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A NEW CLASS OF SMOOTHING METHODS FOR
MATHEMATICAL PROGRAMS WITH EQUILIBRIUM
CONSTRAINTS

M. HADDOU

Abstract: A class of smoothing methods is proposed for solving mathematical programs with equilibrium
constraints. We introduce new and very simple regularizations of the complementarity constraints. Some
estimate distance to optimal solution and expansions of the optimal value function are presented. Limited
numerical experiments using SNOPT algorithm are presented to verify the efficiency of our approach.
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Introduction

Mathematical programs with equilibrium constraints (MPECs) constitute an important class
of optimization problems and pose special theoretical and numerical challenges.

MPECs are constrained optimization problems in which the essential constraints are de-
fined by some parametric variational inequalities or a parametric complementarity system.
MPECs can be closely related to the well-known Stackelberg game and to general bilevel
programming. As a result, MPECs play a very important role in many fields such as en-
gineering design, economic equilibrium, multilevel game, and mathematical programming
theory itself, and it has been receiving much attention in the optimization world.

However, MPECs are very difficult to deal with because, the feasible region and optimal
solution set are not convex or concave or even connected. Moreover, the constraints can not
satisfy any standard constraint qualification such as the linear independence constraint qual-
ification or the Mangasarian-Fromovitz constraint qualification at any feasible point [4, 13].
In this paper, we consider MPECs in their standard complementarity constrained optimiza-
tion problems formulation

min  f(z,y)

st. ze€X,yeR™ zeR AeR!,
F(z,y) = Vyg(z,y)"A =0 (1.1)
9(x,y) =2

2>0,A>0,ATz=0
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where the functions f : R"*™ — R, F : R"*™ — R™ and g : R"*™ — R! are all twice
continuously differentiable and X’ is a nonempty and compact subset of R™.

Remark. The constraints of (1.1) correspond to the KKT conditions of the parametrized
variational inequality

y € C(x) and (v —y)TF(z,y) > 0 for all v € C(x), (1.2)

where C(z) := {y € R"™/g(z,y) > 0}.

The negative properties of MPECs make these problems very difficult and exclude any direct
use of standard non linear programming (NLP) algorithms.

In this paper we propose some smoothing techniques to regularize the complementarity con-
straints and construct relaxed problems that are suitable for NLP algorithms.

Many regularization and relaxation techniques have already been proposed, here is an in-
complete list of such methods

(Reg(t)[11, 12]) Mz =0isrelaxed to Nz <t Vi
(Regeq(t)[11, 12]) ATz =0is replaced by N\;z; =t Vi
(RegCp(t)[11, 12]) ATz =01is relaxed to Az <t
(Face.[5]) Mz =0 is replaced by /(N\i —2)2 +4t2 — (N +2) =0 Vi
(Entro.[2, 6]) Mz = 0 is replaced by tln{e%i fet}=0 Vi
(1.3)

In almost all these techniques, the constraints (z > 0, A > 0 and \;z; = 0) or min(\;, z;) =0
are replaced by some smooth approximations and maintain the positivity constraints.
In our approach, we maintain the positivity constraints and interpret the complementarity
constraint componnent-wise as:

Vi, At most one of z; or \; is nonzero.
So, we construct some parameterized real functions that satisfy:

(0r(x) ~1if x #0) and (0,(z) ~0if z =0)

to count nonzeros and then replace the constraint
/\izi =0

by
0r(Ni) + 0, (2;) < 1.

In section 2, we present some preliminaries and assumptions on the problem (1.1) (essentially
the same as in [11]) . In Section 3, the smoothing functions and techniques are presented
and many approximation and regularity properties are proved. Section 4 is devoted to the
analysis of the regularization process. The last section presents some numerical experiments
concerning two smoothing functions.

Assumptions and Preliminaries

We essentially need the same assumptions and background as in [11]. A complete presenta-
tion of this background needs about 6 to 7 pages. We will only present in this section some
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definitions, known optimality conditions and constraint qualifications. For some others we
will only refer readers to [11]. These notions will be useful in the next section.
The first definition concern a first order optimality condition: the strong stationarity

Definition 2.1. A feasible point (z*,y*,z*, \*) is strongly stationary for (1.1) if d = 0
solves

min  Vf(z*,y*) d,
st.  dy € Add(X(z¥)),d, € Rl dy € R,
VE(z*, y)dy, — Vyg(a*,y)Tdy — V(Vyg(a*,y*)Tdyy =0
Vyg(z*,y*) dyy —d. =0 (2.1)
(d.); =0,i € L\,
(d)\)l =0,: € IA\I
(d,); >0,(dy); > 0,0 e I,NI,

where d = (dy,dy,d,,dy)T € RT™+2L T, and I are the active sets at (z*,y*, 2%, \*)
L ={i=1,...,lzf =0} and I, :={i=1,...,l|]A\] =0}
and Add(X (z*)) is the admissible directions set defined by
Add(X(z*)) :={dy e R™|Fro >0 YO<r<ry z"+rd, € X.}

Remark. There is an other kind of stationarity (the B-stationarity) which is less restrictive
but very difficult to chek. We prefer to not present it in this paper. These two stationarity
properties are equivalent when the MPEC-LICQ (defined next) is satisfied

Definition 2.2. The MPEC-LICQ is satisfied at the point (z*,y*, z*, \*) if the linear in-
dependance constraint qualification (LICQ) is satisfied for the following RNLP problem at

(z*,y*, 2%, \%).

min  f(z,y)
st. ze€X,zeRL \eR)
F(a,y) = Vyg(z,y)"A =0
9(z,y) =z (2.2)
2 = 0,i € L\Iy
A =0,i€ L\l
zi > 0,0 >0,0el, NI,

An other important and usefull constraint qualification is the following Mangasarian-Fromovitz
one

Definition 2.3. The MPEC-MFCQ) is satisfied at the point (z*, y*, z*, \*) if the Mangasarian-
Fromovitz constraint qualification (MFCQ) is satisfied for the RNLP problem at (z*, y*, z*, A*).

We will also use some Second-Order sufficient conditions namely: the (MPEC-SOSC)
and the (RNLP-SOSC). These two conditions (among others) are defined in [11].
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The Smoothing Technique
For r > 0, we consider real functions 6, : Ry — [0, 1] satisfying

(1) 6,- is nondecreasing, strictly concave and continuously differentiable,

(i¢) Vr>0, 6.(0)=0,

(i) Vo >0, lim6,(z)=1, and (3.1)
(iv) }Lr% 67.(0) > 0.

~—

We will present some interesting examples of such functions after the following approxima-
tion result

Lemma 3.1. For any e > 0, and x,y > 0, there exists ro > 0 such that
vr <, (min(z,y) =0) = (O,(x) +0,(y) <1) = (min(z,y) <e¢).

Proof. The first property is obvious since 6,.(0) = 0 and 6, < 1.
Using assumption (7i7) for = ¢, we have

Ya >0, Frg>0/ Yr<rg 1-0.(¢) < «,
so that, if we suppose that min(z,y) > €, assumption () gives
0-(z) + 0-(y) > 260,.(e) > 2(1 — ).

Then if we choose @ < 3, we obtain that 6, (z) + 0, (y) > 1. O

This first approximation result can be improved for some interesting choices of the
smoothing functions 6,

(0") o) =
(0Wr) 97Wk(x) —1-e " fork>0
(0¥Og) Hlog(a:) ~ log(1+=x)

~log(l14+x+7)
We will also consider the general class ©=! of functions
0=1) verifying (i — iv) and #=* > 4!

Remark. The functions "* are the density functions of Weibull distributions, when k = 1,
the obtained smoothing method corresponds (with slight modifications) to the inequality

entropic regularization [2]. Simple comparison calculus proove that 6% and 6V for (0 <
k < 1) belong to the class of functions ©=*.

Lemma 3.2. we have

(i) Vx>0, Vy>0 O (z)+ 0 (y) <1l <= x-y <r? and
(i) Vx>0, Yy>0 roy=0= 021 z)+ 02 (y) <1l= 2 -y <r’
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Proof. (i) We have
2zy +re +ry

91 91 —
Ha)+0h(y) = LTI

so that
O(z)+0Ly) <1 <= 2ay+re+ry<azy+rz+ry+r?
= z-y<ri

The first part of (ii) follows obviously from Lemma 3.1 and the second one is a direct
consequence of (i) since

07! (x) + 07 (y) < 1= 0, () +0;(y) < 1.

O

Using any function 6, satisfying (3.1), we obtain the relaxed following problem for (1.1)

min  f(z,y)

st. (x,y)eX,z€ Rl_k,)\ € Rl_k,e € Rl_Ir
F(z,y) — Vyg(z,y)"A =0 (3.2)
g(z,y) =2

97«()\2)4—97«(22)4—61 =1, Vie {1,,1}

Remarks. (i) By choosing some particular smoothing functions (ex. %), the nonnega-
tivity constraints on A and z become implicite and can be removed from the definition of
(3.2).(This can have an important impact in practice.)

(ii) Under some classical assumptions, as in [5] we can easily prove that the jacobian of
equality constraints (with respect to (y, z, A) is nonsingular. This property is useful in prac-
tice since standard NLP algorithms use Newton-type to solve systems of nonlinear equations
corresponding to this jacobian.

Lemma 3.3. If g is concave with respect to y and F is uniformly strongly monotone with
respect to y, then for every nonnegative r and every feasible point (x,y,z, A, e) of problem
(8.2), the jacobian of equality constraints (with respect to (y, z, A)) is nonsingular.

Proof. Using the assumptions 3.1 (i) and (iv), the proof is exactely the same as in [2] or
[5]. O

Problem (3.2) may be viewed as a perturbation of (1.1). Previous lemmas prove that

(3.2) is in fact some tight relaxation of (1.1). However this perturbation is not continuous
on the parameter r so that any direct use of perturbation results such that [3] is impossible.
Fortunately, Lemma 3.2 proves that for the particular smoothing function 6!, the corre-
sponding relaxed problem (3.2) is equivalent to (Reg(r?)) in [11]. We can then benefit from
the theoretical results in [11].
The following results provide, in the case of the ! function, some distance estimate between
solution of (3.2) and solution of (1.1). These results correspond to applications of [[3], The-
orem 5.57, Theorem 4.55 and Lemma 4.57] and can be found with complete proofs in [11].
We just state them in our context and add the optimal value expansion.
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Theorem 3.4. Suppose that X* = (x*,y*,2*,\*) is a strongly stationary point of (1.1)
at which MPEC-MFCQ and MPEC-SOSC' are satisfied. Then there are positive constants
a, 7, and M such that for all v € (0,7], the global solution X (r) of the localized problem
(8.2) with the additional ball constraint || X — X*|| < « that lies closest to X* satisfies
|1 X (r)—X*|| < M.r. Furthermore the optimal value v,.of (3.2) has an expansion of the form

1
v =00 + E.a.r2 + o(r?)

where v¥ is the optimal value of (1.1) and a is the optimal value of an auwiliary quadratic
problem/[3].

Theorem 3.5. Suppose that X* = (z*,y*,2*,\*) is a strongly stationary point of (1.1)
at which MPEC-LICQ and RNLP-SOSC are satisfied. Then there are positive constants
a, 7, and M such that for all r € (0,7], the global solution X(r) of the localized problem
(3.2) with the additional ball constraint || X — X*|| < « that lies closest to X* satisfies
| X (r) — X*|| < M.r2. Furthermore the optimal value v, of (3.2) has an expansion of the
form

vy <00+ b +O>rt)

where v° is the optimal value of (1.1) and b is the optimal value of an auwiliary linearized
problem[3].

For functions of the general class ©=!, the corresponding feasible sets satisfy
Fp C f9;1 C .7:9_1

where Fp, Fy>1 and Fg are respectively the feasible set of problem (1.1) and (3.2) for the
corresponding 6, function.

These inclusions prove that the optimal value expansions given in Theorem 3.4 and Theorem
3.5 are still valid under the same assumptions.

Theorem 3.6. When using functions 9.21, under the same assumptions of Theorem3.4
(resp. Theorem3.5) the optimal value v, of (3.2) has an expansion of the form

1
vy < 0¥+ E.a.TQ +o(r?) (resp. v, <00+ br?+0>r"))

Numerical Resuts

For two different smoothing functions, we present some numerical results using the SNOPT
[8] nonlinear programming algorithm on the AMPL [1] optimization plateform. Our aim is
just to verify the qualitative numerical efficiency of our approach. We consider a subset of
the MACMPEC [9] test problems with known optimal values and solutions ( we consider
the same test problems as in [2, 5] ) .

We choose the two functions
1 T
0, (z) =

x4+

and
OV (z)=1—e 7.

The first function has (in our analysis) the best theoretical results and corresponds in some
wayto the regularization studied in [12, 11]. While the second one corresponds to the enropic
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regularization [2, 6].
In our experiments, we made a logarithmic scaling for these two functions to bound their
gradients. Each constraint

9r(>\z) + GT(ZZ) +e; = 1

is in fact replaced by the following inequality

rzln(TJrr) >0,
Xi+r ozt

in the case of the 6! function and

>

i

rin (677 —|—ef%> > 0.

in the case of the /1 function.

This scaling technique is used in [2]. Tt does not make any real change in the number of outer
iterations but reduces significantly the total number of minor iterations and evaluations of
the objective function, objective gradient, constraints and constraints gradient.

The regularization parameter is chosen the largest possible: we decrease r as long as there
is an improvement of the objective function or the constraints.

The two following tables give for each considered problem and for different starting points,
the final value of the parameter r, the optimal value and solution obtained when using each
of the two smoothing functions. The tables report also different informations concerning
the computational effort of the solver SNOPT. itM and itm correspond to the total number
of major and minor iterations numbers [8]. The total number of objective function eval-
uations is given in (Obj.). (grad.) corresponds to the total number of objective function
gradient evaluations. (constr.) and (jac.) give respectively the total number of constraints
and constraints gradient evaluations.

Problem r Start Obj.val. Opt.x (itM,itm) Obj. grad  constr. Jac
Bard1 l.e-2 no 17 (1,0) (5,8) 9 8 9 8
DIl Te3 no 0 (1,0) (1,1) 3 2 3 2
Gauvin l.e-2 no 20 (2,14) (4,11) 7 6 7 6
il Te2 o 0.5 (0.5,0.5) (6,3) 9 B 9 B
Gnash10 l.e-5  gnashl0.dat  -230.8232 47.036 (17,46) 21 20 21 20
Gnash1l l.e-4  gnashll.dat -129.9119 34.9942 (20,50) 18 17 21 20
Gnash12 1l.e-4 gnash12.dat -36.93311 18.1332 (24,51) 27 26 27 26
Gnash13 l.e-2 gnash13.dat -7.061783 7.55197 (14,56) 20 19 23 22
Gnash14 1.e-3 gnash14.dat -0.179046 1.06632 (14,46) 18 17 21 20
Scholtesl l.e-1 1 2 0 (9,10) 14 13 14 13
Bilevell Te2 (25,25) 5 (25,30) (3,11) 0 0 9 3
(50,50) 5 (25,30) (0,6 0 0 2 1
Nashl l.e-1 (0,0) 1.61e-14 (9.996,4.999) (13,42) 25 24 25 24
(5,5) 1.60c-18 (9.313,5.686) (10,33) 32 31 32 31
(10,10) 1.460-14 (9.092,5.901) (16,38) 31 33 31 33
(10,0) 3.56e-24 (9.999,4.999) (12,34) 23 27 23 27
(0,10) 9.03c-22 (9.999,4.999) (14,41) 31 30 31 30
Bilevel2 1.e-4 (0,0,0,0) -6600 (6.441,4.863,12.559,16.137) (6,43) 9 8 9 8
(0,5,0,20) 26600 (6.575,5,12.425,16) (6,50 9 B 9 B
(5,0,15,10) 6600 (6.837,12.162,16) (5,36) 7 6 7 6
(5,5,15,15) -6600 (14.892,3.373,14.107,17.627) (5,35) 7 6 7 6
(10,5,15,10) 6600 (8.014,4.071,10.986,16.020) __ (5,38) 7 6 7 6
Bilevel3 1.4 (0,0) 12.6787 0,2 (9,23) 12 11 2 11
0,2) 12.6787 0,2) (15,27) 32 31 32 31
(2,0) 10.36 2,0) (01,06) 3 2 3 2
desilva To3  (0,0) 1 (0.5,0.5) (4,10 6 5 6 5
2,2) 1 (0.5,0.5) (3,9) 5 1 5 1
Stack.1 le-2 0O -3266.6666  93.3333 (4,9) 6 5 6 5
100 -3266.6666  93.3333 (3,3) 5 4 5 4
200 -3266.6666  93.3333 (7,5) 19 18 19 18

Tablel: using the ! smoothing function
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Problem T Start Obj.val. Opt.x (itM,itm)  Obj. grad constr. Jac
Bardl Te2 no 7 1,0 (13.8) 16 15 6 5
Dfl Te3 1o 0 (1,0) (1,2) 3 2 3 2
Gauvin 1.e-2 no 20 (2,14) (5,12) 7 6 7 6
il Tc2 1o 0.5 (0.5,0.5) (13,4) 16 15 16 15
Gnash10 1l.e-3  gnashl0.dat  -230.8232 47.036 (17,63) 19 18 21 20
Gnashl1l 1l.e-3 gnashll.dat -129.9119 34.9942 (15,48) 18 17 18 17
Gnash12 l.e-1 gnash12.dat -36.93311 18.1332 (15,43) 19 18 19 18
Gnash13 l.e-1 gnashl3.dat -7.061783 7.55197 (23,69) 30 29 30 29
Gnash14 l.e-3  gnashld.dat -0.179046 1.06633 (22,38) 27 26 27 26
Scholtes1 l.e-1 1 2 0 (11,11) 16 15 16 15
Bilevell 102 (25,25) 5 (25,30) (3.11) 0 0 9 3
(50,50) 5 (25,30) (0,6 0 0 2 1
Nash1l To1  (0,0) 727014 (9,6 (9,16) 2 i 2 11
(5,5) 1.250-18 (10.5) (6,16) 10 9 ) 9
(10,10) T.09e-11 (9,6) (13,25) 21 20 21 20
(10,0) 127013 (9.355,5.645) (16,34) 27 26 27 26
(0,10) 3.290-15 (9.396,5.604) (7,16) 11 10 11 10
Bilevel2 1.1 (0,0,0,0) 6600 (4.851,5,14.149,16) (6,34) 3 7 3 7
(0,5,0,20) 26600 (5.195,5,13.805,16) (5,40) 7 6 7 6
(5,0,15,10) 6600 (6.099,4.834,12.901,16.166) _ (5,42) 7 6 7 6
(5,5,15,15) -6600 (4,1.714,15,19.286) (5,45) 7 6 7 6
(10,5,15,10) 6600 (7.724,5,11.276,16) (5,50) 7 6 7 6
Bilevel3 1.1 (0,0) 12.6787 0,2) (22,38) 29 28 29 28
(0,2) 12.6787 (0,2) (34,61) 56 55 56 55
(2,0) 10.36 (2,0) (01,06) 3 2 3 2
desilva To2  (0,0) 1 (0.5,0.5) (5,9) B 7 3 7
(2.2) 1 (05,0.5) (6,14) 9 s 9 3
Stack.1 1l.e-2 0 -3266.6666 93.3333 (4,4) 6 5 6 5
100 -3266.6666 93.3333 (3,5) 5 4 5 4
200 -3266.6666 93.3333 (11,4) 14 13 14 13

Table2: using the inequality enropic approach (8/V1)

Conclusion

We introduced a new regularization scheme for mathematical programs with complemen-
tarity constrains. Our approach is very simple and quite different from existing techniques
for the same class of problems. The obtained regularized problems are now suitable for
standard NLP algorithms. These regularizations have different theoretical sensivity and
regularity properties. The limited numerical experiments give very promising results (com-
parable to those of [2]) and suggest to make real investigations on functions of the class
Wr . Therefore, we hope that some of our smoothing functions will correspond to simple
and efficient algorithms for the solution of real-world MPECs and Bilevel programs.
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