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1 Introduction

Motivated by a series of studies by Bobylev and other Russian mathematicians (see [14]), on
the homotopical stability of (local or global) minimum points for various classes of smooth
functions on Banach spaces, Ioffe and Schwartzman initiated in [15] a critical point theory
for continuous functions defined on complete metric spaces. One of the main results of [15] in
that framework is a so-called Potential well theorem, providing an a priori estimate for the
size of the potential well associated with a local minimum point, and allowing dealing with
the homotopical stability of (isolated) local minimum points. These results were revisited
by the first author and Hantoute [9], in the light of the nonsmooth critical point theory that
had been developed independently in [8, 12], featuring in particular the notion of weak slope
from [12], and the so-called Change-of-metric principle from [6]. It was also shown in [9]
that if some of the arguments involved indeed employ the methods of critical point theory,
part of the arguments can be established in a simpler way, relying on Ekeland’s variational
principle [13], thus on abstract results featuring the notion of strong slope from [11].

In [15], the question of the homotopical stability of global minimum points is also ad-
dressed, through a similar approach as in the local case. The purpose of this note is to show
that in the global case, this question can be treated using Ekeland’s variational principle
only. Roughly speaking, and as we put in our previous paper [10], where this note was
announced, the reason is that “when dealing with global minima we definitely know the
‘size’ of the potential well.” As an immediate consequence, the results we obtain are valid
in the lower semicontinuous case, rather than the continuous one as in [15].

In Section 2, we recall the basic form of Ekeland’s principle and derive some simple
lemmas involving the strong slope, to be used for the proof of our main results. In Section
3, we recall a basic deformation theorem in metric critical point theory, and we derive a
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criterion for a global minimum, similar to a result in [15], pointing out, in particular, that
such a result is no more true replacing the weak slope by the strong slope. Our main results,
on the (homotopical) stability of global minimum points, are in Section 4.

2 Ekeland’s Principle and the Strong Slope

Throughout this note, X is a metric space endowed with the metric d. For C ⊂ X and
ρ > 0, we denote by Bρ(C) (resp., B̄ρ(C)) the open (resp., closed) ρ-neighborhood of C :

Bρ(C) := {y ∈ X : d(y, C) < ρ} , B̄ρ(C) := {y ∈ X : d(y, C) ≤ ρ} ,

where d(y, C) := inf{d(y, x) : x ∈ C}, with the usual convention d(y, ∅) = +∞ (according
to the general convention inf ∅ = +∞). We also set

∂Bρ(C) := {y ∈ X : d(y, C) = ρ} ,

while for x ∈ X we simply write Bρ(x) for Bρ({x}).
Let f : X → R ∪ {+∞}. As usual, we say that f is proper if the set domf := {x ∈ X :

f(x) < +∞} is nonempty. Recall from [17] that a d-point of f is a point z ∈ X such that

f(z) < f(x) + d(x, z) for every x ∈ X , x 6= z .

Clearly, d-points of f belong to domf , and global minimum points of a proper f (if any) are
d-points of f . Ekeland’s variational principle [13], in its basic form, asserts that if (X, d) is
complete, and if f is proper, lower semicontinuous, and bounded from below, then f has a
d-point. This is proved using a simple iterative construction using (closed) sets of the type

Mf,d(x) := {y ∈ X : f(y) + d(y, x) ≤ f(x)} .

Using the triangular inequality, it is readily seen that, given x ∈ X we have

d-points of the restriction of f to Mf,d(x) are d-points of f . (2.1)

Recall also from [11] that the strong slope of f at x ∈ domf is defined and denoted by

|∇f |(x) :=





0 if x is a local minimum point of f

lim sup
y→x

f(x)− f(y)
d(x, y)

otherwise
,

while for x ∈ X \ domf , we set |∇f |(x) := +∞.
In the remainder of this section, we assume that the metric space (X, d) is complete, and

that the function f : X → R ∪ {+∞} is lower semicontinuous.

Proposition 2.1. If m := infX f ∈ R, and if (xh) ⊂ X is a sequence such that f(xh) → m,
then there exists a sequence (zh) ⊂ X such that d(zh, xh) → 0, f(zh) → m, and |∇f |(zh) →
0.

Proof. If f(xh) = m, set zh := xh; otherwise, let 0 < εh :=
√

f(xh)−m → 0. According to
(2.1), f has an εhd-point zh in the set

Mf,εhd(xh) = {y ∈ X : f(y) + εhd(y, xh) ≤ f(xh)} ,

so that f(zh) ≤ f(xh) and d(zh, xh) ≤ εh, while |∇f |(zh) ≤ εh in view of the definition of
an εhd-point, and of the definition of the strong slope.
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The following three simple lemmas provide some key ingredients needed for the proofs
of our main results, in the next sections. For b ∈ R, we set

[f≤b] := {x ∈ X : f(x) ≤ b} .

Lemma 2.2. Let C be a nonempty subset of X. Assume that infC f ∈ R, and that for every
b ∈ R

inf
[f≤b]\C

|∇f | > 0 .

Then f is bounded from below if and only if

inf
X

f = inf
C

f .

Proof. If f is bounded from below, assuming that m := infX f < infC f =: m′ yields

inf
[f≤b]

|∇f | > 0 for m < b < m′ ,

contradicting Proposition 2.1. The converse is obvious, since m′ ∈ R.

Lemma 2.3. Let C be a nonempty subset of domf such that the function f is constant on
C, and let ρ0 > 0. Assume that

f(C) = inf
Bρ0 (C)

f , (2.2)

and that for every 0 < ρ < ρ0

inf
Bρ0 (C)\Bρ(C)

|∇f | > 0 . (2.3)

Then for every 0 < r < ρ0 we have

inf
∂Br(C)

f > f(C) .

Proof. Set f̃ := max{f, f(C)}, so that inf
X

f̃ = f(C), and f̃ coincides with f on the open

set Bρ0(C), according to (2.2). Assuming that inf∂Br(C) f = f(C) for some 0 < r < ρ0,
Proposition 2.1 yields a sequence (zh) ⊂ X such that d(zh, ∂Br(C)) → 0 and |∇f̃ |(zh) =
|∇f |(zh) → 0, which contradicts (2.3).

We say that a subset C of X is bounded if it is contained in a ball.

Lemma 2.4. Assume that m := infX f ∈ R, and that for every b ∈ R, there exists a bounded
subset C of X such that

inf
[f≤b]\C

|∇f | > 0 .

Then f is coercive, that is, for B ⊂ X we have

sup
B

f < +∞ =⇒ B is bounded.

Proof. Let B ⊂ X be nonempty and such that b := supB f < +∞. Let further C be a
bounded subset of X and σ > 0 be such that

inf
[f≤b]\C

|∇f | > σ . (2.4)
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Assuming that B is not bounded, we find x ∈ B such that d(x,C) > b−m
σ . According to

(2.1), f has a σd-point x̄ in the set

Mf,σd(x) = {y ∈ X : f(y) + σd(y, x) ≤ f(x)} .

Since Mf,σd(x) ⊂ [f≤b]\C (by the choice of x), while |∇f |(x̄) ≤ σ (in view of the definition
of a σd-point and of the definition of the strong slope), we obtain a contradiction with
(2.4).

Remark 2.5. (a) It is readily seen that assumption (2.3) of Lemma 2.3 is equivalent to the
following Palais-Smale type condition:

If (xh) ⊂ Bρ0(C) is a sequence such that |∇f |(xh) → 0, then d(xh, C) → 0.

This type of condition is discussed in detail in [10], where it is shown how it yields so-called
nonlinear error bound estimates.
(b) Similarly, if f is bounded below, we see that the main assumption of Lemma 2.4 is
equivalent to the following condition:

Every sequence (xh) ⊂ X such that (f(xh)) is bounded and |∇f |(xh) → 0, is
bounded.

The proof of Lemma 2.4, using the basic form of Ekeland’s principle, could be used to
recover, in a more straightforward way, the (more general) coercivity result of [5]. Of course,
whenever (X, ‖·‖) is a normed vector space, the coercivity of a function f on X amounts to
f(x) → +∞ as ‖x‖ → +∞.

3 The Weak Slope and a Criterion for a Global Minimum

In this section, f : X → R is continuous. Recall from [12] that the weak slope of f at x ∈ X,
denoted by |df |(x), is the upper bound of the set of nonnegative reals σ such that there exist
δ > 0 and a continuous H : Bδ(x)× [0, δ] → X with

d(H(y, t), y) ≤ t and f(H(y, t)) ≤ f(y)− σt

for every (y, t) ∈ Bδ(x) × [0, δ]. It is easy to see that |df | ≤ |∇f | (which accounts for
the terminology employed for these notions). If X is a C1 Finsler manifold and f is a C1

function, then |df |(x) = |∇f |(x) = ‖f ′(x)‖ for every x ∈ X (see [12]).
The following is a slight variant of the Noncritical Interval Theorem [8, Theorem (2.15)]

(see also [7, Theorem 2]). For a, b ∈ R with a < b, we set

[a≤f≤b] := {x ∈ X : a ≤ f(x) ≤ b} .

Theorem 3.1. Let (X, d) be a complete metric space, let f : X → R be continuous, and let
a, b ∈ R with a < b. Assume that

inf
[a≤f≤b]

|df | > 0 .

Then [f≤a] is a strong deformation retract of [f≤b], that is, there exists a continuous
η : [f≤b]× [0, 1] → [f≤b] such that:

(a) η(x, 0) = x for every x ∈ [f≤b] ;

(b) η(x, t) = x for every (x, t) ∈ [f≤a]× [0, 1] ;

(c) η([f≤b], 1) ⊂ [f≤a].
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Theorem 3.2. Let (X, d) be a complete, arcwise connected metric space, let f : X → R
be continuous, and let C be a nonempty compact subset of X such that the function f is
constant on C. Assume that

C is a set of local minimum points of f , (3.1)

and that for every ρ > 0 and for all a, b ∈ R with a < b, we have

inf
[a≤f≤b]\Bρ(C)

|df | > 0 . (3.2)

Then C is a set of global minimum points of f , and f is coercive.

Proof. Since C is compact and f is continuous, (3.1) implies (2.2) for some ρ0 > 0 such that
f is bounded above on Bρ0(C), and since |∇f | ≥ |df |, (3.2) then implies (2.3). We deduce
from Lemma 2.3 that for every r > 0 small enough we have

inf
∂Br(C)

f > f(C) . (3.3)

Let x0 ∈ C and assume, for a contradiction, that there exists x1 ∈ X such that f(x1) <
f(x0). Let Γ denote the set of continuous γ : [0, 1] → X such that γ(0) = x0 and γ(1) = x1,
and set:

c := inf
γ∈Γ

max
[0,1]

(f ◦ γ) ,

so that c > f(x0), according to (3.3). Let 0 < ε < c − f(x0), and let ρ > 0 be such that
f(x) < c− ε for every x ∈ Bρ(C). Then

inf
[c−ε≤f≤c+ε]

|df | > 0 ,

according to (3.2). Applying Theorem 3.1 with a := c− ε > f(x0) and b := c + ε, we find a
continuous η : [f≤c+ε]× [0, 1] → [f≤c+ε] such that

η(x0, 1) = x0 , η(x1, 1) = x1 , and η([f≤c+ε], 1) ⊂ [f≤c−ε] .

Let γ ∈ Γ with γ([0, 1]) ⊂ [f≤c+ε], according to the definition of c. Defining γ̃ : [0, 1] → X
by γ̃(t) := η(γ(t), 1) we thus have γ̃ ∈ Γ, while γ̃([0, 1]) ⊂ [f≤c−ε], contradicting the
definition of c.

Since f is bounded from below, and since |∇f | ≥ |df |, so that for every b ∈ R we have

inf
[f≤b]\B1(C)

|∇f | > 0

according to (3.2), we obtain from Lemma 2.4 that f is coercive.

Remark 3.3. (a) In critical point theory, a sequence (xh) ⊂ X is called a Palais-Smale
sequence for the (continuous) f : X → R if

(f(xh)) is bounded and |df |(xh) → 0 ,

and f is said to satisfy the Palais-Smale condition if every Palais-Smale sequence for f has
a convergent subsequence. Due to the (obvious) lower semicontinuity of |df |, a cluster point
x of a Palais-Smale sequence for f is a critical point of f , that is: |df |(x) = 0. Assumptions
(3.1) and (3.2) are clearly equivalent to
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The set of critical points of f is a set C of local minimum points, and f satisfies
the Palais-Smale condition.

(Note in particular that under (3.1) and (3.2), every Palais-Smale sequence for f must
converge to a point of C.) The argument of the proof of Theorem 3.2 is that of the celebrated
Mountain pass theorem of Ambrosetti and Rabinowitz [1], see also [8, Theorem (3.7)] in our
nonsmooth setting.
(b) Thanks to the methods initiated in [12, 8], and refined in [3], Theorem 3.2 can be
extended to functions belonging to appropriate classes of lower semicontinuous functions.
This involves, in particular, an extension of the notion of weak slope, as we explain after
this remark. However, we stress that deformation results of the type of Theorem 3.1 do
not hold for arbitrary lower semicontinuous f . Similarly, considering f1 : R → R defined
by f1(x) := −x for x ≤ 0, f1(x) := 1 − x for x > 0 (so that 0 is a local minimum point of
f1 and |df1|(x) = 1 for x 6= 0), shows that Theorem 3.2 does not hold for arbitrary lower
semicontinuous functions. Considering the continuous f2 : R → R defined by f2(x) := |x|
for |x| ≤ 1, f2(x) := 2 − |x| for |x| ≥ 1 (so that 0 is a local minimum point of f2 and
|∇f2|(x) = 1 for x 6= 0), shows that Theorem 3.2 does not hold replacing the weak slope by
the strong one. Finally, consider the C1 function f3 : R2 → R defined by

f3(x1, x2) :=
3x2

1 − 2x3
1 − 1

1 + x2
2

+ (3x2
1 − 2x3

1)e
−x2 .

It is readily checked that (0, 0) is a strict local minimum and the unique critical point of f3,
but not a global minimum point; thus, f3 does not satisfy the Palais-Smale condition (as is
also easily observed by computing its gradient).
(c) The latter example is given in the monograph by Emelyanov et al. [14], and Theorem 3.2
is a variant of several results therein, stated for various classes of “smooth” functions on
Banach spaces. Theorem 3.2 is indeed a (refined) version of Ioffe and Schwartzman’s [15,
Proposition 9], where C is a singleton, and where the method of proof is more in the line of
that of [14]; it is derived from [15, Theorem 1], which can partly be seen as a “quantitative”,
local variant of Theorem 3.2. The word “quantitative” refers to so-called nonlinear error
bound estimates for the function f with respect to the (critical) set C, see [9, 10] for a
detailed analysis of such results, as already mentioned in the introduction, and evoked in
Remark 2.5 (a).

We now give the extension of the notion of weak slope for an arbitrary proper function
f : X → R, as given by Campa and Degiovanni [3], and that we shall use in the next section,
dealing again with lower semicontinuous functions.

We consider the epigraph of f

epif := {(x, µ) ∈ X × R : f(x) ≤ µ}

as endowed with the metric

d((x, µ), (y, ξ)) := d(x, y) + |µ− ξ| .

For x ∈ X with f(x) ∈ R, the weak slope of f at x, denoted by |df |(x), is the upper bound
of the nonnegative reals σ such that there exist δ > 0 and a continuous H : (Bδ(x, f(x)) ∩
epif)× [0, δ] → X with

d(H((y, ξ), t), y) ≤ t and f(H((y, ξ), t)) ≤ ξ − σt .
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It is easy to see that |∇f | ≥ |df |. As shown in [3, Proposition 2.2, Proposition 2.3] (taking
into account the choice of a different—but equivalent—metric on epif therein), the above
definition of |df | agrees with the “basic” one in the case when f is (finite-valued and)
continuous, while in the general case we have

|df |(x) =





|dGf |(x, f(x))
1− |dGf |(x, f(x))

if |dGf |(x, f(x)) < 1

+∞ if |dGf |(x, f(x)) = 1
, (3.4)

where Gf : epif → R is defined by Gf (x, µ) := µ (note that Gf is 1-Lipschitz continuous, so
that |dGf | ≤ 1.) Indeed, formula (3.4) was used in [8, 12] as the definition of the weak slope
in the lower semicontinuous case. Echoing Remark 3.3 (b), a class C of lower semicontinuous
functions is “appropriate” if for f ∈ C we have

inf{|dGf |(x, µ) : µ > f(x)} > 0 .

Under such condition, existence results of critical points for f can indeed be obtained from
corresponding results for the continuous Gf . As an example, if (X, ‖·‖) is a normed space,
and if f = g + h with g locally Lipschitz continuous and h proper, lower semicontinuous,
and convex, then |dGf |(x, µ) = 1 if µ > f(x), while

|df |(x) ≥ inf{‖α + β‖∗ : α ∈ ∂g(x) , β ∈ ∂h(x)} ,

where ∂ denotes the Clarke-Rockafellar subdifferential (see [4, 16]), and ‖·‖∗ denotes the dual
norm. In particular, if |df |(x) = 0 then 0 ∈ ∂f(x) (⊂ ∂g(x) + ∂h(x))— but not vice versa,
that is, the above inequality is strict, in general, see, e.g., [3, Example 4.14]. For more on the
connections between nonsmooth critical point theory and “classical” nonsmooth analysis,
see [3], containing in particular a new notion of subdifferential operator.

In Section 4, we also need the following notion from [2]: Given f : X → R ∪ {+∞} and
C ⊂ X, we let

rC(f) := sup
ρ>0

(
inf

Bρ(C)
f
)

= lim
ρ→0

(
inf

Bρ(C)
f
)

denote the uniform infimum of f on C. Of course, rC(f) ≤ infC f . Various cases when
equality holds are listed in [2, Proposition 3.2]; that is the case, for example, when f is
uniformly continuous on a uniform neighborhood of C (see Remark 4.4 below).

4 Stability of Global Minimum Points

In this section, we consider a family (fλ)λ∈[0,1[ of lower semicontinuous functions fλ : X →
R ∪ {+∞} satisfying the following properties:

(f.1) For every λ ∈ [0, 1[ , every x ∈ domfλ, and every sequence (λh) ⊂ [0, 1[ with λh → λ,
there exists (xh) ⊂ X such that fλh

(xh) → fλ(x);

(f.2) For every λ ∈ [0, 1[ , every bounded set B in X, and every sequence (λh) ⊂ [0, 1[
with λh → λ, we have

lim inf
h→∞

(
inf
B

fλh

) ≥ inf
B

fλ .

Theorem 4.1. Let (X, d) be a complete metric space, let (fλ)λ∈[0,1[ be a family of proper,
lower semicontinuous functions on X satisfying (f.1) and (f.2), and let (Cλ)λ∈[0,1[ be a
family of subsets of X satisfying the following properties:
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(c.1) (Cλ)λ∈[0,1[ is locally bounded;

(c.2)
(
infCλ

fλ

)
λ∈[0,1[

is locally bounded (in R);

(c.3) For every λ ∈ [0, 1[ and for every b ∈ R, we have

inf
[fλ≤b]\Cλ

|∇fλ| > 0 .

Then inf
X

fλ = inf
Cλ

fλ for every λ ∈ [0, 1[ , provided it is true for λ := 0.

Proof. Set
Λ := {λ ∈ [0, 1[ : inf

X
fλ = inf

Cλ

fλ} ,

and assume that 0 ∈ Λ. Thanks to (c.2) and (c.3), Lemma 2.2 yields

Λ = {λ ∈ [0, 1[ : fλ is bounded below}. (4.1)

We show that Λ is closed in [0, 1[ . Let (λh) ⊂ Λ with λh → λ ∈ [0, 1[ , and let m ∈ R be
such that (

inf
X

fλh
=

)
inf
Cλh

fλh
≥ m for large h ,

according to (c.2). Let x ∈ domfλ. Considering (xh) ⊂ X such that fλh
(xh) → fλ(x),

according to (f.1), we obtain that fλ(x) ≥ m. Thus, fλ is bounded below, so that λ ∈ Λ
according to (4.1).

We show that Λ is open in [0, 1[ . Let λ ∈ Λ, let (λh) ⊂ [0, 1[ with λh → λ, and let C be
a bounded subset of X and M ∈ R be such that

Cλh
⊂ C and inf

Cλh

fλh
< M for large h , (4.2)

according to (c.1) and (c.2). Let x ∈ X. We need to show that

fλh
(x) ≥ inf

Cλh

fλh
for large h ,

so that we may assume, without loss of generality, that fλh
(x) ≤ M for every h. Applying

Lemma 2.4 to fλ, thanks to (4.1) and to (c.3), we find ρ > d(x,C) such that

inf
∂Bρ(C)

fλ > M

(note that the (bounded) set ∂Bρ(C) may be empty). Using (f.2) with B := ∂Bρ(C), Bρ(C),
we obtain that for large h :

inf
∂Bρ(C)

fλh
> M and inf

Bρ(C)
fλh

> −∞

(since fλ is lower bounded). We thus have, for such h :

Xh := B̄ρ(C) ∩ [fλh
≤M ] = Bρ(C) ∩ [fλh

≤M ] ,

with (Xh, d) complete, fλh
bounded from below on Xh, and

|∇f̃λh
|(y) = |∇fλh

|(y) for every y ∈ Xh , (4.3)
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where f̃λh
is the restriction of fλh

to Xh. Setting also C̃λh
:= Cλh

∩Xh, we further have

inf
C̃λh

f̃λh
= inf

Cλh

fλh
∈ R for large h ,

according to (4.2), and we infer from (4.3) and (c.3) that for every b ∈ R

inf
[f̃λh

≤b]\C̃λh

|∇f̃λh
| ≥ inf

[fλh
≤b]\Cλh

|∇fλh
| > 0 for large h .

Applying Lemma 2.2 (to Xh, f̃λh
, and C̃λh

), and since x ∈ Xh, we conclude that

fλh
(x) ≥ inf

Xh

fλh
= inf

Cλh

fλh

for large h, as desired. The overall conclusion is that Λ = [0, 1[ .

Remark 4.2. In [9, Theorem 4.1], dealing with the homotopical stability of an isolated local
minimum point z, the openness of the corresponding set Λ was established using Ekeland’s
principle, but the closedness required the deformation techniques of critical point theory
(the Potential well theorem, as in [15]). From a “technical” point of view, this is due to the
fact that the existence of a ρ > 0 such that z would be a minimum point of fλ on Bρ(z) for
every λ (a common “size” of the potential well) is not a priori known (assumed)—on the
contrary, it is a conclusion of the Potential well theorem.

For our last result below, we further need a (lower semicontinuous) function f1 : X →
R ∪ {+∞}, together with the property:

(f.3) For every sequence (λh) ⊂ [0, 1[ with λh → 1, the sequence (fλh
) Γ-converges to

f1 , that is, for every x ∈ X we have

lim inf
h→∞

fλh
(xh) ≥ f1(x) for every xh → x ;

lim
h→∞

fλh
(xh) = f1(x) for some xh → x .

For λ ∈ [0, 1[ , we denote by

Kλ := {x ∈ X : |dfλ|(x) = 0}

the set of critical points of fλ (with respect to the weak slope). The following corollary of
Theorem 4.1 is the main result of this note.

Theorem 4.3. Let (X, d) be a complete metric space, and let (fλ)λ∈[0,1[ be a family of
(proper) lower semicontinuous functions on X satisfying (f.1) and (f.2). Assume that:

(k.1) (Kλ)λ∈[0,1[ is locally bounded;

(k.2) For every λ ∈ [0, 1[ , there is a point zλ ∈ Kλ such that fλ(zλ) = r
Kλ

(fλ), and
(fλ(zλ))λ∈[0,1[ is locally bounded;

(k.3) For every λ ∈ [0, 1[ , every ρ > 0, and every b ∈ R, we have

inf
[fλ≤b]\Bρ(Kλ)

|∇fλ| > 0 .
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Then zλ is a global minimum point of fλ for all λ ∈ [0, 1[ , provided z0 is a global minimum
point of f0. If, moreover, (f.3) holds and zλ → z1 as λ → 1, then z1 is also a global
minimum point of f1.

Proof. For λ ∈ [0, 1[ , let 0 < ρλ ≤ 1 be such that

(r
Kλ

(fλ) ≥) inf
Bρλ

(Kλ)
fλ ≥ r

Kλ
(fλ)− 1 ,

and set Cλ := Bρλ
(Kλ). From the above inequalities and from (k.2), we see that property

(c.2) of Theorem 4.1 is satisfied. On the other hand, since (ρλ)λ∈[0,1[ ⊂ ]0, 1], assumptions
(k.1) and (k.3) readily imply properties (c.1) and (c.3) of that result. Thus, if

f0(z0) = inf
X

f0 = inf
C0

f0 ,

applying Theorem 4.1 we obtain

inf
X

fλ = inf
Cλ

fλ for every λ ∈ [0, 1[ .

Letting ρλ → 0 for each λ ∈ [0, 1[ , and according to (k.2), this yields

inf
X

fλ = fλ(zλ) for every λ ∈ [0, 1[ ,

from which the last conclusion of the theorem is a well known fact (or is easily checked).

Remark 4.4. Theorem 4.1 and Theorem 4.3 are extensions of Theorem 5 and Theorem 6 in
[15], respectively. In Ioffe and Schwartzman’ results, it is assumed that the (complete) metric
space X is connected, and that the function f : [0, 1]×X → R defined by f(λ, x) := fλ(x)
is continuous, and uniformly continuous (hence bounded) on [0, µ] × B for every µ ∈ [0, 1[
and every bounded B ⊂ X. Note also that in this case we have

r
Kλ

(fλ) = inf
Kλ

fλ for every λ ∈ [0, 1[ .

These assumptions, stronger than ours, are somewhat “natural” due to the approach of
[15], based on deformation techniques of critical point theory (recall Section 3). However,
note that since |∇f | ≥ |df | (with strict inequality in general, even for continuous f), our
assumption (k.3) is weaker than the corresponding one in [15].
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