 72422.65
GC2 278 95016.41 313 92170.04
GC3 142 48421.68 155 56234.36
GC4 234 79763.98 212 59545.98
GC5 238 84378.57 212 55065.95
GC6 271 84785.49 276 82716.75

The number of calls to “Reconstruction” did not vary much for instances with all sizes
and the average was about 5.

5.3 Results on General Instances

Finally, we conducted experiments to confirm the flexibility and performance of our algo-
rithm. We compared our algorithm with a metaheuristic algorithm coded in reference to the
algorithm proposed for PDPTW by Li and Lim [10]. It is based on a simulated annealing and
tabu search procedure, which uses the same objective function as ours; that is, the primary
objective is to reduce the number of vehicles and the secondary objective is to minimize the
total traveling cost. We modify it so that it can deal with PDPG. The modified algorithm
executes the local search in a feasible region of the constraints of PDPG.

We generated the PDPG instances consisting of six groups GC1–GC6, modified from
the PDPTW instances of Li and Lim [10] by adding various constraints. We chose three
instances from those of Li and Lim for each type, and generated new instances from them;
hence each of GC1–GC6 contains 18 instances. The number of customers for these instances
is 200. Table 5 gives a sketch of the constraints of those groups. In Table 5, columns “ρ” and
“π” represent the number of renewable and nonrenewable resources. Column “Q1” (resp.,
“Q2”) represents the vehicle capacities of type 1 (resp., type 2) instances; that is, we set
Qre

p := Q1 and Qnon
p′ := Q1 (resp., Qre

p := Q2, Qnon
p′ := Q2) for all type 1 (resp., type 2)

instances. Column “TW” shows the information about the time window constraint. In GC4
and 5, we set all time windows to [0,∞) (i.e., no time window constraints). On the other
hand, in GC3, we cut 4% from the original time windows by setting [ei, li] to [e′i, l

′
i] such

that
e′i = ei + 0.02(li − ei),
l′i = li − 0.02(li − ei), ∀i ∈ V.

200 H. HASHIMOTO,Y.EZAKI, M. YAGIURA,K.NONOBE, T. IBARAKI,A. LØKKETANGEN

For the rest (i.e., GC1, GC2 and GC6), we adopted the time windows of the original in-
stances. We imposed the LIFO constraint to GC2 and GC5 as shown in the LIFO column
by 1.

We set parameters to α = 1000, κ = 5, β = 200, a = 3, b = 4, a′ = 150, 000, b′ =
600, 000/|H| and µ = 600, 000. The time limit of constructing routes is set to 2400 seconds
and the time limit of solving the set covering problem is set to 1200 seconds. We set the
time limit to 3600 seconds for the metaheuristic algorithm. Table 6 compares the results
of our algorithm and those of metaheuristic algorithm. In Table 6, column “INSTANCE”
represents the name of each instance group, column “CNV” means the cumulative number
of vehicles and column “CDIST” means the cumulative traveling cost.

The results show that for GC1, GC2, GC3 and GC6 whose instances have additional con-
straints or tight constraints, our algorithm works efficiently, but for GC4 and GC5 whose in-
stances have weaker constraints, the metaheuristic algorithm works better than ours. These
results confirm our expectation that our algorithm works well on the instances with tighter
constraints. One of the conceivable reasons for this phenomenon is that when the constraints
are tight, local search type algorithms have difficulties in finding good feasible solutions in
the neighborhood and may easily stuck at solutions of insufficient quality, while in contrast,
with the set covering approach, it is not hard to find a high quality solution from the small
set of good feasible routes.

6 Conclusion

We generalized the pickup and delivery problem with time windows by allowing general
constraints having monotone property. Our algorithm first generates a set of feasible routes
and then solves the resulting set covering problem. We construct an initial set of routes
by an insertion method, and reconstruct the resulting set repeatedly by using various types
of neighborhood operations, while reducing the set size of candidate routes by utilizing the
Lagrangian relative costs. The computational results indicated that our algorithm works
more efficiently than a metaheuristic algorithm, if the instances have tighter constraints.
We also confirmed the flexibility of our algorithm by applying it to instances with various
constraints.

References

[1] E. Balas and A. Ho, Set covering algorithms using cutting planes, heuristics, and
subgradient optimization: a computational study, Mathematical Programming Study
12 (1980) 37–60.

[2] R. Bent and P. Van Hentenryck, A two-stage hybrid algorithm for pickup and delivery
vehicle routing problems with time windows, Computers and Operations Research 33
(2006) 875–893.

[3] F. Carrabs, J.-F. Cordeau, and G. Laporte, Variable neighborhood search for the pickup
and delivery traveling salesman problem with LIFO loading, INFORMS Journal on
Computing 19 (2007) 618–632.

[4] J.-F. Cordeau, M. Iori, G. Laporte, and J.J.S. González, A branch-and-cut algorithm
for the pickup and delivery traveling salesman problem with LIFO loading, Networks
to appear.

THE PICKUP AND DELIVERY PROBLEM WITH GENERAL CONSTRAINTS 201

[5] G. Desaulniers, J. Desrosiers, A. Erdmann, M.M. Solomon and F. Soumis, VRP with
pickup and delivery, in The Vehicle Routing Problem, P. Toth and D. Vigo (eds.),
chapter 9, Society for Industrial and Applied Mathematics, 2002, pp. 225–242.

[6] J. Desrosiers, Y. Dumas, M.M. Solomon and F. Soumis, Time constrained routing
and scheduling, in Network Routing, M.O. Ball, T.L. Magnanti, C.L. Monma and G.L.
Nemhauser (eds.), volume 8 of Handbooks in Operations Research and Management
Science, North-Holland, Amsterdam, 1995, pp. 35–139.

[7] Y. Dumas, J. Desrosiers and F. Soumis, The pickup and delivery problem with time
windows, European Journal of Operational Research 54 (1991) 7–22.

[8] T.A. Feo and M.G.C. Resende, Greedy randomized adaptive search procedures, Journal
of Global Optimization 6 (1995) 109–133.

[9] M.L. Fisher, The Lagrangian relaxation method for solving integer programming prob-
lems, Management Science 27 (1981) 1–18.

[10] H. Li and A. Lim, A metaheuristic for the pickup and delivery problem with time
windows, International Journal on Artificial Intelligence Tools 12 (2003) 173–186.

[11] W.P. Nanry and J.W. Barnes, Solving the pickup and delivery problem with time
windows using reactive tabu search, Transportation Research Part B 34 (2000) 107–
121.

[12] G. Pankratz, A grouping genetic algorithm for the pickup and delivery problem with
time windows, OR Spectrum 27 (2005) 21–41.

[13] J.-Y. Potvin, T. Kervahut, B.-L. Garcia and J.-M. Rousseau, The vehicle routing
problem with time windows part I: tabu search, INFORMS Journal on Computing 8
(1996) 158–164.

[14] S. Ropke, Heuristic and exact algorithms for vehicle routing problems, PhD thesis,
Computer science department at the University of Copenhagen (DIKU), 2005.

[15] S. Ropke and D. Pisinger, An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows, Technical report, Department of
Computer Science, University of Copenhagen, 2004.

[16] M. Savelsbergh and M. Sol, Drive: Dynamic routing of independent vehicles, Operations
Research 46 (1998) 474–490.

[17] M. Yagiura, M. Kishida and T. Ibaraki, A 3-flip neighborhood local search for the set
covering problem. European Journal of Operational Research 172 (2006) 472–499.

Manuscript received 27 February 2008
revised 3 September 2008

accepted for publication 23 October 2008

202 H. HASHIMOTO,Y.EZAKI, M. YAGIURA,K.NONOBE, T. IBARAKI,A. LØKKETANGEN

Hideki Hashimoto
Department of Industrial and Systems Engineering, Chuo University
1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
E-mail address: hasimoto@indsys.chuo-u.ac.jp

Youichi Ezaki
Canon IT Solutions Inc
Shin-Dai Bldg 1-2-6, Dojima-hama, Kita-ku, Osaka 530-0004, Japan
E-mail address: ezaki.yoichi@canon-its.co.jp

Mutsunori Yagiura
Department of Computer Science and Mathematical Informatics
Graduate School of Information Science
Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8603, Japan
E-mail address: yagiura@nagoya-u.jp

Koji Nonobe
Department of Engineering and Design, Faculty of Engineering and Design
Hosei University, 2-17-1 Fujimi, Chiyoda, Tokyo 102-8160, Japan
E-mail address: nonobe@hosei.ac.jp

Toshihide Ibaraki
The Kyoto College of Graduate Studies for Informatics
7 Monzencho, Tanaka, Sakyo-ku, Kyoto 606-8225, Japan
E-mail address: ibaraki@ieee.org

Arne Løkketangen
Department of Informatics, Molde College
Postboks 2110, N-6402 Molde, Norway
E-mail address: Arne.Lokketangen@hiMolde.no

