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Abstract: Let X be a Banach lattice space with a strong unit 1. We obtain a characterization of an
arbitrary downward set W in X as the level set of an increasing continuous along diagonal lines function.
The main result of this paper indicates that the distance from a point x ∈ X to a closed downward set W
in X can be expressed as the upper envelope of a certain family of functions

ψ(x, y) = sup{λ ∈ R : x− y ≥ λ1}.
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1 Introduction

Methods of monotonic analysis (see, for example, [2]) have been used in [5] for the calculation
of the distance with respect to the norm ‖ . ‖∞ to the solution set of the inequality

f(x) ≤ c (x ∈ Rn
+), (1.1)

where f is a so-called increasing convex-along-rays (ICAR) function defined on the cone
Rn

+ of all n-vectors with nonnegative coordinates. In this paper, we develop a theory of
monotonic analysis and best approximation in a Banach lattice space X with a strong unit
1. Recall (see [1]) that an element 1 ∈ X is called a strong unit if for each x ∈ X there
exists 0 ≤ λ ∈ R such that x ≤ λ1. We use the following notations:
X+ := {x ∈ X : x ≥ 0} and X++ := {x ∈ X : x > 0}.
For any function f : X −→ R the level sets of f are defined by

Sc(f) := {x ∈ X : f(x) ≤ c}, (c ∈ R).

If the function f : X −→ R is convex, then S0(f) is convex. For an increasing function
f : X+ −→ R the solution set of the inequality f(x) ≤ 0 is normal. (The set G ⊆ X+ is
called normal if x ∈ G, y ∈ X+, y ≤ x =⇒ y ∈ G.)

In section 3 of the present paper we consider the inequality

f(x) ≤ 0 (x ∈ X), (1.2)
∗Corresponding author
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with a continuous along diagonal lines function f defined on X, that is its restriction to
each line of the form {x + λ1}x∈X is continuous. We show that a downward set W in X
can be expressed as the level set of this function. (The set W ⊆ X is called downward if
x ∈ W, y ∈ X, y ≤ x =⇒ y ∈ W .) We express the distance from a point x ∈ X to a closed
downward set W through the boundary points of W .
One of the well known problems of convex optimization is that of best approximation by
elements of convex sets. Convexity can be also used for best approximation by complements
of convex sets. Best approximation by different kinds of sets is a very complicated problem.
The main result of this paper is to show that the distance from a point x ∈ X to a closed
downward set W in X can be expressed in terms of the function ψ(x, y) = sup{λ ∈ R : x−y ≥
λ1}. It is important to state clearly that the contribution of this paper in relation with the
previous works (see for example [2,5]) is a technical characterization of closed downward sets
in terms of the continuous along diagonal lines functions and some generalizations of results
in [5] from Rn to a general Banach lattice with the strong unit 1 are presented.

2 Preliminaries

In the following we give definitions concerning vector lattices (see [1]).

Definition 2.1. A lattice (L,≤) is said to be conditionally complete if it satisfies one of
the following equivalent conditions:
(1) Every non-empty lower bounded set admits an infimum.
(2) Every non-empty upper bounded set admits a supremum.
(3) There exists a complete lattice L̄ := L ∪ {⊥,>}, which we shall call the minimal com-
pletion of L, with bottom element ⊥ and top element >, such that L is a sublattice of L̄,
inf L = ⊥ and supL = >.

Definition 2.2. A (real) vector lattice (X,≤,+, .) is a set X endowed with a partial order
≤ such that (X,≤) is a lattice with a binary operation + and scalar product . such that
(X, +, .) is a vector space.

Definition 2.3. A vector lattice (X,≤,+, .) such that (X,≤) is a conditionally complete
lattice is called a conditionally complete vector lattice.

Definition 2.4. A conditionally complete lattice Banach space X is a real Banach space
which is also a conditionally complete vector lattice such that

| x |≤| y |=⇒‖ x ‖≤‖ y ‖ ∀x, y ∈ X.

where | x |= x+ + x−, x+ = sup{x, 0} and x− = − inf{x, 0}.

Let X be a Banach lattice space. Recall (see [1]) that an element 1 ∈ X is called a
strong unit if for each x ∈ X there exists 0 ≤ λ ∈ R such that x ≤ λ1. We assume that X
contains a strong unit 1. Using 1 we can define a norm on X by

‖ x ‖= inf{λ > 0 :| x |≤ λ1} ∀x ∈ X. (2.1)

It is easy to check that
| x |≤‖ x ‖ 1 ∀x ∈ X. (2.2)
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Remark 2.5. Let x, y ∈ X. Then there exist real numbers λ > 0 and θ < 0 such that

y ≤ x + λ1, y + θ1 ≤ x. (2.3)

To see this, let ‖ y − x ‖= r. Then 0 ≤ r < ∞. From (2.2) it follows that

| y − x |≤‖ y − x ‖ 1 = r1.

This implies that −r1 ≤ y − x ≤ r1. Let λ = r and θ = −r. Thus, we obtain (2.3).

Let Y be a Banach space. For any set K in X we shall denote by intK the interior of
K. The set K is called solid if intK 6= Ø. If K ∩ (−K) = {0}, then K is called pointed (see
for example [4]).

We now present two examples of spaces under consideration.

Example 2.6. Let X = R × Y , where Y is a Banach space with a norm ‖ . ‖, and let
K ⊂ X be the epigraph of the norm: K = {(λ, x) : λ ≥‖ x ‖}. The cone K is closed solid
convex and pointed. It is easy to check and well-known that 1 = (1, 0) is an interior point
of K. For each (c, y) ∈ X we have

p(c, y) = inf{λ ∈ R : (c, y) ≤ λ1} = inf{λ ∈ R : (λ, 0)− (c, y) ∈ K} =

inf{λ ∈ R : (λ− c,−y) ∈ K} = inf{λ ∈ R : λ− c ≥‖ −y ‖} = c+ ‖ y ‖ .

Hence

‖ (y, c) ‖= max{p(c, y), p(−(c, y))} = max{c+ ‖ y ‖,−c+ ‖ y ‖} =| c | + ‖ y ‖ .

Remark 2.7 (3, Remark 6.1). Let X be a vector lattice space with a strong unit 1. We
define a norm on X by

‖ x ‖= inf{λ > 0 :| x |≤ λ1},
where |x| = x+ + x−, x+ = sup{x, 0} and x− = − inf{x, 0}. It is clear that X equipped
with this norm is a Banach lattice space. Also, recall that the Banach lattice space X with a
strong unit is isomorphic and isometric to the space C(Q) of all continuous functions defined
on a compact topological space Q. Indeed, if X = C(Q) and p is the function defined by

p(x) = inf{λ > 0 : x ≤ λ1, ∀x ∈ X},
then we have:

p(x) = max
q∈Q

x(q), p(−x) = −min
q∈Q

x(q),

and
‖ x ‖= max{max

q∈Q
x(q),−min

q∈Q
x(q)} (x ∈ X).

Example 2.8. A well-known example of a vector lattice with a strong unit is the space
L∞(T, Σ, µ) of all essentially bounded functions defined on a measure space (S, Σ, µ). If
1(t) = 1 for all t ∈ T , then

p(x) := inf{λ > 0 : x ≤ λ1} = ess sup
t∈T

x(t),

and
‖ x ‖:= max{p(x), p(−x)} = ess sup

t∈T
| x(t) | (x ∈ L∞(T, Σ, µ)).
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Definition 2.9. A non-empty subset G of the cone X+ is called normal if x ∈ G, y ∈
X+, y ≤ x =⇒ y ∈ G. A set W ⊆ X is called downward if x ∈ W, y ∈ X, y ≤ x =⇒ y ∈ W .

Let X be a Banach lattice space. For a nonempty subset W of X and x ∈ X, define

d(x,W ) = inf
w∈W

‖ x− w ‖ .

Theorem 2.10 (4, Theorem 2.1). Let X be a Banach lattice space with the strong unit 1.
Let I be a set of indices, {Wi}i∈I be a family of closed downward sets in X and W := ∩i∈IWi.
Then

d(x,W ) = sup
i∈I

d(x,Wi) (x ∈ X).

For a nonempty subset A of a conditionally complete lattice Banach space X and a
nonempty bounded set S in X define

d(S,A) := inf
a∈A

sup
s∈S

‖ s− a ‖ .

Theorem 2.11 (3, Theorem 3.4). Let X be a conditionally complete lattice Banach space
with the strong unit 1. Let I be a set of indices, {Wi}i∈I be a family of closed downward
sets in X and suppose the set W := ∩i∈IWi be nonempty. Let S be a bounded subset of X
with S ∩W = Ø. Then

d(S,W ) = sup
i∈I

d(S,Wi).

3 Distance from a point to a downward set in a Banach lattice
space

Throughout this section X is a Banach lattice space with a strong unit 1.
We say that a certain property (P) of a function f : X+ −→ R holds along-rays if the
restriction of f to the ray Rx = {λx : λ ≥ 0} starting from zero and passing through x
enjoys property (P) for each x ∈ X+. In other words, (P) holds along-rays if the function
of one variable fx defined by

fx(α) = f(αx) (α ≥ 0), (3.1)

possesses the property (P). In particular, we consider the following class of functions:

(1) lower semicontinuous-along-rays f : the function fx is lower semicontinuous for all
x ∈ X+;

(2) continuous-along-rays functions f : the function fx is continuous for all x ∈ X+;

(3) convex-along-rays functions f : the function fx is convex for all x ∈ X+;

(4) positively homogeneous functions. A function p is called positively homogeneous (of
degree one) if p(λx) = λp(x) for all λ ≥ 0 (that is, p is linear-along-rays);

A function f : X+ −→ R is called increasing if x ≤ y implies that f(x) ≤ f(y). Let Q
be either X+ or X++. A function f : Q −→ (−∞,+∞] is called an ICAR function if the
following are satisfied:
(1) f is increasing: x ≤ y implies f(x) ≤ f(y);
(2) for each x ∈ Q, the function fx defined by (3.1) is convex.
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Example 3.1. An increasing convex function defined on X+ is ICAR.

In this paper, we shall study increasing functions with a certain property-along-rays.
First, we show that the lower semicontinuity-along-rays implies the lower semicontinuity
for increasing functions. (Note that the class of increasing continuous-along-rays functions
are broader than the class of increasing continuous functions.) It follows directly from the
definition that level sets Sc(f) = {x ∈ X+ : f(x) ≤ c} of an increasing function f are normal
for all c ≥ f(0). A normal set S is called closed-along-rays if

λn > 0, λns ∈ S (n = 1, 2, 3, ...) and λn −→ λ =⇒ λs ∈ S.

For more details see [2, Definition 5, p. 130].

It is known that a normal closed-along-rays set is closed.

Proposition 3.2. Let f be an increasing lower semicontinuous-along-rays function. Then
f is lower semicontinuous.

Proof. We need to prove that all the level sets Sc(f) of the function f with c ≥ f(0) are
closed. Let c ≥ f(0). Let λn > 0 and λn −→ λ > 0, let also λnx ∈ Sc(f), that is f(λnx) ≤ c.
Since f is lower semicontinuous-along-rays, it follows that f(λx) ≤ lim infn−→∞ f(λnx) ≤ c,
so λx ∈ Sc(f). Thus the normal set Sc(f) is closed-along-rays, hence closed, which completes
the proof.

In this section, we show that any downward set W in X can be expressed as the level
set of a continuous along diagonal lines function and we consider the distance from a point
x ∈ X to a closed downward set W in X. We need some properties of downward sets.

We also need the following simple assertions.

Proposition 3.3. Let W be a downward set in X and y /∈ W . Then

ψ(x, y) := sup{λ ∈ R : x− y ≥ λ1} < 0 for all x ∈ W.

Proof. Assume, on the contrary, that there exists x ∈ W such that ψ(x, y) ≥ 0. Let
Φ : R −→ X be the function defined by

Φ(λ) := λ1, (λ ∈ R).

Let D := {λ ∈ R : x− y ≥ λ1}. It is easy to check that

Φ(supD) = sup{Φ(λ) : λ ∈ D}.

This means that

x− y ≥ sup{λ1 : λ ∈ D} = Φ(sup D) = Φ(ψ(x, y)) = ψ(x, y)1.

Thus we get x−y ≥ ψ(x, y)1. This implies that x ≥ y+ψ(x, y)1 ≥ y. Since W is downward
it follows that y ∈ W , which contradicts our assumption.

The boundary and interior of a downward set W in X will be denoted by bdW and intW ,
respectively.
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Proposition 3.4. Let W be a downward set in X. A point x ∈ W is a boundary point of
W if and only if x + λ1 /∈ W for all λ > 0.

Proof. If x + λ1 /∈ W for all λ > 0, then x is a boundary point. Assume on the contrary
that x /∈ bdW . So, x ∈ intW . Thus there exists ε > 0 such that

V = {y ∈ X :‖ y − x ‖< ε} ⊂ W.

Let y0 = x + ε
21. Then y0 ∈ V ⊂ W , a contradiction.

Assume now that x ∈ W is a point such that x + λ1 ∈ W for some λ > 0. Since W is
downward it follows that the ball B(x, λ) = {y ∈ X : x− λ1 ≤ y ≤ x + λ1} is contained in
W , hence x is not a boundary point, which completes the proof.

Definition 3.5. A function f : X −→ R is called continuous along diagonal lines if its
restriction to each line of the form {x + λ1}x∈X is continuous

Theorem 3.6. A subset W of X is downward and closed if and only if there exists a
continuous along diagonal lines increasing function f : X −→ R such that

W = S0(f) = {x ∈ X : f(x) ≤ 0}.
Proof. Case 1. If W = X, then the function f : X −→ R defined by

f(x) = 0 (x ∈ X),

is a continuous along diagonal lines function and W = S0(f) = {x ∈ X : f(x) = 0}.

Case 2. Let W ⊂ X be proper. Let f : X −→ R be defined by

f(x) = inf{λ ∈ R : x− λ1 ∈ W}, (x ∈ X). (3.2)

It is obvious that W ⊆ S0(f). We now verify that S0(f) ⊆ W . To see this, let x ∈ S0(f).
Then f(x) ≤ 0. This implies that x ∈ W . (Indeed, if f(x) = 0, then there exists a sequence
{λn}∞n=1 ⊂ R such that x − λn1 ∈ W and λn −→ 0 as n −→ ∞. Since W is closed,
we conclude that x ∈ W . If f(x) < 0, then there exists a real number λ < 0 such that
x− λ1 ∈ W . Since W is downward, it follows that x ∈ W .)
Now, we prove that | f(x) |< ∞ for all x ∈ X. Assume on the contrary that there exists
x ∈ X such that | f(x) |= +∞. If x ∈ W , then f(x) = −∞. This implies that x− λ1 ∈ W
for all λ ≤ 0. Let y ∈ X \W . Then, by Remark 2.5 there exists a real number λ0 ≤ 0 such
that y ≤ x− λ01. Since W is downward, it follows that y ∈ W , which is a contradiction.
If x ∈ X \W , then f(x) = +∞. Thus we get

x− λ1 /∈ W for all λ ∈ R.

Assume now that y ∈ W . Then, by Remark 2.5 there exists a real number λ0 ∈ R such
that x−λ01 ≤ y. Since W is downward, it follows that x−λ01 ∈ W , which is a contradiction.

Now, we show that

f(x + β1) = (β − α) + f(x + α1) for all α, β ∈ R. (3.3)

To see this, let α, β ∈ R. By the definition of f we conclude that

f(x + β1) = inf{λ ∈ R : x + β1− λ1 ∈ W}
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= (β − α) + (α− β) + inf{λ ∈ R : x + β1 + α1− α1− λ1 ∈ W}
= (β − α) + inf{α− β + λ : λ ∈ R;x + α1− (α− β + λ)1 ∈ W}

= (β − α) + inf{θ ∈ R : x + α1− θ1 ∈ W} = (β − α) + f(x + α1).

Finally, we prove that f is a continuous along diagonal lines function. To this end, Let λn

and λ be such that λn −→ λ, (n −→∞). From (3.3) we conclude that

f(x + λn1) = (λn − λ) + f(x + λ1) for all n ∈ N.

This implies that
lim

n−→∞
f(x + λn1) = f(x + λ1),

which completes the proof.

Let the function ψ : X ×X −→ R be defined by

ψ(x, y) := sup{λ ∈ R : x− y ≥ λ1}, (x, y ∈ X).

For y ∈ X consider the set
Wy = {x ∈ X : ψ(x, y) ≤ 0}. (3.4)

For any y ∈ X, the set Wy defined by (3.4) is a closed downward set in X. An illustrative
example of the set Wy is given in Figure 1. We now prove the following assertion.

Figure 1: An example of the set Wy in (R×R) with the strong unit (1,1)

Lemma 3.7. Let W be a nonempty closed downward set in X. Then

W = ∩{Wy : y ∈ bd W}, (3.5)

where Wy is defined by (3.4). (It is assumed that the intersection over the empty set coincides
with X.)

Proof. First we assume that bdW is empty. Let y ∈ X. Then the set By = {λ ∈ R : y+λ1 ∈
W} is nonempty. Indeed, by Remark 2.5, for each z ∈ W there exists λ < 0 such that
y +λ1 ≤ z. Since W is downward it follows that y +λ1 ∈ W . Clearly (λ ∈ By, λ′ ≤ λ) =⇒
λ′ ∈ By. Thus By is a segment. Let b = sup By. If b < +∞, then y + b1 ∈ W (it follows
from continuity along diagonal lines) and y + b1 + λ1 /∈ W , for all λ > 0, so y + b1 ∈ bdW ,
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which contradicts our assumption. Thus b = +∞. Since W is downward, it follows that
By = (−∞,+∞). We proved that W contains lines {y + λ1 : λ ∈ R} for all y ∈ X, so
W = X. Thus (3.5) is valid in the case under consideration.
Now let us assume that bdW is nonempty and let y ∈ bdW . Then y + ε1 /∈ W for all ε > 0.
Due to Proposition 3.3, we have ψ(x, y + ε1) = sup{λ ∈ R : x − y − ε1 ≥ λ1} < 0 for all
x ∈ W and ε > 0, so sup{λ ∈ R : x− y ≥ λ1} ≤ 0 for all x ∈ W . Thus each x ∈ W belongs
to the set Wy with arbitrary y ∈ bdW .
Let x /∈ W , that is, f(x) > 0, where f is defined by (3.2). Since W is downward, by Theorem
3.6, it follows that f(x + α1) > 0 for all α > 0. Since W is nonempty and downward, by
Theorem 3.6, it follows that there exists a number α0 < 0 such that f(x + α01) ≤ 0. Since
the function g : R −→ R defined by

g(α) = f(x + α1) (α ∈ R),

is increasing and continuous, it follows that the set M := {α ∈ R : f(x + α1) = 0} is
nonempty and coincides either with a segment [ν, µ] or with a segment (−∞, µ] with µ < 0.
Let y0 = x + µ1. It follows from the definition of µ that y0 ∈ bdW . Indeed, for any λ > 0
we have µ + λ /∈ M . This implies that f(x + µ1 + λ1) > 0, that is y0 + λ1 /∈ W for all
λ > 0. We have ψ(x, y0) = sup{λ ∈ R : x − y0 ≥ λ1} = −µ > 0, hence x /∈ Wy0 and
x /∈ ∩{Wy : y ∈ bdW}, which completes the proof.

Theorem 3.8. Let W be a nonempty closed downward set in X and x ∈ X. Then

d(x,W ) = sup
y∈bdW

d(x,Wy),

where Wy is defined by (3.4).

Proof. This is an immediate consequence of Theorem 2.10 and Lemma 3.7.

Theorem 3.9. Let X be a conditionally complete lattice Banach space with the strong unit
1. Let W be a nonempty closed downward set in X and S be a non-empty bounded subset
of X with S ∩W = Ø. Then

d(S,W ) = sup
y∈bdW

d(S,Wy),

where Wy is defined by (3.4).

Proof. This is an immediate consequence of Theorem 2.11 and Lemma 3.7.
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