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A VARIATIONAL APPROACH TO THE INVERSION OF
SOME COMPACT OPERATORS

Xavier Bonnefond and Pierre Maréchal

Abstract: Inverse problems of Fourier synthesis can be regularized by constraining the resolution of the
reconstructed object. One may speak of regularization by molli�cation. This regularization principle has
been shown to behave nicely in practice, and more recently to give rise to interesting Tikhonov-like theorems.
In this paper, we propose and analyse an extension of the regularization by molli�cation to a wider class of
ill-posed problems.
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1 Introduction
Let us consider an ill-posed operator equation of the form Tf = g, in which T is some linear
mapping from a normed space F into a normed space G and g is the data, which is assumed
to be an approximation of the image by T of the original unknown object f0. In order to
deal with ill-posedness of such problems, it is customary to infer regularized solutions via
an optimization problem of the form

(E )

∣∣∣∣∣∣
Minimize F (f) :=

1
2

∥∥g − Tf
∥∥2

G
+ αH (f)

s.t. f ∈ F,

in which α is a positive parameter and H is a convex functional generically called an
regularizer.

The abundant literature devoted to the choice of a particular regularizer and, for this
regularizer, of a particular value of α, is symptomatic of a fundamental di�culty in the
interpretation of the above scheme. Focusing primarily on the variational de�nition of the
regularized solution leaves the new objective unclear: to some extent, the new unknown
(which is no longer f0) remains unspeci�ed.

In [7], Lannes et al. proposed an alternative scheme for problems of Fourier synthesis.
They addressed problems in which

F = L2(V ), G = L2(W ) and T = 1W U.
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Here, V and W are bounded subsets of Rd, L2(V ) denotes the subspace of L2(Rd) of the
functions having their support in V , 1W denotes both the indicator function of W and the
operator (g 7→ 1W g), and U denotes the Fourier operator:

(1W g)(ξ) = 1W (ξ)g(ξ) and Uf(ξ) = f̂(ξ) =
∫

e−2iπ〈ξ,x〉f(x) dx.

The operator T is called a truncated Fourier operator. For convenience, the Fourier trans-
form of a function φ will also be denoted by φ̂. The regularization scheme of Lannes et al.
can be outlined as follows:

Step 1 De�ne the object to be reconstructed (or target object) as φβ ∗ f0, where {φβ}β>0

is an approximation of unity.

Step 2 Replace the original data g (the approximate truncated Fourier transform of f0)
by regularized data: φ̂βg. The reason for this is that, if g is an approximation of
the Fourier transform of f0, φ̂βg will be an approximation of the Fourier transform
of φβ ∗ f0.

Step 3 Finally, de�ne the reconstructed object as the solution of the following optimization
problem:

(P)

∣∣∣∣∣∣
Minimize 1

2

∥∥∥ φ̂βg − TW f
∥∥∥

2

L2(W )
+

α

2

∥∥∥(1− φ̂β)f̂
∥∥∥

2

L2(Rd)

s.t. f ∈ L2(V1),

in which V1 is a compact set containing V . Ideally, V1 should be chosen so as to contain
the support of φβ ∗f0 for every β in the interval of interest (e.g. β ∈ (0, 1]). In practice,
if φβ has unbounded support, it is su�cient to ensure that most of the energy of φβ ∗f0

is contained in V1 for β in the range under consideration.

In a recent paper, Alibaud et al. [1] proved a theorem on the behavior of the regularized
solution as β tends to zero (see Theorem 2.1 below). This theorem is the counterpart, for the
regularization principle under consideration, of Tikhonov's convergence theorem, in which
the homogeneous parameter α is in force.

The present paper is an attempt to extend this result to a wider context. It is motivated
by the desire to address ill-posed operator equations of the general form Tf = g in which T
has no explicit connexion with any truncated Fourier operator. In such an extended context,
what should indeed become Step 2 ? We shall see that it makes sense to replace the data g
by regularized data Φβg, in which the linear operator Φβ itself results from the minimization
of some functional.

The paper is organized as follows. In Section 2, we give an overview of Fourier synthesis
and we give a detailed account of our extended regularization scheme. Then, in section 3,
we address the de�nition and computation of Φβ and we give examples. Finally, in section 4
we show that the convergence result of Alibaud et al. [1] can be extended to our generalized
setting.
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2 A General Regularization Scheme

2.1 Overview of Fourier Synthesis
We call Fourier synthesis the generic problem of recovering a function f0 from a partial and
approximate knowledge of its Fourier transform. Whenever partial is understood as limited
to a bounded domain, we speak of Fourier extrapolation.

Important milestones in the history of Fourier Synthesis are Landau's paper [5] on Fourier
sampling theory and the eigenvalue analysis of truncated Fourier operators, and later on the
paper by Lannes et al. [7], devoted to the regularization of the Fourier extrapolation problem.
In the latter paper, the authors considered the following abstract problem:

Let V and W be bounded subsets of Rd, where W is assumed to have non-empty
interior. Recover f0 ∈ L2(V ) from the knowledge of its Fourier transform on W .

Recall that TW is injective, since Fourier transforms of compactly supported functions are
analytic and W is assumed to have nonempty interior. Recall also that TW is compact, as
a Hilbert-Schmidt operator.

Ill-posedness of the Fourier extrapolation problem [7, 1] led Lannes et al. [7] to propose
a regularization principle which, in essence, consists in constraining the resolution of the
object to be inferred. The problem of identifying f0 is replaced by that of recovering a
limited resolution version of it, namely, φβ ∗ f0, in which

φβ(x) :=
1
βd

φ

(
x

β

)
, with φ ∈ L1(Rd) and

∫

Rd

φ(x) dx = 1. (2.1)

We shall refer to φβ ∈ L1(Rd) as an apodized point spread function, and to the parametrized
family {φβ}β>0 as an approximation of unity. It is then reasonable to de�ne the recon-
structed object as the solution to Problem (P).

The above regularization scheme clearly refers to molli�cation theory, and we may then
speak of regularization by molli�cation. The parameter β, which can be regarded as the
inverse of a cuto� frequency, appears as a regularization parameter for the inversion of
TW . In [1], Alibaud et al. considered the behavior of the solution to Problem (P) as this
parameter tends to zero. They proved the following result:
Theorem 2.1. Consider Problem (P) above, in which φβ is as in Equation (2.1). Let T+

W

denote the Moore-Penrose pseudo-inverse of TW : L2(V1) → L2(W ).

I. Let α > 0 and β > 0 be �xed. Then (P) has a unique solution fβ. Moreover, fβ

depends continuously on g ∈ L2(W ).
II. Assume that φ̂(ξ) 6= 1 for all ξ ∈ Rd \{0}, and that there exist positive numbers K and

s such that |1 − φ̂(ξ)| ∼ξ→0 K
∥∥ξ

∥∥s. If g ∈ ranTW is such that its analytic extension
g̃ = UT+

W g satis�es ∫

Rd

∥∥ξ
∥∥2s ∣∣ g̃(ξ)

∣∣2 dξ < ∞,

then fβ converges to T+
W g strongly, in L2(V1), as β ↓ 0.

Notice that T+
W is nothing but T−1

W , the inverse of TW : L2(V1) → ranTW . Furthermore,
in the second part of the theorem, the condition on g can be rewritten as

g ∈ TW

(
L2(V1) ∩Hs(Rd)

)
,
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in which Hs(Rd) denotes as usual the Sobolev space

Hs(Rd) :=
{

f ∈ L2(Rd)
∣∣∣∣

∫ (
1 + ‖ξ‖2)s

∣∣∣ f̂(ξ)
∣∣∣
2

dξ < ∞
}

,

endowed with the inner product

〈f1, f2〉s :=
∫ (

1 + ‖ξ‖2)s
f̂1(ξ)f̂2(ξ) dξ (2.2)

and the corresponding norm

‖f ‖2s :=
∫ (

1 + ‖ξ‖2)s
∣∣∣ f̂(ξ)

∣∣∣
2

dξ.

2.2 Extension
One of the key points in the above regularization scheme is that the data corresponding
to the target object is easily computed from the original data: if g is an approximation of
Uf0 on W , φ̂βg is an approximation of U(φβ ∗ f0). This corresponds to the existence of an
operator Φβ such that ΦβU = UCβ , where Cβ denotes the convolution operator (f 7→ φβ ∗f)
on L2(Rd) (and is understood as the identity for β = 0). This nice aspect of (truncated)
Fourier operators is shared with a few other operators, such as convolution operators or the
classical Radon operators. The latter are important in practice [10, 8]. Nevertheless, there
are relevant applications in which it is not possible to �nd such a Φβ . This motivates the
generalization outlined in the introduction, which we now describe in detail.

Throughout, we shall assume the following:

Standing assumptions: V is a bounded domain in Rd containing the support
of the original unknown object f0; G is an in�nite dimensional separable Hilbert
space; T : L2(Rd) → G is a continuous injective linear operator (modelling the
data aquisition process) whose restriction to L2(V ) is compact.

The restriction of an operator T to a subspace E will be subsequently denoted by TbE ,
or merely by T whenever no confusion is to be feared.

Let φβ ∗ f0 be the new target object, where {φβ}β>0 is an approximation of unity.
The target object may have an unbounded support in Rd. Nevertheless we choose here to
reconstruct the object in L2(V1) for some compact set V1 ⊃ V : on the one hand, working
with unbounded supports makes little sense in practice; on the other hand, it is reasonable
to choose V1 in such a way that it contains most of the target object's energy. For example,
one may �x a small parameter ε > 0, de�ne suppε φ as a ball B such that

∫
Bc |φ| ≤ ε, and

then choose V1 to be the closure of V + suppε φ.
Finally, de�ne the reconstructed object as the solution to

(Pβ)

∣∣∣∣∣∣
Minimize 1

2

∥∥Φβg − Tf
∥∥2

G
+

α

2

∥∥(I − Cβ)f
∥∥2

L2(Rd)

s.t. f ∈ L2(V1),

in which I is the identity and Φβ : G → G is a solution to the following optimization problem:

(Qβ)

∣∣∣∣∣∣
Minimize 1

2

∥∥TCβ −XTbE
∥∥2

L(E,G)

s.t. X ∈ L(G), X = 0 on (ranTbE)⊥.
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Here, E is some subspace of L2(Rd), L(E, G) denotes as usual the space of continuous linear
mappings from E to G and L(G) := L(G,G). We emphasize that the Hilbert space structure
of E may not be the one inherited from that of L2(Rd).

Remark 2.2. The assumption made on T in the above extension is not minimal: the reader
may check that continuity of T on well chosen subspaces of L2(Rd) is su�cient. Our stronger
assumption is made for the sake of clarity.

The following sections will demonstrate the relevance of our extended regularization
principle.

3 Regularizing the Data
In this section, we give a few basic results concerning Problem (Qβ). Let E be a subspace
of L2(V1), a particular instance of which being considered in Section 4.

Thoughout this section, the restriction TbE of T to E will be denoted by T . In particular,
T+ will denote the peudo-inverse of T with respect to the Hilbert space structure of E, and
for every continuous linear mapping Y from E to G, ‖Y ‖ will stand for ‖Y ‖L(E,G).

The functional to be minimized in (Qβ) is obviously convex, as the post-composition of
an a�ne function by a norm. It should be noticed that, in most cases of interest, (Qβ) is an
ill-posed optimization problem, for the function to be minimized then fails to be inf-compact.

As a matter of fact, consider the (translated) functional X 7→ ‖XT ‖, in which T is
compact and, in accordance with the rest of the paper, X belongs to a set of bounded
operators vanishing on (ranT )⊥. Let us show that, in the case where ranT is not of �nite
dimension, the level sets of the latter function are unbounded. Let K denote the closure of
the image by T of the closed unit ball of F . The set K is a compact subset of G. Let (gk)k∈N

be a Hilbert basis of G and let vk denote the element of maximum norm in K ∩ vect {gk},
whose existence is ensured by the compactness of K. Then, vkr 6= 0 for an in�nity of
kr ∈ N and necessarily ‖vkr

‖ → 0 as r → ∞, for otherwise there would exist λ > 0 such
that λgkr

∈ K for all r ∈ N, and since ‖λgp − λgq‖ =
√

2λ for all p, q ∈ N, the sequence
(λgkr

)r∈N cannot have any accumulation point, in contradiction with the compactness of
K. Therefore, ‖vkr

‖ → 0 as r →∞ and we can de�ne a sequence (Xr)r∈N ⊂ L(G) in such
a way that:

Xrvkr
= 1 and Xr|{gkr}⊥ = 0,

so that ‖XrT ‖ = 1 for all r ∈ N and

‖Xr‖ =
1

‖vkr
‖ −→

r→∞
∞.

Moreover, in the case where T is not injective, uniqueness of a solution also fails.
However, Problem (Qβ) turns out to have explicit solutions, under reasonable assump-

tions. This is the purpose of Proposition 3.1 below. Moreover, in practice, the computation
of a solution may be performed by means of a proximal iterative procedure. The latter is
known to introduce numerical well-posedness in ill-posed optimization problems.

Proposition 3.1. If TCβT+ belongs to L(D(T+), G), then TCβT+ can be extended to a
continuous operator on G which is the unique solution to Problem (Qβ).

Proof. Recall that D(T+) = ranT + (ranT )⊥ is a dense subset of G, and that, since T is
assumed to be injective, T+T is the identity. Since TCβT+ is assumed to be bounded, it
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admits a unique continuous linear extension to G; this extension is denoted likewise and still
satis�es :

‖TCβT+T − TCβ‖ = 0.

This proves that TCβT+ is a solution to (Qβ). Moreover, if Φ is another minimizer, ΦT =
TCβ , which yields ΦTT+ = TCβT+; since TT+ : D(T+) → G is the orthogonal projection
onto the closure of ranT , the latter equality implies that Φ and TCβT+ coincide on ranT .
Since Φ((ranT )⊥) is constrained to be {0}, we �nally obtain that Φ = TCβT+.

Remark 3.2. In this paper, we are mostly interested in the case where E is a dense subspace
of L2(V1). In this case, T (E) is dense in T (L2(V1)) so that the domain D(T+

bE ) is dense in
the domain D(T+

bL2(V1)
). Moreover, since T is injective, the pseudoinverses T+

bE and T+
bL2(V1)

coincide on D(T+
bE ) = T (E) + T (E)⊥. Problem (Qβ) is then equivalent to

(Q′
β)

∣∣∣∣∣∣
Minimize 1

2

∥∥TCβ −XTbL2(V1)

∥∥2

L(L2(V1),G)

s.t. X ∈ L(G), X = 0 on (ranTbL2(V1))
⊥.

The reason for this is that, in the use of Proposition 3.1, TCT+
bE is bounded if and only if

TCT+
bL2(V1)

is bounded.

Remark 3.3. Note that, due to the injectivity of T , the minimum value of Problem (Qβ)
is equal to zero. If T were not injective, one could still prove that TCβT+ is a solution
to (Qβ), but uniqueness would clearly fail.

Notice that, since T+ is de�ned on ranT ⊕ kerT ? ⊂ G, the boundedness of TCβT+ is
equivalent to the existence of a positive constant Kβ such that

∀g ∈ D(T+), ‖TCβT+g‖ ≤ Kβ‖g‖.
Since every g in D(T+) can written as g = g1 + g2 with g1 ∈ ranT and g2 ∈ (ranT )⊥, the
above condition is equivalent to

∀(g1, g2) ∈ ranT × (ranT )⊥ ‖TCβT+g1‖ ≤ Kβ

√
‖g1‖2 + ‖g2‖2.

Since the latter inequality is true in particular when g2 = 0 and since TT+ coincides with
the identity on ranT , an equivalent condition is

∀g1 ∈ ranT, ‖TCβT+g1‖ ≤ Kβ‖TT+g1‖.
Finally, T+(ranT ) = E, so that the boundedness of TCβT+ is equivalent to the existence
of a positive constant Kβ such that

∀f ∈ E, ‖TCβf ‖ ≤ Kβ‖Tf ‖.
We now describe a class of operators T such that TCT+ is bounded, where C is some

convolution operator (that is, Cf = φ ∗ f for some convolution kernel φ ∈ L1(Rd)). We
assume here that E = L2(V1), endowed with the standard inner product.

Recall that the integral operator of kernel α : Rd × Rd → C is de�ned by

Tf(x) =
∫

α(x, y)f(y) dy,

the domain of T being the space of measurable functions for which the above integral is
well-de�ned for almost all x ∈ Rd.
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Proposition 3.4. Let T be the integral operator of kernel α. Assume that

(i)
∫
Rd×Rd |α(x, y)|2 dxdy < ∞ (that is, T is Hilbert-Schmidt on L2(Rd));

(ii) there exists a function k such that for all x, y, z ∈ Rd, α(x, y + z) = α(x, y)k(x, z);

(iii) there exists a positive constant Mφ, depending on φ only, such that

∀x ∈ Rd,

∣∣∣∣
∫

Rd

φ(z)k(x, z) dz

∣∣∣∣ < Mφ.

Then T is well-de�ned on ranCbL2(V1) and TCT+ is bounded on its domain.

Proof. Let f be any function in L2(V1). Then,
∫

Rd

∣∣α(x, y)Cf(y)
∣∣ dy =

∫

Rd

∣∣∣∣α(x, y)
∫

Rd

φ(z)f(y − z) dz

∣∣∣∣ dy

≤
∫

Rd×Rd

∣∣α(x, y)φ(z)f(y − z)
∣∣ dz dy

=
∫

Rd×Rd

∣∣α(x, y′ + z)φ(z)f(y′)
∣∣ dz dy′

=
∫

Rd×Rd

∣∣α(x, y′)k(x, z)φ(z)f(y′)
∣∣ dz dy′

=
∫

Rd

∣∣α(x, y′)f(y′)
∣∣
(∫

Rd

∣∣k(x, z)φ(z)
∣∣
)

dy′

≤ Mφ

∫

Rd

∣∣α(x, y′)f(y′)
∣∣ dy′.

This proves that T is well-de�ned on ranC. Now, it is easy to check that

TCf(x) =
∫

Rd×Rd

φ(z)k(x, z)α(x, y′)f(y′) dy′ dz.

Consequently,

‖TCf ‖2L2(Rd) =
∫

Rd

∣∣∣∣
∫

Rd

φ(z)k(x, z) dz

∣∣∣∣
2

|Tf(x)|2 dx,

≤ Mφ
2

∫

Rd

|Tf(x)|2 dx,

≤ Mφ
2‖Tf ‖2L2(Rd),

whence the desired conclusion.

4 Regularizing the Pseudo-inverse
In this section, we set:

E := L2(V1) ∩Hs(Rd),
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and we endow E with the inner product of Hs(Rd) (de�ned in Equation (2.2)). We consider
the instances of (Pβ) and (Qβ) corresponding to the above choice of E, and we study the
asymptotic behavior of (Pβ) as β ↓ 0.

Clearly, E is dense in L2(V1). As expressed in Remark 3.2, the solution Φβ obtained
with this choice is the same as the solution to (Q′

β).
Throughout this section, T+ denotes the pseudo-inverse of T regarded as an operator

from L2(V1) into G. Notice that, since T : L2(Rd) → G is assumed to be injective, T+ is
nothing but the inverse of

T : L2(V1) → T
(
L2(V1)

)
.

Notice also that, whenever g ∈ T (L2(V )), T+g is also the inverse image of g by T : L2(V ) →
T (L2(V )).

We emphasize that the operator norm to be minimized in (Qβ) is ‖ · ‖L(E,G). This
choice, which comes from the particular class of functions φ considered here, is justi�ed by
the proofs of the technical lemmas we are about to state.

We shall prove that, in some sense, Cβ converges to the identity and Φβ converges to
the projection onto the closure of ranTbE as β ↓ 0. Notice that this projection is a solution
to the following limit problem:

(Q0)

∣∣∣∣∣∣
Minimize 1

2

∥∥TbE −XTbE
∥∥2

L(E,G)

s.t. X ∈ L(G), X = 0 on (ranTbE)⊥.

As for Problem (Pβ), the corresponding limit problem reads:
∣∣∣∣∣
Minimize 1

2

∥∥TT+g − Tf
∥∥2

G

s.t. f ∈ L2(V1).

Since T+TT+ = T+, the latter problem is equivalent to the classical least squares problem:

(P0)

∣∣∣∣∣
Minimize 1

2

∥∥g − Tf
∥∥2

G

s.t. f ∈ L2(V1),

whose solution is nothing but T+g whenever g ∈ D(T+).
The following theorem is an extension of Theorem 2.1. Since many technicalities of the

proof given in [1] remain valid in our extended setting, we shall often refer to the latter
reference.

Theorem 4.1. Consider Problem (Pβ) above, in which φβ is as in Equation (2.1).

I. Let α > 0 and β ∈ (0, 1] be �xed. Assume that Problem (Qβ) has a solution Φβ. Then
(Pβ) has a unique solution fβ. Moreover, fβ depends continuously on g ∈ G.

II. Assume that φ̂(ξ) 6= 1 for all ξ ∈ Rd \ {0}, and that there exist positive numbers K

and s such that |1− φ̂(ξ)| ∼ξ→0 K
∥∥ξ

∥∥s. Assume in addition that, for every β ∈ (0, 1],
Problem (Qβ) has a solution Φβ. Let g ∈ D(T+) be such that T+g belongs to E. Then,
the unique solution fβ of Problem (Pβ) converges strongly to T+g in L2(Rd).

We shall need the following lemma, whose proof can be found in [1].
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Lemma 4.2. Let φ be as in Theorem 4.1, and let

mβ := min
‖ξ‖=1

|1− φ̂(βξ)|2 and Mβ := max
‖ξ‖=1

|1− φ̂(βξ)|2

Then, the following hold:

(i) For all β > 0, one has 0 < mβ ≤ Mβ ≤
(
1 + ‖φ‖L1(Rd)

)2;

(ii) supβ>0(Mβ/mβ) < ∞ and Mβ → 0 as β ↓ 0;

(iii) there exist two positive constants ν0 et A0 such that, for all β ∈ (0, 1] and all ξ ∈
Rd \ {0},

ν0

(
‖ξ‖2s1B1/β(ξ) +

1
Mβ

1Bc
1/β

(ξ)
)
≤ |1− φ̂(βξ)|2
|1− φ̂(βξ/‖ξ‖)|2 ≤ A0‖ξ‖2s.

The last estimate is the corner stone of the proof of Theorem 4.1. In particular, it will
provide us with a bound on the norm of I − Cβ .

Proposition 4.3. In the context of Theorem 4.1 and Lemma 4.2, the following holds:

∀β ∈ (0, 1], ‖I − Cβ‖2L(E,L2(Rd)) ≤ MβA0,

where I stands for the canonical continuous injection of E into L2(Rd).

Proof. By de�nition,

‖I − Cβ‖2L(E,L2(Rd))

= sup
h∈E

‖h‖s=1

‖h− φβ ∗ h‖2L2(Rd)

= sup
h∈E

‖h‖s=1

‖(1− φ̂β)ĥ‖2L2(Rd)

= sup
h∈E

‖h‖s=1

∫

Rd

|1− φ̂(βξ/‖ξ‖)|2 |1− φ̂(βξ)|2
|1− φ̂(βξ/‖ξ‖)|2 |ĥ(ξ)|2 dξ

≤ sup
h∈E

‖h‖s=1

MβA0

∫

Rd

‖ξ‖2s|ĥ(ξ)|2 dξ

≤ MβA0 sup
h∈E

‖h‖s=1

‖h‖2s

= MβA0,

where the �rst inequality stems from Lemma 4.2.

The following application of the above lemma is in accordance with the intuition about
the behavior of Φβ as β ↓ 0.

Proposition 4.4. In the context of Theorem 4.1 and Lemma 4.2,

‖ΦβT − T ‖L(E,G) → 0 as β ↓ 0.
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Proof. We shall use the continuity of T on L2(Rd). Since Φβ is a solution to (Qβ), one has:

‖ΦβT − T ‖L(E,G) ≤ ‖ΦβT − TCβ‖L(E,G) + ‖T − TCβ‖L(E,G)

≤ 2‖T − TCβ‖L(E,G)

≤ 2‖T ‖L(L2(Rd),G)‖I − Cβ‖L(E,L2(Rd)).

The conclusion then follows from Lemma 4.2.

Since Φβ is designed so as to vanish on (ranTbE)⊥, we see that, Φβ converges in the weak
sense to the orthogonal projection onto the closure of ranTbE .

We are ready to prove our main theorem.
Proof of the Theorem. Following [1], we divide the proof into three steps. In Step 1, the
L2-norm of fβ is bounded above by a quantity which does not depend on β. The weak
convergence of fβ to T+g is then established in Step 2. Finally, in Step 3, some of the
estimates of Step 1 allow us to call on a classical compactness theorem to show that the
convergence is in fact strong.

Step 1: L2-estimate. Since fβ is the solution to (Pβ), the following inequality is
satis�ed by all f ∈ L2(V1):

1
2

∥∥Φβg − Tfβ

∥∥2

G
+

α

2

∥∥∥(1− φ̂β)f̂β

∥∥∥
2

L2(Rd)

≤ 1
2

∥∥Φβg − Tf
∥∥2

G
+

α

2

∥∥∥(1− φ̂β)f̂
∥∥∥

2

L2(Rd)
.

The choice f = T+g yields

1
2

∥∥Φβg − Tfβ

∥∥2

G
+

α

2

∥∥∥(1− φ̂β)f̂β

∥∥∥
2

L2(Rd)

≤ 1
2

∥∥Φβg − TT+g
∥∥2

G
+

α

2

∥∥(I − Cβ)T+g
∥∥2

L2(Rd)
.

Recall that Φβ vanishes on T (E)⊥ = T (L2(V1))⊥, so that Φβg = ΦβTT+g. The above
inequality then implies that

α

2

∥∥∥(1− φ̂β)f̂β

∥∥∥
2

L2(Rd)
≤ 1

2

∥∥(ΦβT − T )T+g
∥∥2

G
+

α

2

∥∥(I − Cβ)T+g
∥∥2

L2(Rd)
.

On the one hand,
1
2

∥∥(ΦβT − T )T+g
∥∥2

G

≤ 1
2

∥∥T+g
∥∥2

s

∥∥ΦβT − T
∥∥2

L(E,G)

≤ 1
2

∥∥T+g
∥∥2

s

(∥∥ΦβT − TCβ

∥∥
L(E,G)

+
∥∥T − TCβ

∥∥
L(E,G)

)2

≤ 1
2

∥∥T+g
∥∥2

s

(∥∥T − TCβ

∥∥
L(E,G)

+
∥∥T − TCβ

∥∥
L(E,G)

)2

≤ 2
∥∥T+g

∥∥2

s

∥∥T
∥∥2

L(L2(Rd),G)

∥∥I − Cβ

∥∥2

L(E,L2(Rd))

≤ 2
∥∥T+g

∥∥2

s

∥∥T
∥∥2

L(L2(Rd),G)
A0Mβ ,
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in which the last inequality results from Proposition 4.3. On the other hand,
α

2

∥∥(I − Cβ)T+g
∥∥2

L2(Rd)
≤ α

2

∥∥T+g
∥∥2

s

∥∥(I − Cβ)
∥∥2

L(E,L2(Rd))

≤ α

2

∥∥T+g
∥∥2

s
A0Mβ ,

by Proposition 4.3 again. Consequently,

α

2

∥∥∥(1− φ̂β)f̂β

∥∥∥
2

L2(Rd)

≤
(
2

∥∥T+g
∥∥2

s

∥∥T
∥∥2

L(L2(Rd),G)
+

α

2

∥∥T+g
∥∥2

s

)
A0Mβ .

Furthermore, it can be shown (see [1]) that ‖(1− φ̂β)f̂β‖2L2(Rd) is bounded below by

mβ

(
ν0

∫

‖ξ‖≤1/β

‖ξ‖2s
∣∣∣ f̂β(ξ)

∣∣∣
2

dξ +
ν0

Mβ

∫

‖ξ‖>1/β

∣∣∣ f̂β(ξ)
∣∣∣
2

dξ

)

Finally, putting things together, we obtain the following estimate: for all β ∈ (0, 1],

ν0

∫

‖ξ‖≤1/β

‖ξ‖2s
∣∣∣ f̂β(ξ)

∣∣∣
2

dξ +
ν0

Mβ

∫

‖ξ‖>1/β

∣∣∣ f̂β(ξ)
∣∣∣
2

dξ ≤ A,

where

A := A0

(
sup
β>0

Mβ

mβ

)(
4
α

∥∥T+g
∥∥2

s

∥∥T
∥∥2

L(L2(Rd),G)
+

∥∥T+g
∥∥2

s

)
.

Notice that Lemma 4.2 (ii) implies that A is a �nite (positive) real number. We proceed
again as in [1] to deduce that

∀β ∈ (0, 1],
∥∥fβ

∥∥2

L2(Rd)
≤

∥∥∥F−1
Bc

1

∥∥∥
2 (

1 + ‖φ‖L1(Rd)

)2 A

ν0
,

where
FBc

1
: L2(Rd) −→ L2(Bc

1)
f 7−→ 1Bc

1
f̂ .

has a bounded inverse.
Step 2: weak convergence. Let (βn)n∈N∗ be any positive sequence converging to zero.

If we can prove that the sequence (fn)n∈N∗ de�ned by

fn := fβn

has a subsequence which converges weakly to T+g, then the weak convergence of fβ to T+g
will be established, because the sequence (βn)n∈N∗ is arbitrary.

From Step 1, we know that such a sequence (fn) is bounded, and thus from the Weak
Compactness Theorem that it has an accumulation point in L2(V1), which we call f ′. It is
now su�cient to prove that f ′ = T+g. Recall that T+g is the unique solution to

(P0)

∣∣∣∣∣
minimize 1

2

∥∥g − Tf
∥∥2

G

s.t. f ∈ L2(V1).



108 X. BONNEFOND AND P. MARÉCHAL

Let Φnk
:= Φβnk

. Since fnk
is the solution to (Pβnk

), for every f ∈ L2(V1),

1
2

∥∥Φnk
g − Tfnk

∥∥2

G
+

α

2

∥∥∥(1− φ̂nk
)f̂nk

∥∥∥
2

L2(Rd)

≤ 1
2

∥∥Φnk
g − Tf

∥∥2

G
+

α

2

∥∥∥(1− φ̂nk
)f̂

∥∥∥
2

L2(Rd)
.

We have: ∥∥Φnk
g − Tfnk

∥∥2

G
≤ ∥∥Φnk

g − Tf
∥∥2

G
+ α

∥∥∥(I − Cβnk
)f

∥∥∥
2

L2(Rd)
. (4.1)

Since g ∈ D(T+), it can be written as g = g1 + g2 with g1 ∈ ranT and g2 ∈ (ranT )⊥, and
we have Φnk

g = Φnk
g1. Moreover recall that T+g = T+g1, so that we can assume that

g ∈ ranT . Let k tend to ∞ in this inequality. Proposition 4.4 implies that Φnk
g −→ g.

Moreover, it is clear that Tfnk
converges weakly to Tf ′. It follows that Φnk

g − Tfnk

converges weakly to g − Tf ′, so that
∥∥g − Tf ′

∥∥2

G
≤ lim inf

k→∞

∥∥Φnk
g − Tfnk

∥∥2

G
.

On the other hand, Φnk
g − Tf converges strongly to g − Tf and by Proposition 4.3 again

‖(1− φ̂nk
)f̂ ‖L2 = ‖(I −Cβnk

)f ‖L2 tends to 0. We deduce that the right hand side of (4.1)
converges to ‖g − Tf ‖2G, so that

∥∥g − Tf ′
∥∥2

G
≤ ∥∥g − Tf

∥∥2

G
.

Since this holds for every f ∈ L2(V1), we see that f ′ must be the unique solution to (P0).

Step 3: strong convergence. Since (fn)n∈N∗ ⊂ L2(V1) is bounded and so is V1, it is
clear that

lim
R→∞

sup
n∈N∗

∫

‖x‖>R

∣∣fn(x)
∣∣2 dx = 0.

Furthermore, it was proved in [1] that, under the estimates of Step 1,

sup
n∈N∗

∥∥Thfn − fn

∥∥
L2(Rd)

→ 0 as ‖h‖ → 0, (4.2)

where for every h ∈ Rd and every f ∈ L2(Rd), Thf denote the translated function x 7→
f(x− h).

Finally, it results from [4, Theorem 3.8 page 175], that the sequence (fn)n∈N∗ de�ned in
Step 2 is relatively compact, and thus that the convergence of (fn)n∈N∗ to T+g obtained in
Step 2 is in fact strong.

Remark 4.5. In order to remain coherent with our regularization principle, the data g
should be taken in the smaller subspace

T (L2(V ) ∩Hs(Rd)) + T (L2(V1))⊥.

In this case, fβ converges to an element of L2(V ). The only reason for replacing V by V1

was to avoid possible boundary e�ects in the solution to (Pβ). The whole construction,
including Theorem 4.1, is valid with any compact set V ′ ⊃ V .
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5 Conclusion
The regularization by molli�cation was originally designed for problems of Fourier synthesis.
In this paper, we have extended this regularization principle to a wider class of ill-posed oper-
ator equations. Our main result is the extension of a convergence result obtained by Alibaud
et al. [1], which demonstrates the asymptotic coherence of this regularization scheme.

Our extension relies on the de�nition of an operator Φβ (depending on the new reg-
ularization parameter β) which can be regarded as a surrogate of the data regularization
g 7→ φ̂βg appearing naturally in Fourier synthesis. As pointed out in Section 3, Φβ is de�ned
through an ill-posed problem, and numerical di�culties can be expected in the computation
of Φβ . However, we believe that these di�culties are not insurmountable, for the following
reasons.

Observe �rst that, in order to compute (the �nite dimensional approximation of) Φβg =
TCβT+g, it may be easier to �rst compute T+g, via an ill-posed least squares problem, and
then apply TCβ . This may be the only possible approach whenever the dimension of the
problem does not allow for the computation and storage of TCβT+. Again, ill-posedness of
the computation of T+g must be addressed.

In fact, the ill-posedness we are facing encompasses two aspects: �rst, the di�culty to
reach an accurate numerical estimation of T+g; second, the sensitivity of T+g to perturba-
tions δg of the data g (which involves the norm of T+). Concerning the numerical accuracy,
let us merely mention that high accuracy may be reached with bad (but not dramatic)
condition: for example, a proximal strategy (which is a particular case of iterative re�ne-
ment) may be considered. Concerning the sensitivity to perturbations, one should keep in
mind that the norm of T+ is not really what matters, since the regularized data is rather
TCβT+g. Recall that the operators of interest here are such that TCβT+ is continuous (see
Proposition 3.1). One can reasonably expect that, in the �nite dimensional version of our
extended regularization principle, the continuity of TCβT+ will result in a reasonable norm
of the corresponding matrix.

The analysis presented in this paper provides the basis for the implementation of a
reconstruction algorithm for a wide class of inverse problems. The actual design of an
algorithm is currently under study, and it is deferred to future publication.
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