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Abstract: In this paper, we present a mathematical modelling and analysis (existence, uniqueness...) of a
non-regular electronic circuit using the superpotentiel of Moreau and the theories of variationnal inequalities
and differential inclusions. Through this analysis example, we provide a new methodology for engineers to
study a large class of applications. Some remarks are given to show perspectives of this work allowing to
complete such analysis.
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1 Introduction

To deal with unilateral problems in mechanics it is now well established to use the notion
of the superpotential for convex (but not differentiable) problems [16, 17]. This concept
is generalized by Panagiotopoulos [18, 19] to the nonconvex case (see e.g. [8, 10]) and
references cited therein). These approaches connect mainly the results of the variational
and hemivariational theories to applications in Robotics, elasticity, plasticity... Our aim is
to extend these results to the field of electronics circuits. Indeed, there is a class of these
circuits that involves the so-called non-regular devices like semiconductors.

Semiconductors like diodes and Zener diodes are described through their Ampere-Volt
characteristics [15] that are set-valued functions. In [1] it is shown how the approach of
Moreau and Panagiotopoulos can be used to develop a rigorous formulation for such cir-
cuits. Indeed, in this paper, we first consider a dynamical system to describe the circuit
then we adapt a result due to [11], to show the existence and uniqueness of the system.
Afterwards, we will study the stationary solutions of the system given by the following
variational inequality:

Find u ∈ Rn such that

〈Mu + q, v − u〉+ Φ(v)− Φ(u) ≥ 0, ∀v ∈ Rn, (1.1)

where M ∈ Rn×n is a real matrix, q ∈ Rn a vector and Φ : Rn → R ∪ {+∞} a proper
convex and lower semicontinuous function. This variational inequality will be denoted by
V I(M, q, Φ).

To prove the existence (and possibly uniqueness) of the solution of V I(M, q, Φ), we follow
the lines of [4]. Then we make some remarks on the numerical implementation, the stability
and the sensitivity of the system.



4 K. ADDI

2 Circuit Modelling

2.1 Definitions and Notations

Let us first fix some notations and recall some tools in convex analysis which will be used
in this paper.

For x, y ∈ Rn, the notation 〈x, y〉 =
∑n

i=1 xiyi is used to denote the euclidean scalar
product on Rn and ‖x‖ =

√
〈x, x〉 to denote the corresponding norm.

We denote by Γ(Rn;R ∪ {+∞}) the set of proper convex and lower semicontinuous
functions Φ : Rn → R ∪ {+∞} with closed domain. The domain D(Φ) of Φ is defined by:

D(Φ) = {x ∈ Rn : Φ(x) < +∞}.
Convex subdifferential: Let Φ ∈ Γ(Rn;R∪{+∞}) be given. The convex subdifferen-

tial ∂Φ(x) (see e.g. [12], [21]) of Φ at x is defined by:

∂Φ(x) = {w ∈ Rn : Φ(v)− Φ(x) ≥ 〈w, v − x〉,∀v ∈ Rn}.
The set ∂Φ(x) describes the differential properties of Φ by means of the supporting hyper-
planes to the epigraph of Φ at (x,Φ(x)).

Closed convex set: Let K ⊂ Rn be a nonempty closed convex set. We denote by ΨK

the indicator function of K, that is:

ΨK(x) :=





0 if x ∈ K

+∞ if x /∈ K
, (x ∈ Rn). (2.1)

Then

∂ΨK(x) =




{w ∈ Rn : 〈w, v − x〉 ≤ 0,∀v ∈ K} if x ∈ K

∅ if x /∈ K
.

The dual cone of K is the nonempty closed convex cone K∗ defined by:

K∗ := {w ∈ Rn : 〈w, v〉 ≥ 0, ∀v ∈ K}. (2.2)

Recession function: Let x0 be any element in D(Φ). The recession function of Φ is
defined by

Φ∞(x) = lim
λ→+∞

1
λ

Φ(x0 + λx) (x ∈ Rn).

The function Φ∞ : Rn → R ∪ {+∞} is a proper convex and lower semicontinuous function
which describes the asymptotic behavior of Φ.

Recession cone: Let x0 be some arbitrary element of K. The recession cone of K is
defined by

K∞ =
⋂

λ>0

1
λ

(K − x0).

The set K∞ is a nonempty closed convex cone that is described in terms of the directions
which recede from K.
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2.2 Circuit Modelling

We consider an RLC circuit containing two non-regular devices: the diodes D1 and D2 (see
Figure 1). Applying Kirchhoff’s laws to this circuit yield:





dx1

dt
= x2

dx2

dt
= − 1

L3C x1 − (R1+R3)
L3

x2 + R1
L3

x3 − 1
L3

V1 − 1
L3

V2

dx3

dt
= R1

L2
x2 − (R1+R2)

L2
x3 + 1

L2
V1 + 1

L2
u

(2.3)

where R1 > 0, R2 > 0, R3 > 0 are resistors, L2 > 0, L3 > 0 are inductors, C > 0 is a
capacitor, x1 is the time integral of the current across the capacitor, x2 is the current across
the capacitor, x3 is the current across the inductor L2 and resistor R2, V1 is the voltage of
the diode D1 and V2 is the voltage of the diode D2.

u

L2

L3

R1

R2

R3

C
V1

V2x3

D2

D1

x2

x
1

Figure 1: RLC circuit with diodes

Let us recall that diodes are described through multivalued functions. We consider
here the ideal and the practical diodes which charateristics are depicted in Figures 2 and 3
respectively. Let us first consider the ideal diode Ampere-Volt charcteristic given in Figure 2.
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V

i

+ -

Figure 2: Ideal diode characteristic

The ideal diode plays a simple switch role. If V < 0 then i = 0 and the diode is blocking.
If i > 0 then V = 0 and the diode is conducting. It can be easily seen that the ideal diode
is described by the complementarity relation

V ≤ 0, i ≥ 0, V i = 0

that is also

min{−V, i} = 0.

The electrical superpotential of the ideal diode is then

ϕD(x) = ΨR+(x), (x ∈ R).

The subdifferential (see e.g. [12, 21]) of the electrical superpoteniel is given by:

∂ϕD(x) :=





R− if x = 0

0 if x > 0

∅ if x < 0

, (x ∈ R).

Figure 3 illustrates the ampere-volt characteristic of a practical diode model.
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Figure 3: Practical diode characteristic

There is a voltage point, called the knee voltage V1, at which the diode begins to conduct
and a maximum reverse voltage, called the peak reverse voltage V2, that will not force the
diode to conduct. When this voltage is exceeded, the depletion may breakdown and allow
the diode to conduct in the reverse direction.

The electrical superpotential of the practical diode is

ϕPD(x) =





V1x if x ≥ 0

V2x if x < 0
, (x ∈ R).

and the recession function of the electrical superpotential is given by:

(ϕPD)∞(x) = ϕPD(x), (x ∈ R).

The subdifferential of the superpotential is given by:

∂ϕPD(x) =





V2 if x < 0

[V2, V1] if x = 0

V1 if x > 0

, (x ∈ R).

Combining the system (2.3) and the multivalued characteristics of the diodes, we obtain
the following model:
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dx1
dt

dx2
dt

dx3
dt




=

A︷ ︸︸ ︷


0 1 0

− 1
L3C − (R1+R3)

L3

R1
L3

0 R1
L2

− (R1+R2)
L2







x1

x2

x3




−

B︷ ︸︸ ︷


0 0

1
L3

1
L3

− 1
L2

0







yL,1

yL,2


 +

D︷ ︸︸ ︷


0

0

1
L2




u, (2.4)

and 



yL,1 ∈ ∂jD1(−x3 + x2)

yL,2 ∈ ∂jD2(x2)
(2.5)

where yL,1 is the voltage of the diode D1, yL,2 is the voltage of the diode, jD1 is the
electrical superpotential of the diode D1 and jD2 is the electrical superpotential of the diode
D2. Setting

y =

C︷ ︸︸ ︷


0 1 −1

0 1 0







x1

x2

x3




and defining the function jD : R2 → R; X 7→ j(X) by the formula:

jD(X) = jD1(X1) + jD2(X2),

The mapping x 7→ jD(x) is proper, convex and lower semicontinuous function for all
t ≥ 0.

The mapping u : [0,+∞[→ R; t 7→ u(t) describes the input of the model . We suppose
that:

u ∈ C0([0,+∞);R),
du

dt
∈ L∞loc(0,+∞;R).

For x0 ∈ R3, we consider the problem P (x0): Find a function x : [0, +∞[→ R3; t 7→ x(t)
and a function yL : [0, +∞[→ R2; t 7→ yL(t) such that:

x ∈ C0([0,+∞[;R3), (2.6)

ByL ∈ L∞loc(0,+∞;R3), (2.7)

dx

dt
∈ L∞loc(0,+∞;R3), (2.8)
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x(0) = x0, (2.9)

dx

dt
(t) = Ax(t)−ByL(t) + Du(t), a.e. t ≥ 0 (2.10)

y(t) = Cx(t), ∀ t ≥ 0, (2.11)

and
yL(t) ∈ ∂jD(y(t)), a.e. t ≥ 0. (2.12)

Let us note that the relations in (2.5) are equivalent to

yL ∈ ∂jD(Cx).

3 Dynamics Analysis

In this section we will give an existence and uniqueness result for our circuit in the ideal
and practical case.

Let us consider the following symmetric and invertible matrix R

R =




1√
C

0 0

0
√

L3 0

0 0
√

L2




satisfying
R−2CT = B,

where R−2 = (R−1)2.

By using the Kalman-Yakoubovich-Popov lemma [13, 20, 22] and following the lines of
[1], we can reduce the problem P (x0) to the differential inclusion Q(z0) defined by:

Find a function z : [0, +∞[→ R3; t 7→ z(t) such that:

z ∈ C0([0,+∞[;R3), (3.1)

dz

dt
∈ L∞loc(0,+∞;R3), (3.2)

z(0) = Rx0, (3.3)

dz

dt
(t) ∈ RAR−1z(t) + RDu(t)−R−1CT ∂jD(CR−1z(t)), a.e. t ≥ 0. (3.4)

where z0 = z(0).
Let us recall the following theorem, due to [11] (consequence of Kato’s theorem [6]).

Theorem 3.1. Let H be a real Hilbert and T : D(T ) ⊂ H → 2H be a maximal monotone
operator. Let t0 ∈ R, σ ∈ R, z0 ∈ D(T ) be given and suppose that f : [t0,+∞) → H satisfies

f ∈ C0([0,+∞);H),
df

dt
∈ L∞loc(0,∞;H).
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Then there exists unique z ∈ C0([0,∞);H) satisfying

dz

dt
∈ L∞loc(0,+∞;H);

z is right− differentiable on [t0,∞);

z(t) ∈ D(T ), t ≥ t0;

z(t0) = z0;

σz(t) + f(t) ∈ dz

dt
(t) + Tz(t), a.e.t ≥ t0.

As a consequence of Theorem 3.1 we obtain the following proposition:

Proposition 3.2. The problem Q(z0) has a unique solution.

Proof. Here σ = 0 As jD is proper, convex and lower semicontinuous, its subdifferential ∂jD

is maximal monotone [6].
The domain D(j) is nonempty for both ideal and practical diodes.
We consider the input function f = −RDu ∈ C0(0,+∞;R3) and RD du

dt ∈ L∞loc(0,+∞;R).

On the other hand, it is clear that the operator T , given by Tx = L.x+R−1CT ∂jD(CR−1x),
∀x ∈ D(∂jD) where L : R3 → R3 is a linear operator defined by Lx = RAR−1x, is maximal
monotone.

4 Qualitative Properties of the Stationary Solutions

Let us first consider the stationary solutions of (2.4) satisfying the problem: Find (x, yL) ∈
R3 × R2 such that

Ax−ByL + Du = 0, (4.1)

y = Cx, (4.2)

and

yL ∈ ∂jD(y). (4.3)

Let us denote this problem by NRM(A,B, C, D, u, jD).

(H1): jD ∈ Γ(R2;R ∪ {+∞}).
(H2): There exists x̄0 ∈ R3 such that jD is finite and continuous at ȳ0 = Cx̄0.

(H3): There exists an invertible matrix P ∈ R3×3 such that

PB = CT .

We set
Φ(x) = jD(Cx), (∀x ∈ R3). (4.4)

Let us consider the following result [4]
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Proposition 4.1. Suppose that assumptions (H1) − (H3) are satisfied and let Φ be
defined as in (4.4).

1) If (x, yL) is solution of Problem NRM(A,B,C,D,u, jD) then x is solution of
problem VI(−PA,−PDu,Φ) defined by

〈−PAx− PDu, v − x〉+ Φ(v)− Φ(x) ≥ 0,∀v ∈ Rn. (4.5)

2) If x is solution of problem V I(−PA,−PDu, Φ) then there exists yL ∈ Rm such that
(x, yL) is solution of Problem NRM(A,B, C, D, u, jD).

Let us check that the assumptions of Proposition 4.1 are satisfied. Indeed, it is clear
that jD satisfies (H1). In the case of ideal and practical diodes, it suffices to consider(

1 2
)T = C

(
3 2 1

)T ∈ int{R2
+} a point at which jD is finite and continuous

therefore Assumption (H2) holds. Finally, the matrix

P =




1/C 0 0

0 L3 0

0 0 L2




allows to check Assumption (H3).
Let us now consider the problem V I(−PA,−PDu, Φ) where

−PA =




0 −1/C 0

1/C R1 + R3 −R1

0 −R1 R1 + R2




Here we study separatly the ideal case then the practical one. We first start by recalling
the following result adapted from [3].

Corollary 4.2. Let Φ ∈ Γ(Rn;R ∪ {+∞}) and M ∈ Rn×n a positive semidefinite matrix.
If there exists x0 ∈ D(Φ) such that:

〈q−MT x0, v〉+Φ∞(v) > 0, ∀v ∈ D(Φ)∞∩ker{M+MT }∩{x ∈ Rn : Mx ∈ D(Φ∞)∗}, v 6= 0,
(4.6)

then problem VI(M,q,Φ) has at least one solution.

¤
This result allows to prove that the problem V I(−PA,−PDu, Φ) has at least one solution

in the case of ideal diodes where

Φ(x) = Ψ(R+)2(x), ∀x ∈ R2.

Indeed, the matrix −PA is positive semidefinite. Moreover, we have, D(Φ)∞ = D(Φ) =
(R+)2,

We have also:
ker{−PA− (PA)T } = {(α, 0, 0)T : α ∈ R}
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D(Φ)∞ ∩ ker{−PA− (PA)T } ∩ {x ∈ R3 : Mx ∈ D(Φ∞)∗} = {(α, 0, 0)T : α ∈ R+}

On the other hand, −PDu = (0, 0,−u)T and Φ∞ = Ψ(R+)2 . It suffices to consider
x0 = (0, 1, 0)T to check (4.6) and consequently to conclude from Corollary 4.2 that our
problem V I(−PA,−PDu, Φ) has at least one solution.

We now turn to the practical diodes case where the superpotentiel Φ is defined by

Φ(x) = |x1|+ |x2|, ∀x = (x1, x2) ∈ R2.

We can easily see that−PA is a P0-matrix and Φ ∈ SDΓ(R2;R∪{+∞}), where SDΓ(Rn;R∪
{+∞}) denotes the the set of functions Φ : Rn → R ∪ {+∞} satisfying

Φ(x) = Φ1(x1) + Φ2(x2) + ... + Φn(xn), ∀x ∈ Rn, (4.7)

where, for all 1 ≤ i ≤ n, we have

Φi ∈ Γ(R;R ∪ {+∞}), (4.8)

Φi(λx) = λΦi(x), ∀λ ≥ 0, ∀x ∈ D(Φi), (4.9)

and such that the functions Φi (1 ≤ i ≤ n) in (4.7) are strictly convex.
Here

D(Φ∞) = D(Φ)∞ = R2

and
D(Φ∞)∗ = {0}.

Therefore we have
{x ∈ R3 : −PAx ∈ D(Φ∞)∗} = {0}

and thus

D(Φ)∞ ∩ {x ∈ R3 : 〈−PAx, x〉 = 0} ∩ {x ∈ R3 : −PAx ∈ D(Φ∞)∗} = {0},

so that we can apply the following corollary to show that V I(−PA,−PDu, Φ) has a
unique solution.

Corollary 4.3. Suppose that Φ ∈ SDΓ(Rn;R ∪ {+∞}) and let M ∈ Rn×n be a P0-matrix.
If

D(Φ)∞ ∩ {x ∈ Rn : 〈Mx, x〉 = 0} ∩ {x ∈ Rn : Mx ∈ D(Φ∞)∗} = {0}
then for each q ∈ Rn, problem VI(M,q,Φ) has a unique solution.

Remark 4.4. The circuit 1 is also used with a practical Zener diode (see Figure 4) instead
of the diode D1. Zener diodes are made to permit current to flow in the reverse direction if
the voltage is larger than the rated breakdown or ”Zener voltage” V3.

Let us use the notation of Figure 4. It is here assumed that

I1 < 0 < I2, V1 < V3 < 0 < V4 < V2.
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Figure 4: Practical Zener diode model

The electrical superpotential of the Zener diode is

ϕZ(x) =





(V1−V3)
2I1

x2 + V3x if x < 0

(V2−V4)
2I2

x2 + V4x if x ≥ 0
, (x ∈ R).

The recession function of the electrical superpotential is given by:

(ϕZ)∞(x) = Ψ{0}(x), (x ∈ R).

Moreover

∂ϕZ(x) =





(V1−V3)
I1

x + V3 if x < 0

[V3, V4] if x = 0

(V2−V4)
I2

x + V4 if x > 0

, (x ∈ R)

Here we can use Proposition 3.1 to assert that the problem P (x0) has a unique solution
in the case where a Zener diode replaces the diode D1.

Concerning the equilibrium study, we may use directly, Corollary 4.3, to prove the ex-
istence and uniqueness of the solution. Indeed, it is easy to check that the characteristics
multi-valued functions of the practical diode and practical Zener diode have the same do-
main and belong to SDΓ(R2;R ∪ {+∞}). Moreover, the matrix M is the same for both
cases i.e. M = −PA.
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Remark 4.5. 1. To simulate the stationnary solution, we can use appropriate methods
developed for the variational inequalities and differential inclusions theories. For the
ideal diodes case, where Φ(x) = Ψ(R+)2(x), ∀x ∈ R2, we can reduce VI(M,q,Φ) to
a Linear Complementarity Problem (LCP). Indeed, let us consider the system (4.1)-
(4.3), where we denote by ythe the vector y = (y1 y2)T , that we reduce to the following
sytem:

y = HyL + b, (4.10)

where

H =




R1 + R2 −2R1 −R2

−2R1 −R3 − 1/C 2R1 + R2


 and b =

( −u
u

)
.

The system (4.10) and the ideal diode characteristic i.e.

−yL ≥ 0, y ≥ 0, yT
Ly = 0,

is an LCP that can be implemented using Lemke’s algorithm [14].

2. The paper [2] deals with the sensitivity of the problem V I(M, q,Φ,K) defined by:
{

Find u ∈ K such that
〈Mu + q, v − u〉+ Φ(v)− Φ(u) ≥ 0, ∀v ∈ K

The sensitivity is defined in the sense of the following definition:

One says that the variational inequality V I(M, q,Φ,K) is stable provided that there
exists ε > 0 such that for any symmetric and positive semidefinite matrix Mε, any
vector qε ∈ q + εBn (here Bn denotes the open unit ball in Rn), any proper lower
semicontinuous bounded from below convex function Φε, and any nonempty closed
convex set Kε satisfying the following conditions

0 ∈ D(Φε∩Kε) and ker(M)∩ker(Φ∞)∩K∞ = ker(Mε)∩ker((Φε)∞)∩(Kε)∞, (4.11)

the perturbed problem V I(Mε, qε,Φε,Kε) has at least one solution.

The stability result presented in [2] is to be extended to the nonsymmetric case.

3. In [5, 7, 9], we can find results concerning the stability of the trivial solution of Problem
V I(M, q,Φ), in the ideal diode case.
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[12] J.B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of Convex Analysis, Springer
Grundlehren Text Editions, Heidelberg, 2001.

[13] R.E. Kalman, Lyapunov Functions for the Problem of Lur’e in Automatic Control,
Proc. Nat. Acad. Sci. 49 (1963) 201–205.

[14] C.A. Lemke, Some pivot scheme for the linear complementarity problem, Math. Pro-
gramming Stud. 7 (1978) 15–35.

[15] J. Millman and C.C. Halkias, Integrated Electronics, McGraw-Hill Kogakusha, LTD,
Sydney, 1985.

[16] J.J. Moreau, La notion du surpotentiel et les liaisons unilatérales on elastostatique,
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