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1 Introduction

In this paper, we consider the obstacle problem with L1−data associated with a nonlinear
elliptic differential operator in divergence form of p(.)-Laplacian type

Au := −div(a(x,∇u)),

on a bounded domain Ω ⊂ RN , N > 1.
The theory of variational inequalities to which obstacle problems belong has been widely

studied in the classical context of data in W−1,p′(Ω). Indeed, if we consider for example,
the obstacle problem associated with a nonlinear elliptic differential operator A of monotone
type, mapping W 1,p

0 (Ω), p > 1, into its dual W−1,p′(Ω), for any datum f ∈ W−1,p′(Ω), the
unilateral problem relative to A, f and the obstacle ψ is the problem of funding a function
u such that

u ∈ W 1,p
0 (Ω), u ≥ ψ

〈Au, v − u〉 ≥ 〈f, v − u〉
∀v ∈ W 1,p

0 (Ω), v ≥ ψ.

In the case of quasilinear operators in divergence form of p(.)-Laplacian type that we consider
in this paper, the classical obstacle problem can be formulated, using the duality pairing
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between W
1,p(.)
0 (Ω) and W−1,p′(.)(Ω), in terms of variational inequality

u ∈ Kψ :
∫

Ω

a(x,∇u).∇(v − u)dx ≥ 〈f, v − u〉 , ∀v ∈ Kψ (1.1)

whenever f ∈ W−1,p′(.)(Ω) and the convex subset

Kψ =
{

v ∈ W
1,p(.)
0 (Ω) : v ≥ ψ a.e. in Ω

}
(1.2)

is nonempty.
As in the case of constant exponent p, for f ∈ L1(Ω) and 1 < p(.) < N , both sides

of inequality (1.1) may have no meaning, so we are led, following [2, 4], to extend the
formulation of the unilateral problem by replacing v − u by its truncation Tt(v − u), for
every level t > 0, where Tt is defined by

Tt(s) := max {−t,min {t, s}} , s ∈ R;

and then, we may use the notion of entropy solution introduced in [2] for L1-data.
In [15], the authors have considered the same problem as in the paper under the following

assumptions on the vector field a(., .) and on the exponent p(.):

a(x, ξ).ξ ≥ α |ξ|p(x) (1.3)

a.e. x ∈ Ω, for every ξ ∈ RN , where α is a positive constant;

|a(x, ξ)| ≤ γ(j(x) + |ξ|p(x)−1), (1.4)

a.e. x ∈ Ω, for every ξ ∈ RN , where j is a nonnegative function in Lp′(.)(Ω) and γ > 0;

(a(x, ξ)− a(x, η)).(ξ − η) > 0, (1.5)

a.e. x ∈ Ω, for every ξ, ξ′ ∈ RN with ξ 6= ξ′.
The exponent p(.) : Ω → R is a measurable function such that

p(.) ∈ W 1,∞(Ω) and 1 < p− ≤ p+ < N, (1.6)

where p− := ess inf
x∈Ω

p(x) and p+ := ess sup
x∈Ω

p(x) and N the dimension of the domain.

The Lipschitz condition in (1.6) allowed them in particular to exploit some embedding
theorems and also to perform some estimates needed since they can differentiate the exponent
p(.). For the assumptions (1.3)-(1.6), they allowed in particular Sanchon and Urbano in [18]
to exploit the arguments in [8, Theorem 4.2] for the study of existence of entropy solution
of the problem 



−div(a(x,∇u)) = f in Ω

u = 0 on ∂Ω,
(1.7)

where f ∈ L1(Ω); by using the classical approximation method. Note that the work in [16]
is a direct consequence of [18]. But in [8], the authors studied




−div(|∇u|p(x)−2∇u) = f in Ω

u = 0 on ∂Ω,

(1.8)
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where f ∈ L∞(Ω); and as one can see, problem (1.8) is a particular case of (1.7), and the
use of the existence and uniqueness result in [8, Theorem 4.2] for the approximation method
in the study of (1.7) seem not very clear. To avoid this lack of clarity in [18], we have made
some additionnal assumptions on the vector field a in other to study the existence result
of (1.7) (see [15] for more details) that we will present later. The interest of this work is
that in general, the study of problem with variable exponent are made for a continuous
variable exponent in order to exploit some continuous or compactly embedding results (as
in the constant exponent case) but in this paper we show that results in [16] still holds for
a variable exponent only measurable. It is well known that if p(.) is not continuous, the
generalized Sobolev space W 1,p(.)(Ω) is not embedded in Lp∗(.)(Ω), where p∗(.) = Np(.)

N−p(.)

is the variable Sobolev exponent (see [11, Ex. 3.2]). The novelty of this paper is on the
assumption of the exponent p(.) which is assumed only measurable.

The Lewy-Stampacchia inequalities was firstly proved by Lewy and Stampacchia [12] in
the case of the obstacle problem for the Laplace operator. It was then extended by many
authors to the case of linear and nonlinear elliptic operators and became a powerful tool
for proving existence and regularity results, giving rise to numerous papers, some reference
of which can be found e.g. in the book of Troianiello [19] and Rodrigues et al [16]. We
show that the Lewy-Stampacchia inequalities still holds in the context of assumption on the
exponent p(.).

The paper is divided into four Sections. In Section 2, we introduce the assumptions and
state the main results. In Section 3, we prove the existence and uniqueness of an entropy
solution and its continuous dependence with respect to the data. Finally, in Section 4, we
show that Lewy-Stampacchia inequalities and the stability of the coincidence sets to the
context of entropy solutions and an exponent p(.) only measurable holds true.

2 Assumptions, Preliminaries and Main Results

In this paper, we study the obstacle problem with less regularity on the variable exponent
p(.), more precisely, we assume that





p(.) is a measurable function such that

1 < p− ≤ p+ < +∞.
(2.1)

For the vector fields a(., .), we assume that a(x, ξ) : Ω×RN → RN is the continuous derivative
with respect to ξ of the mapping A : Ω × RN → R, A = A(x, ξ), i.e. a(x, ξ) = ∇ξA(x, ξ)
such that:
The following equality holds

A(x, 0) = 0, (2.2)

for almost every x ∈ Ω.
There exists a positive constant C1 such that

|a(x, ξ)| ≤ C1(j(x) + |ξ|p(x)−1) (2.3)

for almost every x ∈ Ω and for every ξ ∈ RN , where j is a nonnegative function in Lp′(.)(Ω),
with 1/p(x) + 1/p′(x) = 1.

The following inequality holds

(a(x, ξ)− a(x, η)) . (ξ − η) > 0 (2.4)
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for almost every x ∈ Ω and for every ξ, η ∈ RN , with ξ 6= η.
The following inequalities holds true

|ξ|p(x) ≤ a(x, ξ).ξ ≤ p(x)A(x, ξ) (2.5)

for almost every x ∈ Ω and for every ξ ∈ RN .
Those assumptions allow us to exploit minimax theory for the question of existence of

weak energy solution of the problems (1.7) (cf. [15]) in the context of assumption (2.1).
As examples of models with respect above assumptions for problem (1.7), we can give the
following:
(i) Set A(x, ξ) = (1/p(x)) |ξ|p(x), a(x, ξ) = |ξ|p(x)−2

ξ where p(x) ≥ 2. Then we get the
p(x)-Laplace operator

div(|∇u|p(x)−2∇u).

(ii) Set A(x, ξ) = (1/p(x))
[(

1 + |ξ|2
)p(x)/2

− 1
]
, a(x, ξ) =

(
1 + |ξ|2

)(p(x)−2)/2

ξ, where

p(x) ≥ 2. Then we obtain the generalized mean curvature operator

div

((
1 + |∇u|2

)(p(x)−2)/2

∇u

)
.

As the exponent p(.) appearing in (2.3) and (2.5) does not need to be constant but may
depend on the variable x, we must work with Lebesgue and Sobolev spaces with variable
exponent.

We define the Lebesgue space with variable exponent Lp(.)(Ω) as the set of all measurable
function u : Ω → R for which the convex modular

ρp(.)(u) :=
∫

Ω

|u|p(x)
dx

is finite. If the exponent is bounded, i.e., if p+ < +∞, then the expression

|u|p(.) := inf
{
λ > 0 : ρp(.)(u/λ) ≤ 1

}

defines a norm in Lp(.)(Ω), called the Luxembourg norm. The space (Lp(.)(Ω), |.|p(.)) is a
separable Banach space. Moreover, if p− > 1, then Lp(.)(Ω) is uniformly convex, hence
reflexive, and its dual space is isomorphic to Lp′(.)(Ω), where 1

p(x) + 1
p′(x) = 1. Finally, we

have the Hölder type inequality:
∣∣∣∣
∫

Ω

uvdx

∣∣∣∣ ≤
(

1
p−

+
1

p′−

)
|u|p(.) |v|p′(.) , (2.6)

for all u ∈ Lp(.)(Ω) and v ∈ Lp′(.)(Ω).
Now, let

W 1,p(.)(Ω) :=
{

u ∈ Lp(.)(Ω) : |∇u| ∈ Lp(.)(Ω)
}

,

which is a Banach space equipped with the norm

‖u‖1,p(.) := |u|p(.) + |∇u|p(.) .

Next, we define W
1,p(.)
0 (Ω) as the closure of C∞0 (Ω) in W 1,p(.)(Ω) under the norm

‖u‖ := |∇u|p(.) .
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The space
(
W

1,p(.)
0 (Ω), ‖u‖

)
is a separable and reflexive Banach space.

An important role in manipulating the generalized Lebesgue-Sobolev spaces is played by
the modular ρp(.) of the space Lp(.)(Ω).

We have the following result (cf. [9]):

Lemma 2.1. If un, u ∈ Lp(.)(Ω) and p+ < +∞ then the following relations holds true:

(i) |u|p(.) > 1 ⇒ |u|p−p(.) ≤ ρp(.)(u) ≤ |u|p+

p(.);

(ii) |u|p(.) < 1 ⇒ |u|p+

p(.) ≤ ρp(.)(u) ≤ |u|p−p(.);

(iii) |u|Lp(.)(Ω) < 1 (respectively = 1; > 1) ⇔ ρ(u) < 1 (respectively = 1; > 1);

(iv) |un|Lp(.)(Ω) → 0 (respectively → +∞) ⇔ ρ(un) → 0 (respectively → +∞);

(v) ρ
(
u/ |u|Lp(.)(Ω)

)
= 1.

The resulting notion of entropy solution for the obstacle problem is made precise in the
following definition.

Definition 2.2. An entropy solution of the obstacle problem for {f, ψ} is a measurable
function u such that u ≥ ψ a.e. in Ω, and, for every t > 0, Tt(u) ∈ W

1,p(.)
0 (Ω) and

∫

Ω

a(x,∇u).∇Tt(ϕ− u)dx ≥
∫

Ω

fTt(ϕ− u)dx, (2.7)f,ψ

for all ϕ ∈ Kψ ∩ L∞(Ω).

In this paper, concerning the right hand side of (2.7)f,ψ and the obstacle ψ, we make the
following assumptions:

f ∈ L1(Ω), ψ ∈ W 1,p(.)(Ω), and ψ+ ∈ W
1,p(.)
0 (Ω) ∩ L∞(Ω). (2.8)

In particular, the last assumption guarantees that Kψ ∩ L∞(Ω) 6= ∅.
Our first result concerns the existence and uniqueness of an entropy solution in the sens

of definition 2.2, to the obstacle problem. We recall from [15, 18] that it is still possible, as
in the case of a constant p (cf. [2]), to define the weak gradient of a measurable function u

such that Tt(u) ∈ W
1,p(.)
0 (Ω), for all t > 0. In fact, there exists a unique measurable vector

field v : Ω → RN such that

vχ{|u|<t} = ∇Tt(u) for a.e. x ∈ Ω, and for all t > 0,

where χB denotes the characteristic function of a measurable set B. Moreover, if u belongs
to W 1,1

0 (Ω), then v coincides with the standard distributional gradient of u

Theorem 2.3. Assume (2.1)-(2.5) and (2.8). Then there exists a unique entropy solution
u to the obstacle problem (2.7)f,ψ.

Now, consider a sequence {fn, ψn}n and the corresponding obstacle problems (2.7)fn,ψn
.

The next result states that, under adequate assumptions, the limit of an entropy solution
un of (2.7)fn,ψn is the solution of the limit obstacle problem (2.7)f,ψ.
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Theorem 2.4. Let {fn, ψn}n be a sequence in L1(Ω) × W 1,p(.)(Ω). Assume (2.1)-(2.5),
(2.8) and that ψ+

n ∈ W
1,p(.)
0 (Ω) ∩ L∞(Ω), for all n. Let un be the entropy solution of the

obstacle problem (2.7)fn,ψn . If

fn → f in L1(Ω) and ψn → ψ in W 1,p(.)(Ω), (2.9)

then
un → u in measure,

where u is the unique entropy solution of the obstacle problem (2.7)f,ψ.

We also show that the so-called Lewy-Stampacchia inequalities and their consequences
as the stability of coincidence set, the L1−contraction property for the obstacle problem
holds true.

Theorem 2.5. Assume (2.1)-(2.5), (2.8) and Aψ ∈ L1(Ω). Let u be the entropy solution
of the obstacle problem (2.7)f,ψ. Then Au ∈ L1(Ω) and the following Lewy-Stampacchia
inequalities holds

f ≤ Au ≤ f + (Aψ − f)+, a.e. in Ω. (2.10)

Using the Lewy-Stampacchia inequalities and showing that Au = f , a.e. in {u > ψ}, we
show that the entropy solution of (2.7)f,ψ satisfies an equation involving the coincidence set
{u = ψ}.
Theorem 2.6. Assume (2.1)-(2.5), (2.8) and Aψ ∈ L1(Ω). The entropy solution u of the
obstacle problem (2.7)f,ψ satisfies the equation

Au− (Aψ − f)χ{u=ψ} = f, a.e. in Ω. (2.11)

Note that (2.10) and (2.11) imply, in particular,

(Aψ − f)χ{u=ψ} = (Aψ − f)+χ{u=ψ}, a.e. in Ω.

The next result concerns the convergence of the coincidence set of a sequence of entropy
solutions to the limit coincidence set.

Theorem 2.7. Under the assumptions of Theorem 2.4, assume that

Aψn → Aψ in L1(Ω) and Aψ 6= f, a.e. in Ω.

Then
χ{un=ψn} → χ{u=ψ} in Lq(Ω), (2.12)

for all 1 ≤ q < +∞.

Finally, we obtain an L1-contraction property for the obstacle problem and an estimate
for the stability of two coincidence sets I1 and I2 in terms of their symetric difference

I1 ÷ I2 := (I1\I2) ∪ (I2\I1) .

Theorem 2.8. Assume (2.1)-(2.5), let f1, f2 ∈ L1(Ω), ψ satisfy (2.8) and Aψ ∈ L1(Ω).
Let u1 and u2 be the entropy solutions of the obstacle problems (2.7)f1,ψ and (2.7)f2,ψ,
respectively. If ξi := fi −Aui, i = 1, 2, then

‖ξ1 − ξ2‖1 ≤ ‖f1 − f2‖1 . (2.13)
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If, in addition, the non-degeneracy condition

fi −Aψ ≤ −λ < 0, a.e. in D, i = 1, 2, (2.14)

holds in a measurable subset D ⊂ Ω, then, for Ii := {ui = ψ},

meas((I1 ÷ I2) ∩D) ≤ 1
λ
‖f1 − f2‖1 . (2.15)

3 Existence, Uniqueness and Continuous Dependence of Entropy
Solutions

We first give a priori estimates results in Lebesgue and Sobolev spaces with variable expo-
nent for an entropy solution of the obstacle problem.

Lemma 3.1. Assume (2.1)-(2.5), (2.8) and let ϕ ∈ Kψ∩L∞(Ω). If u is an entropy solution
of the variational inequality (2.7)f,ψ then

∫

{|u|≤t}
|∇u|p(x)

dx ≤ C((t + ‖ϕ‖∞) ‖f‖1 +
∫

Ω

(|∇ϕ|p(x) + j(x)p′(x))dx), (3.1)

for all t > 0, where C is a constant depending only on C1 and p(.).

Proof. Take ϕ ∈ Kψ ∩ L∞(Ω) in the variational inequality (2.7)f,ψ to obtain
∫

{|u−ϕ|≤t}
a(x,∇u).∇(u− ϕ)dx ≤

∫

Ω

fTt(u− ϕ)dx ≤ t ‖f‖1 ,

for all t > 0.
On the other hand, by assumptions (2.3), (2.5) and Young’s inequality, we have, for all

t > 0,




∫

{|u−ϕ|≤t}
a(x,∇u).∇(u− ϕ)dx ≥

∫

{|u−ϕ|≤t}
|∇u|p(x)

dx−

C1

∫

{|u−ϕ|≤t}
(j(x) + |∇u|p(x)−1) |∇ϕ| dx ≥ 1

p+

∫

{|u−ϕ|≤t}
|∇u|p(x)−

C

∫

Ω

(|∇ϕ|p(x) + j(x)p′(x))dx,

(3.2)

where C is a constant depending only on C1 and p(.).
Now, from (3.1) and (3.2), we obtain

∫

{|u−ϕ|≤t}
|∇u|p(x)

dx ≤ p+t ‖f‖1 + C

∫

Ω

(|∇ϕ|p(x) + j(x)p′(x))dx,

for all t > 0. Replacing t with t + ‖ϕ‖∞ in the last inequality, we get




∫

{|u|≤t}
|∇u|p(x)

dx ≤
∫

{|u−ϕ|≤t+‖ϕ‖∞}
|∇u|p(x)

dx ≤

C((t + ‖ϕ‖∞) ‖f‖1 +
∫

Ω

(|∇ϕ|p(x) + j(x)p′(x))dx),

for all t > 0.
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Lemma 3.2. Assume (2.1)-(2.5), (2.8) and let ϕ ∈ Kψ∩L∞(Ω). If u is an entropy solution
of the variational inequality (2.7)f,ψ then

∫

{|u|≤t}
|∇Tt(u)|p(x)

dx ≤ M(1 + t)

for every t > 0, with M a positive constant. More precisely, there exists D > 0 such that

meas {|u| > t} ≤ Dp− 2 + t

tp−
.

Proof. By Lemma 3.1, we have





∫

{|u|≤t}
|∇Tt(u)|p(x)

dx =
∫

{|u|≤t}
|∇u|p(x)

dx ≤

C((t + ‖ϕ‖∞) ‖f‖1 +
∫

Ω

(|∇ϕ|p(x) + j(x)p′(x))dx) ≤ M(1 + t),

since f ∈ L1(Ω), ϕ ∈ L∞(Ω) ∩W
1,p(.)
0 (Ω), j ∈ Lp′(.)(Ω).

∫

{|u|≤t}
|∇Tt(u)|p(x)

dx ≤ M(1 + t) ⇒
∫

{|u|≤t}
|∇Tt(u)|p− dx ≤ C(2 + t).

By Poincaré inequality in constant exponent, we obtain

‖Tt(u)‖Lp− (Ω) ≤ D(2 + t)
1

p− .

The above inequality imply that
∫

Ω

|Tt(u)|p− dx ≤ Dp−(2 + t),

from which we obtain

meas {|u| > t} ≤ Dp− 2 + t

tp−
.

Lemma 3.3. Assume (2.1)-(2.5), (2.8) and let ϕ ∈ Kψ∩L∞(Ω). If u is an entropy solution
of the variational inequality (2.7)f,ψ and if there exists a positive constant M such that

∫

{|u|>t}
tq(x)dx ≤ M, for all t > 0, (3.3)

then there exists a constant C, depending only on C1 and p(.), such that
∫

{|∇u|α(.)>t}
tq(x)dx ≤ C((1 + ‖ϕ‖∞) ‖f‖1 +

∫

Ω

(|∇ϕ|p(x) + j(x)p′(x))dx) + M + meas(Ω),

for all t > 0, where α(.) := p(.)/(q(.) + 1).
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Proof. Define ψ := Tt(u)/t. From Lemma 3.1, we have
∫

Ω

tp(x)−1 |∇ψ|p(x)
dx =

1
t

∫

Ω

|∇Tt(u)|p(x)
dx ≤ M1 +

M2

t
,

for all t > 0, where M1 := C ‖f‖1 and M2 := C(‖ϕ‖∞ ‖f‖1 +
∫
Ω
(|∇ϕ|p(x) + j(x)p′(x))dx),

for a constant C depending only on C1 and p(.).
Using the above inequality, the definition of α(.) and (3.3), we obtain





∫

{|∇u|α(.)>t}
tq(x)dx ≤

∫

{|∇u|α(.)>t}∩{|u|≤t}
tq(x)dx +

∫

{|u|>t}
tq(x)dx ≤

∫

{|u|≤t}
tq(x)

(
|∇u|α(x)

t

) p(x)
α(x)

dx + M ≤ 1
t

∫

{|u|≤t}
|∇Tt(u)|p(x)

dx + M

≤ C((1 + ‖ϕ‖∞) ‖f‖1 +
∫

Ω

(|∇ϕ|p(x) + j(x)p′(x))dx) + M

for all t ≥ 1, where C is a constant depending only on C1 and p(.). Noting that
∫

{|∇u|α(.)>t}
tq(x)dx ≤ meas(Ω), for all t ≤ 1.

The Proof is then complete.

In what follows, we prove the existence and uniqueness of an entropy solution to the
obstacle problem (2.7)f,ψ. We also prove the continuous dependence of the solution with
respect to the right-hand side f and the obstacle ψ. We start by proving that a sequence
{un}n of entropy solutions of the obstacle problems (2.7)fn,ψn converges in measure to a
measurable function u. We also show that the sequence of weak gradients {∇un}n converges
in measure to ∇u, the weak gradient of u.

Proposition 3.4. Let {fn, ψn}n be a sequence in L1(Ω)×W 1,p(.)(Ω). Assume (2.1)-(2.5),
(2.8) and that ψ+

n ∈ W
1,p(.)
0 (Ω) ∩ L∞(Ω), for all n. Let un be an entropy solution of the

obstacle problem (2.7)fn,ψn
. If

fn → f in L1(Ω) and ψn → ψ in W 1,p(.)(Ω), (3.4)

then the following assertions hold:

(i) There exists a measurable function u such that un → u in measure.

(ii) ∇un converges in measure to ∇u, the weak gradient of u.

(iii) a(x,∇un) converges to a(x,∇u), strongly in (L1(Ω))N .

(iv) a(x,∇u) ∈ (Lp′(.)(Ω))N .

Proof. Let ϕ ∈ Kψ∩L∞(Ω), e.g. ϕ = ψ+, and note that ϕn := ϕ+(ψn−ϕ)+ ∈ L∞(Ω) since
ϕ ∈ L∞(Ω) and ψn is bounded above as ψ+

n ∈ L∞(Ω). In particular, ϕn ∈ Kψn ∩ L∞(Ω).
Moreover, by (3.4), there exists a constant C, independent of n, such that

‖fn‖1 ≤ C(‖f‖1 + 1), ‖ϕn‖∞ ≤ C(‖ϕ‖∞ + 1) (3.5)
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and ∫

Ω

|∇ϕn|p(x)
dx ≤ C

(∫

Ω

|∇ϕ|p(x)
dx + 1

)
, (3.6)

for all n.
(i) Let s, t, and ε be positive numbers. Noting that

meas {|un − um| > s} ≤ meas {|un| > t}+meas {|um| > t}+meas {|Tt(un)− Tt(um)| > s} ,
(3.7)

then from Lemma 3.2 and (3.5)-(3.6), we can choose t = t(ε) such that

meas {|un| > t} <
ε

3
and meas {|um| > t} <

ε

3
.

On the other hand, from Lemma 3.1 applied to un and (3.5)-(3.6), we obtain
∫

Ω

|∇Tt(un)|p(x)
dx ≤ C((t + ‖ϕ‖∞ + 1)(‖f‖1 + 1) +

∫

Ω

(|∇ϕ|p(x) + j(x)p′(x))dx + 1),

for all t > 0, where C is a constant depending only on C1 and p(.). Therefore, by Sobolev
embedding in constant exponent, we can assume that (Tt(un))n is a Cauchy sequence in
Lp−(Ω). Consequently, there exists a measurable function u such that

Tt(un) → Tt(u), in Lp−(Ω) and a.e.

Thus,

meas {|Tt(un)− Tt(um)| > s} ≤
∫

Ω

( |Tt(un)− Tt(um)|
s

)p−

dx ≤ ε

3
,

for all n,m ≥ n0(s, ε).
Finally, from (3.7), we obtain

meas {|un − um| > s} < ε, for all n,m ≥ n0(s, ε),

i.e {un}n is a Cauchy sequence in measure. The assertion follows.
(ii)-(iv) The proof of these parts is entirely similar to the corresponding ones in [14, Propo-
sition 4.10].

Using Proposition 3.4, we can now prove Theorem 2.4.

Proof of Theorem 2.4. Let ϕ ∈ Kψ ∩ L∞(Ω) and define ϕn := ϕ + (ψn − ϕ)+. Note that
ϕn ∈ Kψn

∩L∞(Ω) and that ϕn converges strongly to ϕ in W
1,p(.)
0 (Ω), due to (2.9). Taking

ϕn as a test function in (2.7)fn,ψn
, we obtain

∫

Ω

a(x,∇un).∇Tt(un − ϕn)dx ≤
∫

Ω

fnTt(un − ϕn)dx.

Next is to pass to the limit in the previous inequality. Concerning the right-hand side, the
convergence is obvious since fn converges to f , strongly in L1(Ω), and Tt(un−ϕn) converges
to Tt(u− ϕ), weakly-* in L∞(Ω) and a.e. in Ω.

For the left-hand side, we write it as
∫

{|un−ϕn|≤t}
a(x,∇un).∇undx−

∫

{|un−ϕn|≤t}
a(x,∇un).∇ϕndx. (3.8)
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Note that {|un − ϕn| ≤ t} is a subset of {|un| ≤ t + C(‖ϕ‖∞ + 1)} where C is a constant
which does not depend on n due to (3.5). Hence, taking s = t + C(‖ϕ‖∞ + 1), we rewrite
the second integral in (3.8) as

∫

{|un−ϕn|≤t}
a(x,∇Ts(un)).∇ϕndx.

Since a(x,∇Ts(un)) is uniformly bounded in (Lp′(.)(Ω))N (by assumptions (2.3) and Lemma
3.1), it converges weakly to a(x,∇Ts(u)) in (Lp′(.)(Ω))N , due to Proposition 3.4 (ii). There-
fore the last integral converges to

∫

{|u−ϕ|≤t}
a(x,∇u).∇ϕdx.

The first integral (3.8) is nonnegative by (2.5), and it converges a.e. by Proposition 3.4. It
follows from Fatou’s Lemma that

∫

{|u−ϕ|≤t}
a(x,∇u).∇udx ≤ lim inf

n→+∞

∫

{|un−ϕn|≤t}
a(x,∇un).∇undx.

Then gathering results, we obtain
∫

Ω

a(x,∇u).∇Tt(u− ϕ)dx ≤
∫

Ω

fTt(u− ϕ)dx,

b.e., u is an entropy solution of (2.7)f,ψ.

The proof of Theorem 2.3 is an application of Theorem 2.4.

Proof of Theorem 2.3. * Existence. Let (fn) be a sequence of bounded functions, strongly
converging to f ∈ L1(Ω). As fn ∈ L∞(Ω), we know by [15, Theorem 3.2](cf. [10, 13] for
the link) that there exists a unique weak energy solution un ∈ W

1,p(.)
0 (Ω) of the obstacle

prroblem (2.7)fn,ψ. As a weak energy solution is also an entropy solution, we may apply
Theorem 2.4 to obtain that un converges to a measurable function u which is an entropy
solution of the limit obstacle problem (2.7)f,ψ.
* Uniqueness. Let u and v be two entropy solutions of (2.7)f,ψ. Since ψ+ ∈ W

1,p(.)
0 (Ω) ∩

L∞(Ω) and ψ ≤ ‖ψ+‖∞, then Thu and Thv belong to the convex set Kψ for h > 0 large
enough. We write the variational inequality (2.7)f,ψ corresponding to the solution u, with
Thv as test function, and to the solution v, with Thu as test function. Upon addition we get





∫

{|u−Thv|≤t}
a(x,∇u).∇(u− Thv)dx +

∫

{|v−Thu|≤t}
a(x,∇v).∇(v − Thu)dx

≤
∫

Ω

f(Tt(u− Thv) + Tt(v − Thu))dx.

(3.9)

Define

E1 := {|u− v| ≤ t, |v| ≤ h} , E2 := E1 ∩ {|u| ≤ h} , E3 := E1 ∩ {|u| > h} .
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We start with the first integral in (3.9). By (2.5), we have





∫

{|u−Thv|≤t}
a(x,∇u).∇(u− Thv)dx =

∫

{|u−Thv|≤t}∩({|v|≤h}∪{|v|>h})
a(x,∇u).∇(u− Thv)dx =

∫

{|u−Thv|≤t,|v|≤h}
a(x,∇u).∇(u− Thv)dx +

∫

{|u−Thv|≤t,|v|>h}
a(x,∇u).∇(u− Thv)dx

=
∫

{|u−v|≤t,|v|≤h}
a(x,∇u).∇(u− v)dx +

∫

{|u−h|≤t,|v|>h}
a(x,∇u).∇udx

≥
∫

{|u−v|≤t,|v|≤h}
a(x,∇u).∇(u− v)dx =

∫

E1

a(x,∇u).∇(u− v)dx

=
∫

E1∩({|u|≤h}∪{|u|>h})
a(x,∇u).∇(u− v)dx =

∫

E2

a(x,∇u).∇(u− v)dx

+
∫

E3

a(x,∇u).∇(u− v)dx =
∫

E2

a(x,∇u).∇(u− v)dx+

∫

E3

a(x,∇u).∇udx−
∫

E3

a(x,∇u).∇vdx ≥
∫

E2

a(x,∇u).∇(u− v)dx

−
∫

E3

a(x,∇u).∇vdx.

(3.10)
Using (2.3) and (2.6), we estimate the last integral in (3.10) as follow





∣∣∣∣
∫

E3

a(x,∇u).∇vdx

∣∣∣∣ ≤ C1

∫

E3

(
j(x) + |∇u|p(x)−1

)
|∇v| dx

≤ C

(
|j|p′(.) +

∣∣∣|∇u|p(x)−1
∣∣∣
p′(.),{h<|u|≤h+t}

)
|∇v|p(.),{h−t<|v|≤h} .

(3.11)

The quantity C

(
|j|p′(.) +

∣∣∣|∇u|p(x)−1
∣∣∣
p′(.),{h<|u|≤h+t}

)
is finite, since u ∈ W

1,p(.)
0 (Ω) and

j ∈ Lp′(.)(Ω); Then by Lemma 3.2, the last expression converges to zero as h tends to
infinity. Therefore, from (3.10) and (3.11), we obtain

∫

{|u−Thv|≤t}
a(x,∇u).∇(u− Thv)dx ≥ Ih +

∫

E2

a(x,∇u).∇(u− v)dx, (3.12)

where Ih converges to zero as h tends to infinity. We may adopt the same procedure to treat
the second term in (3.9) and we obtain

∫

{|v−Thu|≤t}
a(x,∇v).∇(v − Thu)dx ≥ Jh −

∫

E2

a(x,∇v).∇(u− v)dx, (3.13)
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where Jh converges to zero as h tends to infinity.
Next, consider the right-hand side of inequality (3.9). Noting that

Tt(u− Thv) + Tt(v − Thu) = 0 in {|u| ≤ h, |v| ≤ h} ;

we obtain
∣∣∣∣
∫

Ω

f(x)(Tt(u− Thv) + Tt(v − Thu))dx

∣∣∣∣ =

∣∣∣∣∣
∫

{|u|>h}
f(x)(Tt(u− Thv) + Tt(v − Thu))dx

+
∫

{|u|≤h}
f(x)(Tt(u− Thv) + Tt(v − Thu))dx

∣∣∣∣∣

=

∣∣∣∣∣
∫

{|u|>h}
f(x)(Tt(u− Thv) + Tt(v − Thu))dx

+
∫

{|u|≤h,|v|>h}
f(x)(Tt(u− Thv) + Tt(v − Thu))dx

∣∣∣∣∣

≤ 2t

(∫

{|u|>h}
|f | dx +

∫

{|v|>h}
|f | dx

)
.

According to Lemma 3.2, both meas {|u| > h} and meas {|v| > h} tend to zero as h goes to
infinity, then by the inequality above, the right-hand side of inequality (3.9) tends to zero as
h goes to infinity. From this assertion, (3.9), (3.12) and (3.13), we obtain, letting h → +∞,

∫

{|u−v|≤t}
(a(x,∇u)− a(x,∇v)).∇(u− v)dx ≤ 0, for all t > 0.

By assertion (2.4), we conclude that ∇u = ∇v, a.e. in Ω.
Finally, from Poincaré inequality in constant exponent, we have

∫

Ω

|Tt(u− v)|p− dx ≤ C

∫

Ω

|∇(Tt(u− v))|p− dx = 0, for all t > 0;

and hence u = v, a.e. in Ω.

4 Lewy-Stampacchia Inequalities and Stability Results of the Co-
incidence Set

As E := W
1,p(.)
0 (Ω) is a reflexive Banach space even under assumption (2.1) on p(.), we

show the Lewy-Stampacchia inequalities in the same way as in [16].

Proof of Theorem 2.5. Consider a sequence {fn}n∈N ⊂ L∞(Ω) such that fn converges
strongly in L1(Ω) to f . Let un ∈ W

1,p(.)
0 (Ω) be the unique weak energy solution of the

obstacle problem
un ∈ Kψ : 〈Aun − fn, v − un〉 ≥ 0, ∀v ∈ Kψ.

Since E is a reflexive Banach space and A : E → E′ (E′ := W−1,p′(.)(Ω)) is strictly
monotone, it follows from the abstract theory developed in [14] that

fn ≤ Aun ≤ fn + (Aψ − fn)+ in E′.
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Note that, in particular, the above inequalities holds in the sense of distribution.
Let 0 ≤ ϕ ∈ D(Ω), then

∫

Ω

fnϕdx ≤
∫

Ω

a(x,∇un).∇ϕdx ≤
∫

Ω

[
fn + (Aψ − fn)+

]
ϕdx.

As a(x,∇un) → a(x,∇u) in
(
L1(Ω)

)N (cf. (iii)-Proposition 3.4 ) and fn → f strongly in
L1(Ω), we obtain after passing to the limit in the inequalities above

f ≤ Au ≤ f + (Aψ − f)+ in D′(Ω).

Since f and f + (Aψ − f)+ are in L1(Ω), we conclude that Au ∈ L1(Ω).

Remark 4.1. As the Lewy-Stampacchia inequalities holds true in the context of assumption
(2.1), then the proof of Theorems 2.6, 2.7 and 2.8 can be found in [16].
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