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Abstract: Using a non-linear membrane theory we establish a mechanical model for oil spill floating boom.
The model is based on the minimization of the internal strain energy minus the external energy of the
applied forces. The discretisation of the boom uses a four-nodes quadrilateral finite-element. The non-linear
variational problem is solved using the Newton-Raphson method. The vertical angle of the boom skirt is
computed and is used to evaluate the oil containment efficiency. A boom plan tactical optimization problem
is formulated. Several real-life operational constraints are given for the boom plan definition. Numerical
examples illustrate the capability of the numerical model.
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1 Introduction

Oil pollution is a major problem within maritime and coastal environments. For a survey of
the Asian-Pacific region, a CEDRE bulletin [2] during 1997, mentions the ship wreck of the
tanker Nakhodka, in the West of the Honshu island Japan 6, 240T spilled, forty accidents
in the Hong-Kong harbor during the years 1995-1996 from 20L to 50T , and six hundreds
sabotages of Colombia’s pipe-lines during the decay 1986-1996 up to 140, 000T .

Before any optimization of response technologies, the most adapted one must be found
first, in accordance with the pollution location, the oil properties and the operational
conditions. In this paper, we study the floating oil barriers, named booms. Near the
shoreline, the objective of the technology is to contain the oil on the sea surface, or to
deviate the oil to a coastal point.

In this paper, we are interested in the mechanical modeling of oil spill boom. The
proposed model is based on the minimization of the total mechanical energy of the boom
structure. We describe the continuous problem and the pressure term involved. A discrete
solution is obtained using the finite-element method.

A boom plan tactical optimization problem is given so that minimizing oil leakage under
the boom. We give the operational point of view which must be included in any boom plan
optimization procedure. Note that many others optimization problems are not treated here,
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such as oil skimming, waste treatment, oil slick survey, waste storage, total response time
for clean up operations [20], work force strategy [18](200, 000 voluntary persons during the
Nakhodka clean up operation).

This work is motivated by some recent numerical results [12] and by recent numerical
and experimental study of the oil boom hydrodynamic [4]. Indeed, in the historical reference
[6], the authors have provided the membrane finite-element considered in this paper. The
established existence and regularity of the solution of the mechanical membrane problem is
not treated here.

Mathematical studies concerning oil spill problems are numerous, and focus on
different aspects such as stochastic approach in harbor [7], probabilistic approach of boom
containment [3], and oil boom hydrodynamic [23]. Boom hydrodynamic studies [5] [22] are
most numerous than boom structural studies [1].

External loads on boom come from three sources, the sea current, the waves [9], and the
wind, given in decreasing order of importance. In this paper, we will study the first loading
factor, the sea current. It is studied as an inefficiency factor for an oil volume contained by
booms [3] [17].

The paper is organized as follows. Boom theory is given in section 2 using membrane
theory. Numerical and mechanical approximations are described in section 3. Optimization
problems are set in section 4. Numerical examples and a real-life boom are considered in
section 5.

2 Boom Theory

Let us first give the boom domain definition.

Definition 2.1. A boom domain imbedded in the three dimensional euclidian space R3 is
defined as a set ω of N boom sections including each four devices

ω =
N∑

i=1

4∑

j=1

ωi,j

where ωi,1 is the boom section numbered i composed of a float, a skirt, including at its
bottom a chain and at its top a leach, ωi,2 is a mini skirt i = 1...N − 1 linking adjacent
boom sections, ωi,3 is a mooring device between a boom section end and a buoyancy coffer,
ωi,4 is a mooring line device between a buoyancy coffer and an anchor or a dead mass moored
on the sea bed. The superscript RL added to ωRL

i,3−4 means the right or the left end of a
boom section. The superscript +− added to ωRL,+−

i,3−4 means the end far away (+) or closed
(−) to a boom section.

The sea level at a given time is denoted l, the water depth is h, the immersed boom
height is Z, the common line between the float and the skirt of a boom section is denoted
li,1, the floating line of a boom section is denoted fi,1. We have

ωi,1|z=l = fi,1

We show the boom domain on the figure 1. Note that the buoyancy coffer positions will
respect

ωRL,+
i,3 = ωRL,−

i,4 ,∀RL, ∀i
It means that the head of the mooring line (coffer-anchor) closed to the boom coincides with
the end away from the boom of the mooring device (boom-coffer). It corresponds to the
buoyancy coffer position.
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Figure 1: Boom domain decomposition

The boom domain is placed in the euclidian space with the following convention. The
first axis x follows the boom domain. It is given by li,1 for straight boom plan before boom
deformation. The second axis y follows the sea current to the downstream direction, when
the current is normal to the boom. The third axis z follows the sea water depth from the
sea bed.

Definition 2.2. The set of the boom admissible displacements Va is defined by

Va =
{

u : ω −→ R3, u|ωRL,+
i,4

= 0(x, y, z), u|ωRL,−
i,4

= 0z

}

where, the first condition corresponds to a fixed anchor, a dead mass or a point on the shore,
and the second condition corresponds to the null vertical displacement of a buoyancy coffer
on the sea surface.

For the boom mooring on a mast, a tanker hull magnet, or a vertical stressed line along
a quay, we use the following condition instead of the first one.

u|ωRL,+
i,4

= 0(x, y)

We will define the functional to be minimized in the boom mechanical problem. The
boom domain after displacement is denoted ω + u and u is the boom displacement.
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Definition 2.3. The total mechanical energy related to an admissible displacement u of a
boom is given by the functional e : Va −→ R defined by

e(u) = ei(u)− ee(u)

The internal mechanical stress energy ei is given by

ei(u) =
1
2

∫

ω

tr(σ(u)x(u))dω

where tr indicates the trace operator, σ the Piola-Kirchhoff stress tensor of second kind, x
the Green strain tensor.

The external load potential energy is given by

ee(u) =
∫

ω+u

(−p−→n .−→u +
−→
d .−→u ) d(ω + u)−

∫

ω+u

ρg−→z .−→u d(ω + u)

where
−→
d indicates the tangential drag friction force, p the normal current drag pressure and

the normal inflating pressure, −→n the unit external normal to ω +u, ρ the membrane surface
density, g the gravity acceleration, and −→z the vertical unit vector oriented from the sea bed
to the sea surface.

The external energy functional ee is composed of two summations. The first one comes
from the three fluids (oil, water, air) actions on the boom (pressure and drag), while the
second one comes from the gravity forces (body force). We consider no projected load, no
temperature change, and no electric or magnetic body force on the boom. Note that the
summation defining ee is performed on the deformed boom geometry, after displacement.
The material surface density ρ is the local summation of the material density through the
membrane thickness. It is considered within the deformed configuration of the boom.

Note that a deformed boom section is generally composed of a totaly immersed skirt, and
an inflated float which is partially immersed and partially in contact with air. Consequently
the pressure term taken into account in the model is composed of two parts. It will be
described in the section 3.

We show the vertical cross-section of a boom on the figure 2. Note that the sea level
differs up-stream and down-stream on both sides of the boom (head loss). It is a consequence
of the hydrodynamic action of the sea current. The sea current velocity is denoted V . Figure
2 shows the skirt vertical angulation θ of a boom cross-section. The vertical angle θ will
play an important role in the sequel. The angle θ = 0 indicates a vertical skirt, normal to
the sea surface. The horizontal angle between the sea current V and the boom normal is
denoted α. It indicates with α = π

2 a boom parallel with the sea current.
The following proposition gives the equation to be solved in the membrane displacement

problem.

Proposition 2.4. Neglecting tangential hydrodynamic external force
−→
d and inertial effect

of the boom, at a given time t (sea level and sea current given), the displacement u of the
boom is solution of the following problem

Find u ∈ Va such that
d e(u)

du
.v = 0 ∀v ∈ Va

Proof. We use the virtual work principle written in Lagrangian formulation with the
hypothesis of a membrane structure having large displacements. We neglect the inertial
effect of the boom (dynamic effect) and the friction of the sea water on the boom.
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Figure 2: Boom vertical cross-section

Two remarks introduce now two important operational boom plan concepts.

Remark 2.5. The vertical coordinate of a mooring line is such that

z|ω+u ≥ l − h

meaning that a mooring line must remain in the sea domain without intrusion in the sea
bed. The sleeping part of a mooring line ωi,4 is the subset of ωi,4 defined by

S = {m ∈ ωi,4, z|ω+u = l − h}
The sleeping length Sl is the length of S. At any time t, Sl must be sufficient so that the
friction force between the mooring line and the sea bed guarantees that

−→u |ωRL,+
i,4

= 0

The constraint z|ω+u ≥ l − h concerns potentially any parts ωi,j of a boom. It is a
consequence of an eventual tide. Any part of a boom can potentially ground at down
tide (the sea surface level l changes during time).

Remark 2.6. The avoiding part, during time t, of the head ωRL,−
i,4 of a mooring line is its

locations set in the (x, y) dimensions (buoyancy coffer positions on the sea surface). This
set is given by

A =
{

mt = ωRL,−
i,4 , t ≥ 0

}
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for the buoyancy coffer i. The avoiding radius Ar is the size of A.

We show the sleeping length and the avoiding radius of a boom mooring line on the
figure 3.

Figure 3: Sleeping length and avoiding radius of a mooring line

During time t, Ar must be minimized. It guarantees short boom displacements. It
permits to avoid an eventual local boom grounding on emerged rocks, or a limitation on the
maritime circulation in the vicinity of the boom.

Note that during time ωRL,−
i,4 has also a vertical displacement component. It is a

consequence of the sea level change during tide.

3 Mechanical and Numerical Approximations

3.1 Mechanical Approximations

We recall that ω is the boom domain, u is the boom displacement, ω+u is the boom domain
after displacement, and li,1 is the intersection line i between the float and the skirt.

The pressure force on a boom can be described by the following relation. It considers
approximations made during experimental tests on a rigid boom in an hydrodynamic
channel. The following relation results after simplifications and calculations.

∫

ω+u

p−→n d(ω + u) =
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+
1
2
ρ Cθ0 (Vm f(α))2

∫

ω+u

−→n d(ω + u)

+ pt

∫

ω+u

−→n d(ω + u)

+
N∑

i=1

∫

li,1

P1
−→z d(li,1)

The first hypothesis defines a drag hydrodynamic coefficient C on the skirt and the float
by using a dimensional approach. This coefficient is defined experimentally on the basis of
an a priori vertical skirt angulation θ0 and a partially immersed float. More precisely, the
order of the immersed height of the float is 10−1m, while the immersed height order of the
skirt is 1m.

The second hypothesis contains two approximations: the normal sea current along a
boom section is assumed to take an averaged value Vm; on the other hand, along a boom
section the sea current angle α with respect to the boom normal is taken into account by
using a weighting function f(α).

Along a boom section, the function f(α) will be asymmetric. The function f(α) is
defined by supposing that a boom section at the level of the sea surface fi,1 (boom floating
line) is a parabolic curve Pβ , where the depth β of the parabolic curve is proportional to V 2

m

the square of the current velocity. The depth β is given a priori and depends on the boom
deformation. By denoting −−→nPβ

the normal to the parabolic curve Pβ , the function f(α) is
defined by

f(α) = cos〈−−→nPβ
, Vm〉 (3.1)

The third hypothesis concerns the internal pneumatic pressure (float inflation) pt. It is
considered constant along a boom section and remains independent of the float deformation.
The displacement of the boom introduces a bending of the float. We neglect with this
hypothesis the float volume variation and consequently the float internal pressure change.

The hypothesis 4 concerns the immersed part of the boom. The hydrostatic curvilinear
force P1 corresponds to the local vertical Archimedes force. Note that, this vertical force is
applied on the intersection between the float and the skirt li,1. This reaction curvilinear force
on li,1 balances the boom body force. However, this Archimedes force P1 will be defined on
the boom geometry before displacement. The value of P1 will remain independent of the
deformed boom geometry. The force P1 is computed on the basis of the initial geometry of
the float.

3.2 Numerical Approximations

The discrete boom displacement problem is given in the following lemma.

Lemma 3.1. Considering the continuous membrane displacement u and virtual
displacement v

u = uh ∈ Va,h

v = vh ∈ Va,h

where Va,h is the finite dimensional space of the bilinear functions defined on a finite-element
mesh ωh of a boom (quadrilateral element), the membrane equilibrium problem written in a
finite dimensional space takes the following form.

d e(uh)
duh

.vh = 〈Fh, Vh〉 (3.2)
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Proof. The derivative operation d
due(u).v defines a linear continuous form with respect to

v. The displacement vh belongs to a finite dimensional space Va,h. Consequently, it exists
vectors Fh ∈ Rn and Vh ∈ Rn such that the result holds. Fh and Vh are the nodal mesh
vectors representing the nodal out-of-balance forces and the nodal virtual displacements.
The total number of nodal degree of freedom is n, three times the number of nodes.

The discrete displacement space Va,h is a set of functions with some part imposed to
be 0 (fixed degrees of freedom). This null displacement part concerns subsets of ωi,4. As
a consequence, the corresponding components of the vector Vh are null. Let us denote by
Vh,BC these fixed components of Vh. We have by denoting Vh,F the free components of Vh

〈Fh, Vh〉 = 〈
{

Fh,F

Fh,BC

}
,

{
Vh,F

Vh,BC = 0

}
〉

where Fh,BC can be interpreted as the reaction forces on the fixed part of the boom.
The solution of the discrete displacement problem is presented in the following lemma.

Lemma 3.2. The solution of the boom equilibrium equation

Fh,F = 0 (3.3)

by the Newton-Raphson method uses the Hessian matrix Kh associated to the functional
e(uh). It is defined by

d2

du2
(e(uh).vh, wh) = 〈Kh.Vh,Wh〉 (3.4)

where Vh and Wh are the displacement vectors of the finite element displacement
functions vh and wh.

Proof. The Newton-Raphson method applied to Fh,F = 0 uses the tangent matrix [ ∂
∂Uh

Fh,F ].
Derivative of equation 3.2. along wh gives

d2

du2
(e(uh).vh, wh) = 〈[∂Fh

∂Uh
].Vh,Wh〉

where the tangent matrix [ ∂Fh

∂Uh
] is denoted Kh.

Remark 3.3. To improve the convergence of the Newton-Raphson method, we must use at
each iteration an upper limitation on the norm of the nodal displacement correction. When
the displacement correction has a large component with respect to the spatial dimension,
a scaling is applied to the displacement correction. Using SI units we used generally a
maximal correction of a nodal displacement component Ulim = 5cm. Depending of the
avoiding radius Ar of the mooring line heads of a boom plan, the iteration number is at
least Ar/Ulim.

4 Boom Optimization

4.1 Tactical Optimization

The tactical optimization of a boom plan is a complex problem. Consequently, in this
section, we give the beginning of a formulation of an optimization problem. It takes the
operational point of view used for boom contingency plans. The solution method of the
proposed optimization problem is not treated here.
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The strategic optimization of an emergency plan including oil boom is also not treated
here. In that field, we can cite the strategic optimization of a global oil-spill emergency plan
[16] (Exxon− V aldez), and the optimal policy measure in harbor [7].

First, we define the cost function associated to a boom plan. Two approaches, focussing
on oil contingency efficiency are proposed. The first one is based on the normal sea current
velocity 〈−→V ,−→n 〉 in the vicinity of the boom. It is used in the FORBAR project. The second
approach is based on the skirt vertical angulation θ. It is used in the SIMBAR project.

Definition 4.1. The oil contingency local inefficiency at a boom position can be given by
the indicator function fpol based on the Lee’s Criteria [10]

fpol = 1˛̨˛〈−→V ,−→n 〉
˛̨
˛≥Vs

(4.1)

where, Vs is a critical sea current velocity depending of the oil density, sea water density
and oil surface tension. The indicator function fpol can also be based on the Simbar’s criteria
[11]

fpol = 1|θ|≥θs
(4.2)

where θs is a critical value of the skirt angulation. It is defined by experimental
observations, and numerical computations [21]. The arguments of θs are the sea current
velocity and the oil properties (density, viscosity).

From the operational point of view, the empirical values used in the emergency
contingency plans (in-situ observations) are 0.35m/s for Vs and 10deg for θs.

The leakage criteria given by 4.1 using the velocity of the fluid suggests the construction
of an oil leakage debt law. The construction of this debt law is not treated here. The leakage
criteria given by 4.2 takes into account the deformed geometry of the boom. That suggests
to construct a leakage model based on a fluid/structure approach.

Using the local cost function defined by 4.1 or by 4.2 we give the formulation of a boom
plan tactical optimization problem. This problem concerns the geometry of the contingency
plan, in an estuary or an harbor for examples. The problem of the boom design optimization,
for example the boom geometry (boom skirt height) or the boom constitutive materials are
not treated here. This strategic optimization problem is more complex to formulate because
an optimal boom design must be a compromise between different kinds of coastal sites.

For a given boom design, and a given site to be protected, we define a tactical
optimization problem in the following way.

Min
N∑

i=1

∫

ωi,1+uh

fpol d(ω + uh) (4.3)

||σ(uh)| | ≤ σmax (4.4)
||Fh,BC | | ≤ Fmax (4.5)

where σmax is the maximal stress supported by the boom plan materials (fabric, chain,
mooring line), and Fmax is the maximal force supported by the boom plan boundaries
(friction of a dead-mass on the sea floor, tension on a fixed boundary).

From the operational point of view, the standard values used in coastal emergency
contingency plans are listed. The dead masses weight 6T . It permits to define Fmax using
the Archimedes force of a dead-mass, and its friction coefficient on the sea-bed. The fabric
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stress limit is 650daN/5cm and the chain stress limit is 32T . It permits to define σmax on
each parts of the boom plan.

The enumeration of the decision variables of the tactical optimization problem is given
bellow.

• angle between the sea current and the boom normal α

• number of boom sections of the plan N

• length of the boom sections ||ωi,1| |
• length of the mooring lines ||ωi,4| |
• position of the dead-masses on the sea bed ωRL,+

i,4

The enumeration of the parameters to be taken into account is given bellow. A parameter
should be given, or its influence analyzed case-by-case.

• time t

• boom design (boom kind)

• boom stress limit σmax, boundary force limit Fmax

• sea current V

• water depth h

• morphology of the site (sea bed and coastal geophysical data)

• boom-coffer device design ωi,3

In particular, the time t should be considered to handle the presence of tide. During
the SIMBAR project, the Elorn estuary protection (Brittany, France), is computed at six
different times, every two hours of a reference day. It permits to analyze a full tide cycle
[13].

The operational supplementary constraints to be considered for a coastal boom plan are
listed bellow.

• α such that cos(α) ≤ 0.35
||V ||

• 6Z ≤ h

• 3h ≤ ||ωi,4| |
• ||ωR,+

i,3 − ωL,+
i,3 || ≤ ||ωi,1||

1.07

The first constraint permits to tackle the critical current velocity Vs normal to the boom.
Note that ||V | | −→ +∞ gives α −→ π

2 . In this case the boom and the current directions
coincide. The boom is feathered within a flag behavior. The second constraint permits to
limit the velocity variation of the fluid flowing under the boom in presence of small water
depth. The third constraint permits to create the sleeping length Sl of a mooring line. The
constraint 4 is a negative pre-stress of the cord of the boom section ωi,1. It permits to
decrease the boom stress σ [14], which is balanced by a higher radius of curvature of li,1 +u.
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Remark 4.2. In the case of boom plan in harbor, the cost function 4.3 must be considered
either tide up, or tide down of the installation period. It depends on the oil pollution location
in the harbor. In any case of boom plan, the constraints 4.4 and 4.5 may be active during
the maximal current velocity ||V | | of the installation period. It can be attained for either
tide kind.

Remark 4.3. The velocity current amplitude ||V | | can be spatially non-uniform in the
vicinity of the boom plan. Consequently, the decision variable α can be non-uniform along
the boom plan. The angle between the boom normal and the current is higher when the
current amplitude is higher. In the case of a boom plan in a river, the current amplitude can
be lower in the vicinity of the river shore. Consequently the boom plan is installed so that
the oil is deviated from the high current with a high angle α. The oil il also concentrated
in the low current with a low angle α, where the skimming system can be installed.

Remark 4.4. Other optimization problems can be set by using the operational point of
view. Here is a non exhaustive enumeration of cost functions.

• boom installation time (useful for oil terminal located in river)

• number, volume and strategic location of equipment points [8]

• computational time of the boom numerical model

• time delay for boom stock renovation

• number of boom installation exercises per year

• coordination of counter pollution means (strategic oil spill response problem)[18]

• number of emergency plans up to date

• life cycle duration of a boom material, washing efficiency

4.2 Comments

The optimization problem set here is a complex problem as a consequence of handling a
coastal natural environment. The great number of variables leads to choice as method a
flexible simplex method (flexible polyhedra), or a genetic algorithm for problem solution.
Note that a general integer program [20] has been used to formulate a tactical decision
problem for clean up operations.

Note that several data of the problem such as sea current, water depth and coastal
morphology, can be approximative. It makes difficult the interpretation of the results. Note
that sea current action modeling can used a stochastic approach [19].

Note equally that supplementary mooring lines ωi,4 can be added to limit locally the
avoiding radius Ar of a boom plan. Generally it is used in presence of tide and small water
depth, for avoiding boom grounding on rocks by low tide.

The volume of the buoyancy coffers is not taken into account in our numerical model.
Note that this volume is 2m3 in coastal boom plan.

We end this section by underlining an influence having the decision variables of the
proposed optimization problem. The tactical optimization problem concerns a boom plan
having a variable number N of sections. This number must be increased when the variable
α increases. It represents the angle between the boom section normal and the sea current.
The concept of a minimal coastal length to be protected is not taken into account here.
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The figure 4 shows four graphs for a boom plan adapted to estuaries and rivers. On the
figure 4, the N edges represent the boom sections. The graph nodes include DM mooring
devices, and SZ sacrificed zones (oil recuperation zones).

Figure 4: Graphs of boom plans in estuaries or rivers

The figure 4 shows two non-connected boom graphs. It generalizes the definition given
in section 1 for connected boom graph. A non-connected boom graph permits to maintain
a maritime traffic in estuary or river.

The figure 4 shows that the boom efficiency can be fitted by using the number of boom
sections, the number of dead-masses, and the sacrifice of coastal zones.

5 Numerical Results

In this section we present a numerical comparison between two kinds of boundary conditions,
applied to a 30m long boom section. It shows a first step for the identification of a boom
anchorage optimal design. After, we present the computation of a straight boom plan having
N = 5 sections of 150m long each.

5.1 Boom Section 30 m Long

Two computations of a boom section of 30m long are presented. The objective is to show
the influence of the geometry of the boom-coffer fixation device ωi,3 on the deformed boom
geometry and stress. Two geometries of this fixation device are presented. The first geometry
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is a rectangle. In this case, the boundaries away from the boom ω+
i,3 are fixed on two rigid

vertical masts. The second geometry is a triangle. In this case the boundary points away
from the boom ω+

i,3 are fixed to two points. The height with respect to the sea surface of
these points is a parameter. In the case presented, this height corresponds to the middle
of the boom float. The boom design considered in these two computations are, the skirt
height 0.75m, the float diameter 0.55m, the sea current velocity 0.3m/s (normal to the
initial boom geometry), the inflated float pressure pt 150mbar. The boom float is pinched
at its ends to allow their free rotations along a vertical axis. The boom self weight is 12kg/m
corresponding solely to the chain mass. The mass 1kg/m of the fabric (float and skirt parts)
is here neglected. The hydrodynamic pressure of the sea current acts solely on the skirt.
The Archimedes force P1 on the intersection line between the float and skirt is uniform along
the boom section.

The figure 5 shows the two deformed mesh geometries, with the two kinds of boom-coffer
fixation devices.

Figure 5: Rectangular and triangular fixation devices

The rectangular fixation on a mast gives for the membrane stress in the middle of the
skirt bottom 576N/m, the vertical skirt angle −5.35deg and the chain stress 3.13 103N .
The triangular fixation on a point gives for the skirt bottom stress 584N/m, the skirt angle
−3.71deg and the chain stress 2.88 103N . The triangular fixation design minimizes the skirt
angle, and the boom stress.
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5.2 Straight Boom Plan 758 m Long

We present the computation of a straight boom plan normal to an 0.3m/s uniform sea
current. The water depth is 10m . The boom plan contains N = 5 boom sections. Each
boom section has the design of the boom section of 30m long presented previously. The
boom plan is 758m long. The weight of the mooring lines is taken into account. The
hydrodynamic pressure on the mooring lines is neglected. The mooring lines displacements
on the boom plan ends belong to the vertical plane (y, z) normal to the boom plan direction.
The mooring line bottoms ω+

i,4 are fixed on the sea bed. The mooring line tops ω−i,4 have a
null vertical displacement along z, indicating that the buoyancy coffers stay at the level of
the sea surface l. A chain is considered at the bottom of each mini-skirt of 2m long ωi,2.
Consequently, the chain stress can circulate continuously between adjacent boom sections
ωi,1 and ωi+1,1. The Archimedes force P1 on the intersection line between the float and skirt
is uniform along the boom. The CPU time is 258mn. The Newton-Raphson method needs
280 iterations to converge. The figure 6 shows the three views of the deformed finite-element
mesh.

Figure 6: Straight boom plan with 5 sections

The vertical skirt angles θ at the middle of each section are respectively using deg as unit
−9.38 −9.83 −9.82 −9.85 −9.4. These angles are less than the empiric threshold value θs

[15]. Considering a light oil pollutant the cost function
∫

ω+uh
fpol is null for this boom plan

under these conditions. Considering a Heavy Fuel Oil pollutant (HFO) the cost function
associated to this boom plan may be higher [21].
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The stress σ in the chain at the middle of each section are respectively using 105 N/m
as unit 6.61 6.63 6.63 6.63 6.63. These stress values are less than the standard boom stress
limit σmax.
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