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1 Introduction

Let us consider the bi-parametric perturbed primal LO problem:

LP (4b,4c, ε, λ)
min (c + λ∆c)T x
s.t. Ax = b + ε∆b

x ≥ 0,

where A ∈ Rm×n, vectors c,4c ∈ Rn and b,4b ∈ Rm are fixed data, x ∈ Rn is an unknown
vector and ε, λ are real parameters.

We refer to 4b and 4c as perturbation vectors. In special cases, one of the vectors 4b
and 4c might be zero, or all but one of the components are zero. For parameter value
ε = λ = 0, problem LP (4b,4c, ε, λ) is an unperturbed primal LO problem and is denoted
shortly by LP = LP (4b,4c, 0, 0). A standard LO problem refers to the fact that the primal
and dual LO problems are both in standard form.

The dual of LP (4b,4c, ε, λ) is defined as:

LD(4b,4c, ε, λ)
max (b + ε∆b)T y
s.t. AT y + s = c + λ∆c

s ≥ 0,
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where y ∈ Rm and s ∈ Rn are unknown vectors. For the parameter values ε = 0 and λ = 0
we denote it shortly by LD = LD(4b,4c, 0, 0). Answering to the question “What happens
to optimal solutions when such perturbation occurs in input data?” was one of the first
preoccupations of optimizers soon after the simplex method was introduced. The related
study area is known as parametric programming and sensitivity analysis. A classification of
sensitivity analysis for LP was introduced by Koltai and Terlaky [8]. We discuss the support
set sensitivity analysis for standard form LP problems containing two parameters, one in
objective function and the other in the right hand side of the constraints. Any vector x ≥ 0
satisfying the constraints of LP is called a primal feasible solution and any vector (y, s) with
s ≥ 0 satisfying the constraints of LD is called a dual feasible solution. We refer to the index
set {1, 2, . . . , n} as variables index set.

In this way, primal and dual feasible solutions can be denoted by x and (y, s), respectively.
For any primal-dual feasible solution pair (x; y, s), the weak duality property bT y ≤ cT x
holds. If bT y = cT x (strong duality), then the feasible solutions x and (y, s) are primal and
dual optimal solutions of problems LP and LD, respectively. Consequently, for a primal-
dual optimal solution pair (x∗; y∗, s∗), we have s∗T x∗ = 0. Considering the nonnegativity
of variables x∗ and s∗, the optimality property can be rewritten as sj

∗xj
∗ = 0 for j ∈

{1, 2, . . . , n} . Clearly speaking, for a primal-dual optimal solution pair (x∗; y∗, s∗), the
vectors x∗ and (y∗, s∗) are complementary .

The support set of a nonnegative vector ν is defined as σ(ν) = {i|νi > 0}. Considering
this notation, the strong duality property implies the following equality:

σ(x∗) ∩ σ(s∗) = ∅ (1.1)

where (x∗; y∗, s∗) is a primal-dual optimal solution pair of problems LP and LD. A
complementary (optimal) solution pair (x∗; y∗, s∗) is primal-dual strictly complementary,
if s∗T x∗ = 0 with s∗ + x∗ > 0. Clearly speaking, for a strictly complementary optimal
solution (x∗; y∗, s∗), the following relation holds:

σ(x∗) ∪ σ(s∗) = {1, 2, . . . , n}. (1.2)

By the Goldman-Tucker Theorem [5], the existence of strictly complementary optimal solu-
tions of problems LP and LD is guaranteed if these problems are feasible.

Let LP(4b,4c, ε, λ) and LD(4b,4c, ε, λ) be feasible sets of problems LP (4b, 4c, ε, λ)
and LD(4b,4c, ε, λ), respectively. Further, let LP∗(4b ,4c, ε, λ) and LD∗(4b,4c, ε, λ)
denote their optimal solution sets, correspondingly. When ε = 0 and λ = 0 we denote
them shortly by LP = LP(4b,4c, 0, 0) and LD = LD(4b,4c, 0, 0). Analogously, we let
LP∗ = LP∗(4b,4c, 0, 0) and LD∗ = LD∗(4b ,4c, 0, 0), i.e.,

LP∗ = {x∗|x∗ is an optimal solution in LP}
LD∗ = {(y∗, s∗)|(y∗, s∗) is an optimal solution in LD}.

Considering (1.1) and (1.2), one can define the following partition:

Bx
V = {j : x∗j > 0,∀j ∈ {1, 2, . . . , n} for some x∗ ∈ LP∗}

N s
V = {j : s∗j > 0,∀j ∈ {1, 2, . . . , n} for some (y∗, s∗) ∈ LD∗}D

Roughly speaking, in any primal optimal solution x∗, the components with indices in N s
V

are always zero. We denote this partition by ΠV = (Bx
V ,N s

V ) and call it variables optimal
partition.

The uniqueness of these partitions is a direct consequence of the convexity of optimal
solution sets LP∗ and LD∗ (see e.g.,[3],[9]). In this paper, we survey the outlined results in
support set invariancy sensitivity analysis for LP problems with two parameters.
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Interior Point Methods solve LO problem in polynomial time [9]. They start from a
feasible (or an infeasible) interior point of the positive orthant and generate an interior
solution nearby the optimal solution. By using a simple rounding procedure [6], a strictly
complementary solution of the LO problem can be obtained in strongly polynomial time and
strictly complementary optimal solution of the LO problem provides the optimal partitions
too.

Associated with the perturbed problems LP (4b,4c, ε, λ) and LD(4b,4c, ε, λ), let φ
denotes the optimal value function that is defined as:

φ(4b,4c, ε, λ)=(c + λ4c)T x∗(ε, λ) = (b + ε4b)T y∗(ε, λ)
where (x∗(ε, λ); y∗(ε, λ), s∗(ε, λ) is a primal-dual optimal solution pair of LP and LD prob-
lems. Further, we define:

φ(4b,4c, ε, λ) = +∞ if LP∗(4b,4c, ε, λ) = ∅
φ(4b,4c, ε, λ) = −∞ if LP∗(4b,4c, ε, λ) = ∅ and it is unbounded.

By fixing 4b and 4c that are nonzero vectors, φ is the bi-variate function of ε, λ. Remem-
ber that, perturbation occurs in the RHS and/or the OFC data. If perturbation in the
RHS and the OFC data happens with identical parameters, the problem is referred to as
uni-parametric programming problem and if these data vary independently, the problem is
referred to as bi- parametric programming problem.

There are different approaches in parametric programming. One of them is the so-called
support set invariancy sensitivity analysis. In this approach, one wants to identify the range
of parameters’ variation where the support set remains invariant. The first study with this
point of view for optimal partition was started by Adler and Monteiro [1]. The cases when
4b or 4c is zero,have been studied in [9]. Further, in these cases, the range of parameter
variation is an interval of the real line and is referred to as invariancy interval and the
points that distinguish these intervals are called transition points. All of these studies are
considered in uni-parameter. There is only a simple illustrative example in [7] that the
authors have considered independently as two parameters and calculated the invariancy
region.

In this paper, we consider the problem LP (4b,4c, ε, λ), when 4b and 4c are nonzero
vectors and ε and λ are not necessarily equal.

Definition 1.1 (Bi-parametric support set invariancy sensitivity analysis for LP
problem). Consider the LP problem and let an optimal solution x∗ with σ(x∗) = P be
given. In bi-parametric support set sensitivity analysis for LP , we want to find the region of
parameters, where the perturbed problem LP (4b,4c, ε, λ) has an optimal solution x∗(ε, λ)
with σ(x∗(ε, λ)) = P .

By focusing on the support set of the reduced vector s, the following analogous definition
can be considered.

Definition 1.2 (Bi-parametric active constraint set invariancy sensitivity analysis
for LD problem). Consider the LD problem and let an optimal solution (y∗ , s∗) with
σ(s∗) = P be given. In bi-parametric active constraint set sensitivity analysis for LD, we
want to find the region of parameters, where the perturbed problem LD(4b,4c, ε, λ) has
an optimal solution pair (y∗(ε, λ), s∗(ε, λ)) with σ(s∗(ε, λ)) = P .

One may be interested in combining the goals in Definitions 1.1 and 1.2. The following
statement defines this combined goal clearly.

Definition 1.3 (Bi-parametric characteristic invariancy sensitivity analysis for
problem LP ). Consider the LP and LD problems and let an optimal solution pair (x∗; y∗, s∗)
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with σ(x∗) = P and σ(s∗) = P be given. In bi-parametric characteristic sensitivity anal-
ysis for LP and LD, we want to find the region of parameters, where the perturbed problems
LP (4b,4c, ε, λ) and LD(4b,4c, ε, λ) have an optimal solution pair (x∗(ε, λ); y∗(ε, λ), s∗(ε, λ))
with σ(x∗(ε, λ)) = P and σ(s∗(ε, λ)) = P .

We refer to this region as invariancy region. It will be proved that the region is a rectangle
(if it is not a singleton or a line segment) and the neighboring regions are rectangles as well.
It means that all invariancy regions altogether generate a mesh-like area in R2, constructed
by vertical and horizontal (half-) line segments.

Let us refer to the lines outlined here as transition lines and the region between obtained
transition lines as Optimal(Variables)Partitions Invariancy (OPI) region. Thus, any tran-
sition line is a proper OPI region (a singleton or a line segment). The actual OPI region is
the one which contains the actual parameter values ε = λ = 0. It should be mentioned that
it might be the singleton {(0, 0)} when εl = εu = 0 and λl = λu = 0.

The paper is organized as follows: Section 2 contains some necessary concepts and the
convexity of invariancy regions is proved. The simultaneous perturbation case, when vari-
ation occurs in both the Right Hand Side (RHS) and the Objective Function Coefficient
(OFC) data of LP , is considered and the behavior of the optimal value function on this
region is studied. Auxiliary LO problems are presented in this section that allows us to
identify the associated regions. The interrelation of these regions are studied as well. A
simple example is presented in Section 3 to illustrate the results.

2 Invariancy Regions

Let us introduce some simplifying concepts and notations. Having a primal-dual optimal
solution pair (x∗; y∗, s∗), with σ(x∗) = P and σ(s∗) = P , partition (P, Z) of variables’ index
set {1, 2, . . . , n} and partition (P, Z) of constraints’ index set {1, 2, . . . , n} can be defined,
where Z = {1, 2, . . . , n} \ P and Z = {1, 2, . . . , n} \ P . We refer to the partition (P, Z)
as Invariant Support Set (ISS) partition and to the partition (P , Z) as Invariant Active
Constraint Set (IACS) partition of LP problem. If an LP problem has an optimal solution x∗

with σ(x∗) = P , we say that this problem satisfies the Invariant Support Set (ISS) property
w.r.t the ISS partition (P, Z). On the other hand, if the optimal solution pair (x∗; y∗, s∗), is
so that the relation σ(s∗) = P holds, it is said that the LP problem satisfies the Invariant
Active Constraint Set (IACS) property w.r.t the IACS partition (P , Z). Moreover, if this
problem satisfies both ISS and IACS properties, we say that it has Invariant Characteristic
( IC) property w.r.t partitions (P, Z) and (P , Z).

Recall that in support set invariancy sensitivity analysis for primal LP problem, one
aims to find the range of parameter variation, where for any parameter value in this range,
say ε and λ, there is an optimal solution pair (x∗(ε, λ); y∗(ε, λ), s∗(ε, λ)) ∈ LP∗(4b,4c, ε, λ)
so that σ(x∗(ε, λ)) = σ(x∗) = P . From managerial point of view, if the LO problem has been
formulated for determining an optimal production plan, support set invariancy sensitivity
analysis means that for any (ε, λ) in the associated region, the manager neither installs new
production plans nor uninstall any existent production line, but the production levels may
need to be adjusted [3]. Support set expansion as the generalized form of this concept has
been used for general linear optimization with uni-parameter [11].

Recall the perturbed primal and dual problems LP (4b,4c, ε, λ) and LD(4b,4c , ε, λ).
Let Υ (4b,4c, ε, λ) denotes the set of values for which the primal perturbed problem LP (4b,
4c, ε, λ) satisfies the ISS property w.r.t the ISS partition (P, Z) associated with Definition
1.1. By focusing on the Definitions 1.2 and 1.3 we can consider an analogous definition and
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refer to them as Γ (4b,4c, ε, λ) and Θ(4b,4c, ε, λ), respectively. Analogous notations are
used when either 4b or 4c is a zero vector. It will be proved that these sets are regions of
the real plane. Further, they may be different from the regions which are obtained by basis
invariancy and optimal partition invariancy sensitivity analysis as they might be different
from their counterpart regions studied in linear optimization [10].

Recall that for 4c = 0, problems LP (4b,4c, ε, λ) and LD(4b,4c, ε, λ) are reduced to
the following problems, respectively:

LP (4b, ε) min{cT x | Ax = b + ε4b, x ≥ 0}

LD(4b, ε) max{(b + ε4b)T y | AT y + s = c, s ≥ 0}.
Let Υ (4b, ε) denotes the invariancy region for problem LP (4b , ε). It was proved that

the dual optimal solution set LD∗(4b, ε) is invariant on the invariancy region Υ (4b, ε) (see
Theorem IV.56 in [9]).The following lemma presents auxiliary LO problems to identify the
end points of this region.

Lemma 2.1. Consider the primal and dual problems LP and LD, respectively. Further,
let ΠV = (Bx

V ,N s
V ) be the variable optimal partition of problem LP and LD, respectively.

Then, the optimal partition ΠV is invariant for any ε ∈ (εLP
l , εLP

u ), where εLP
l and εLP

u are
obtained by minimizing and maximizing of ε on the following set:

{ε | Ax− ε4b = b, xB ≥ 0, xN = 0} (2.1)

Proof. The proof is similar to Theorem IV.73 in [9]
Now for 4b = 0, we have the following reduced primal and dual LO problems:

LP (4c, λ) min{(c + λ4c)T x | Ax = b, x ≥ 0}.

LD(4c, λ) max{bT y | AT y + s = c + λ4c, s ≥ 0}.
Let Υ (4c, λ) denote the invariancy region for problem LP (4c, λ). It was proved that

the dual optimal solution set LP∗(4c, λ) is invariant on the invariancy region Υ (4c, λ) (see
Theorem IV.60 in [9]).The following lemma presents auxiliary LO problems to identify the
end points of this region.

Lemma 2.2. Consider the primal and dual problems LP and LD, respectively. Further,
let ΠV = (Bx

V ,N s
V ) be the variable optimal partitions of problem LP and LD, respectively.

Then, the optimal partition ΠV is invariant for any λ ∈ (λLP
l , λLP

u ), where λLP
l and λLP

u

are obtained by minimizing and maximizing of λ on the following set:

{λ | AT y + s− λ4c = c, sN ≥ 0, sB = 0} (2.2)

Proof. The proof is similar to Theorem IV.75 in [9]

Remark 2.3. Observe that the actual (region which contains the origin) invariancy interval
Υ (4b, ε) might be the singleton{0}. This situation occurs when solving two auxiliary LO
problems (2.1 leads to εl = εu = 0. Moreover, if one of these problems is unbounded, then
the actual invariancy interval Υ (4b, ε) is unbounded too. Analogous argument is valid for
the actual invariancy interval Υ (4c, λ). Furthermore, all auxiliary LO problems (2.1) and
(2.2) can be solved in polynomial time.

The case ε = λ has been considered in [2]. The authors proved that the invariancy
interval in this case is the intersection of two invariancy intervals Υ (4b, ε) and Υ (4c, λ =
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ε). Moreover, they proved that the optimal value function is a continuous and piecewise
quadratic function when ε = λ. In all these cases, the range of the optimal value function is
a convex set. Also they are considered bi-parametric optimal partition invariancy sensitivity
analysis for linear optimization with different nonzero parameters [10]. Also the authors
surveyed tetra-parametric optimal partition invariancy sensitivity analysis for general linear
optimization with different nonzero parameters [12]. And they proved that the optimal value
function is a quadratic function.

2.1 Fundamental Properties

First, we study some fundamental properties of the ISS, IACS and IC sets. It is obvious
that these sets are not empty, because LP (4b,4c, 0, 0) = LP that satisfies the ISS and
IACS properties, and consequently, it satisfies the IC property. Let us refer to the convexity
property of these sets.

Lemma 2.4. (i) Let the problem LP satisfies the ISS property w.r.t the ISS partition (P, Z).
Then Υ (4b,4c, ε, λ) is a convex set.

(ii) Let the problem LP satisfies the IACS property w.r.t the IACS partition
(P, Z). Then Γ (4b,4c, ε, λ) is a convex set.
(iii) Let the problem LP satisfies the ICE property w.r.t the ISS partition (P, Z)
and the IACS partition (P, Z). Then Θ(4b,4c, ε, λ) is a convex set.

Proof. It is similar to the Lemma 2.4 in [10].

To identify an invariancy region according to Lemma 2.4, it is enough to identify its
border. Observe that the invariancy region might be unbounded.

2.2 Identifying the Invariancy Regions

Now, we present a fundamental theorem that talks about a relationship between the actual
invariancy region Υ (4b,4c, ε, λ) and two actual invariancy regions Υ (4b, ε) and Υ (4c, λ).
This relationship plays a significant role in identifying the actual invariancy region Υ (4b,
4c, ε, λ) and speaks of the fact that this identification can be done in polynomial time. To
identify all possible invariancy regions, we can use an analogous statement. The proof is a
direct generalization of the proof of Theorem 2.5 in [10] and it is omitted.

Theorem 2.5. Consider the bi-parametric LO problem LP (4b,4c, ε, λ). Let Υ (4b, ε) be
the invariancy interval of problems LP (4b, ε) and LD(4b, ε). Moreover, let Υ (4c, λ) be the
actual invariancy interval of problems LP (4c, λ) and LD(4c, λ). Then,

Υ (4b,4c, ε, λ) = Υ (4b, ε)× Υ (4c, λ).

Corollary 2.6. Consider the bi-parametric LO problem LP (4b,4c, ε, λ). Let Υ (4b, 0) be
the actual invariancy interval of problems LP (4b, 0) and LD(4b, 0). Moreover, let Υ (4c, 0)
be the actual invariancy interval of problems LP (4c, 0) and LD(4c, 0). Then,

Υ (4b,4c, 0, 0) = Υ (4b, 0)× Υ (4c, 0).

2.3 Optimal Value Function on an Invariancy Region

In this subsection, we investigate the behavior of the optimal value function on invariancy
regions.
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Theorem 2.7. The optimal value function φ(4b,4c, ε, λ) is a bivariate quadratic function
on actual invariancy region Υ (4b,4c, ε, λ).

Proof. When the actual invariancy region is the {(0, 0)}, there is nothing to prove. Let
the actual invariancy region be a nontrivial one containing the origin. Further, let (ε1, λ1),
(ε2, λ2) and (ε3, λ3) be three arbitrary points in the actual invariancy region . Let (x1; y1, s1),
(x2; y2, s2) and (x3; y3, s3) be primal-dual optimal solutions for these three points, respec-
tively. Let (ε, λ) be a point in the interior of the triangle made of these three points as
vertices. Therefore, there are θ1, θ2 ∈ (0, 1) with 0 < θ1 + θ2 < 1 such that

ε = ε3 − θ1(∆ε1 + ∆ε2)− θ2∆ε2 (2.3)

λ = λ3 − θ1(∆λ1 + ∆λ2)− θ2∆λ2 (2.4)

where ∆ε1 = ε2 − ε1, ∆ε2 = ε3 − ε2, ∆λ1 = λ2 − λ1 and ∆λ2 = λ3 − λ2. Let us define:

x∗(ε, λ) = x3 − θ1(∆x1 + ∆x2)− θ2∆x2 (2.5)

y∗(ε, λ) = y3 − θ1(∆y1 + ∆y2)− θ2∆y2 (2.6)

s∗(ε, λ) = s3 − θ1(∆s1 + ∆s2)− θ2∆s2 (2.7)

where ∆xj = xj+1 − xj ,∆yj = yj+1 − yj , and ∆sj = sj+1 − sj , with j = 1, 2. It is easy to
verify that (x∗(ε), y∗(ε), s∗(ε)) is a primal-dual optimal solution of problems LP (4b,4c, ε, λ)
and LD(4b,4c, ε, λ). Replacing (2.3) and (2.4) and (2.6) in

φ(4b,4c, ε, λ) = (b + ε4b)T y∗(ε, λ)

implies:
φ(4b,4c, ε, λ) = a0 − a1θ1 − a2θ2 − a3θ1θ2 − a4θ

2
1 − a5θ

2
2 (2.8)

where

a0 = (b + ε3∆b)T
y3

a1 = (b + ε3∆b)T (∆y1 + ∆y2) + (∆ε1 + ∆ε2)∆bT y3

a2 = (b + ε3∆b)T ∆y2 + (∆ε2∆b)T y3 (2.9)

a3 = (∆ε1 + ∆ε2)∆bT ∆y2 + ∆ε2∆bT (∆y1 + ∆y2)

a4 = (∆ε1 + ∆ε2)∆bT (∆y1 + ∆y2)

a5 = ∆ε2∆bT ∆y2 + ∆ε2∆bT ∆y2

On the other hand, solving equations (2.3) and (2.4) for θ1 and θ2 gives:

θ1 = α1 + β1ε + γ1λ (2.10)

θ2 = α2 + β2ε + γ2λ (2.11)

where

α1 =
ε3∆λ2 − λ3∆ε2

∆ε1∆λ2 −∆ε2∆λ1
, β1 = − ∆λ2

∆ε1∆λ2 −∆ε2∆λ1
, γ1 =

∆ε2
∆ε1∆λ2 −∆ε2∆λ1

α2 =
λ3(∆ε1 + ∆ε2)− ε3(∆λ1 + ∆λ2)

∆ε1∆λ2 −∆ε2∆λ1
, β2 =

∆λ1 + ∆λ2

∆ε1∆λ2 −∆ε2∆λ1
,

γ2 = − ∆ε1 + ∆ε2
∆ε1∆λ2 −∆ε2∆λ1

.
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Replacing (2.9)-(2.11) in (2.8) gives the following representation of the optimal value
function:

φ(4b,4c, ε, λ) = b0 + b1ε + b2λ + b3ελ + b4ε
2 + b5λ

2 (2.12)

where

b0 = a0 − a1α1 − a2α2 + a3α1α2 + a4α
2
1 + a5α

2
2,

b1 = −a1β1 − a2β2 + a3α2β1 + a3α1β2 + 2a4α1β1 + 2a5α2β2,

b2 = −a1γ1 − a2γ2 + a3α2γ1 + a3α1γ2 + 2a4α1γ1 + 2a5α2γ2,

b3 = a3β1γ2 + a3β2γ1 + 2a4β1γ1 + 2a5β2γ2,

b4 = a3β1β2 + a4β1
2 + a5β2

2,

b5 = a3γ1γ2 + a4γ1
2 + a5γ2

2

that is a quadratic function of ε and λ. The proof is complete.

2.4 Identifying the ISS, IACS and IC Intervals

In this subsection we present auxiliary LO problems that enable us to identify the ISS, IACS
and IC regions. First we mention a trivial observation. Let ΦLP denotes the solution set of
the following equations system:

Ax− ε4b = b

where x ≥ 0. Analogously, let ΦLD denotes the solution set of the following equations
system:

AT y + s− λ4c = c

where s ≥ 0. Further, combining ΦLP and ΦLD, let Φ be the solution set of the following
equations system:

Ax− ε4b = b

AT y + s− λ4c = c

where x ≥ 0 and s ≥ 0. It should be mentioned that when the LP is in canonical form, the
set Φ is reduced to the following set:

Ax− r − ε4b = b

AT y + s− λ4c = c

where x ≥ 0, r ≥ 0, y ≥ 0 and s ≥ 0 and we denote it by ΦC . Observe that in the
feasible solution set LP∗(4b,4c, ε, λ), the parameters ε and λ are considered to be fixed
parameters values and this set contains all vectors x(ε) that satisfy the constraints of problem
LP (4b,4c, ε, λ). Meanwhile, in the solution set Φ, ε is considered as unknown and its
smallest and biggest value (if it exists) denotes the domain of the optimal value function
φ(4b,4c, ε, λ). Analogous discussion is valid for solution sets ΦLP and ΦLD.
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2.4.1 Identifying the ISS Interval

The following theorem presents two computable auxiliary LO problems that lead to identify
the ISS region:

Υ (4b,4c, ε, λ) = Υ (4b, ε)× Υ (4c, λ).
The proof is analogous to the proof of Theorem 3 in [4] and it is omitted.

Theorem 2.8. Let x be a primal optimal solution of problem LP , where σ(x) = P and
(P, Z) be the ISS partition and let ΠV = (Bx

V ,N s
V ) be the variables’ optimal partitions of

LP problem. The εl and εu, the end points of Υ (4b, ε) can be obtained by solving the
following two auxiliary LO problems, respectively:

εl = min{ε | x ∈ ΦLP , σ(s) ⊆ N s
V , σ(x) ⊆ P}, (2.13)

εu = max{ε | x ∈ ΦLP , σ(s) ⊆ N s
V , σ(x) ⊆ P}. (2.14)

Then, Υ (4b, ε) = [εl, εu]. λl and λu, the end points of Υ (4c, λ) can be obtained by solving
the following two auxiliary LO problems, respectively:

λl = min{λ | (y, s) ∈ ΦLD, σ(x) ⊆ Bx
V , σ(s) ⊆ Z}, (2.15)

λu = max{λ | (y, s) ∈ ΦLD, σ(x) ⊆ Bx
V , σ(s) ⊆ Z}. (2.16)

Then, Υ (4c, λ) = [λl, λu].

As in the proof of Theorem 2.8, if εl = εu = λl = λu = 0, then there is no possibility to
perturb the RHS and OFC data of the problem LP (4b,4c, ε, λ) in the perturbing direction
∆b and ∆c while maintaining the ISS property of this problem. In this case, the ISS region
Υ (4b,4c, ε, λ) is the singleton {(0, 0)}.

2.4.2 Identifying the IACS Interval

The following theorem presents two computable auxiliary LO problems that lead to identify
the IACS region:

Γ (4b,4c, ε, λ) = Γ (4b, ε)× Γ (4c, λ).
The proof is analogous to the proof of Theorem 5 in [4] and it is omitted.

Theorem 2.9. Let (y, s) be a dual optimal solution of LD problem, where σ(s) = P and
(P, Z) be the IACS partition and let ΠV = (Bx

V ,N s
V ) be the variables’ optimal partitions

of LP problem. The εl and εu, the end points of Γ (4b, ε) can be obtained by solving the
following two auxiliary LO problems, respectively:

εl = min{ε | (y, s) ∈ ΦLD, σ(x) ⊆ Bx
V , σ(s) ⊆ P}, (2.17)

εu = max{ε | (y, s) ∈ ΦLD, σ(x) ⊆ Bx
V , σ(s) ⊆ P}. (2.18)

Then, Γ (4b, ε) = [εl, εu]. λl and λu, the end points of Γ (4c, λ) can be obtained by solving
the following two auxiliary LO problems, respectively:

λl = min{λ | x ∈ ΦLP , σ(s) ⊆ N s
V , σ(x) ⊆ Z}, (2.19)

λu = max{λ | x ∈ ΦLP , σ(s) ⊆ N s
V , σ(x) ⊆ Z}. (2.20)

Then, Γ (4c, λ) = [λl, λu].

As in the proof of Theorem 2.9, if εl = εu = λl = λu = 0, then there is no possibility to
perturb the RHS and OFC data of problem LP (4b,4c, ε, λ) in the perturbing direction ∆b
and ∆c while maintaining the IACS property of this problem. In this case, the IACS region
Γ (4b,4c, ε, λ) is the singleton {(0, 0)}.
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2.4.3 Identifying the IC Interval

The following theorem presents two computable auxiliary LO problems that lead to identify
the IC region:

Θ(4b,4c, ε, λ) = Θ(4b, ε)×Θ(4c, λ).

The proof is analogous to the proof of Theorem 7 in [4] and it is omitted.

Theorem 2.10. Let (x, y, s) be a primal-dual optimal solution of problem LP and LD
where σ(x) = P , σ(x) = P and (P, Z),(P, Z) be the Ic partitions and let ΠV = (Bx

V ,N s
V ) be

the variables’ optimal partitions of problem LP and LD. The εl and εu, the end points of
Θ(4b, ε) can be obtained by solving the following two auxiliary LO problems, respectively:

εl = min{ε | (x, y, s) ∈ Φ, σ(x) ⊆ P, σ(s) ⊆ P}, (2.21)

εu = max{ε | (x, y, s) ∈ Φ, σ(x) ⊆ P, σ(s) ⊆ P}. (2.22)

Then, Θ(4b, ε) = [εl, εu]. λl and λu, the end points of Θ(4c, λ) can be obtained by solving
the following two auxiliary LO problems, respectively:

λl = min{λ | (x, y, s) ∈ Φ, σ(x) ⊆ P, σ(s) ⊆ P}, (2.23)

λu = max{λ | (x, y, s) ∈ Φ, σ(x) ⊆ P, σ(s) ⊆ P}. (2.24)

Then, Θ(4c, λ) = [λl, λu].

As in the proof of Theorem 2.10, if εl = εu = λl = λu = 0, then there is no possibility to
perturb the RHS and OFC data of the problem LP (4b,4c, ε, λ) in the perturbing direction
∆b and ∆c while maintaining the IC property of this problem. In this case, the IC region
Θ(4b,4c, ε, λ) is the singleton {(0, 0)}.

3 Illustrative Examples

In this section, we apply the results of the previous sections and express an example to
illustrate the general LO problems.

Example 3.1. Consider the following LP problem in the form:

min x1 + x2

s.t x1 + x2 ≥ 4
x1 ≥ 2
x1 , x2 ≥ 0

Its dual is:

max 4y1 + 2y2

s.t y1 + y2 ≤ 1
y1 ≤ 1
y1 , y2 ≥ 0

It is easy to verify that the primal problem has multiple optimal solutions, while its dual
problem has a unique solution (y∗, s∗), where y∗ = (1, 0)T and s∗ = (0, 0)T . It is easy to
verify that the optimal partition of the index set {1, 2} is Π = (B,N ) = {{1, 2}, φ}.
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A strictly complementary optimal solution of (LP ) and (LD) are:

x∗ = (2, 2), r∗ = (0, 0), y∗ = (1, 0) and s∗ = (0, 0).

Let ∆b = (−1, 1) and ∆c = (−1, 1) be the perturbing directions. We have then Υ (4b, ε) =
[0, 1] and Υ (4c, λ) = [−∞, 1]. Thus

Υ (4b,4c, ε, λ) = [0, 1]× (−∞, 1]
for By = {1} and Ny = {2}. AlsoΥ (4b, ε) = [−1, 1] and Υ (4c, λ) = [−2,∞), thus

Υ (4b,4c, ε, λ) = [−1, 1]× (−2,∞)
for By = {2} and Ny = {1} and alsoΥ (4b, ε) = [−1, 0] and Υ (4c, λ) = [−2, 1], thus

Υ (4b,4c, ε, λ) = [−1, 0]× [−2, 1]
for By = {1, 2} and Ny = φ.

4 Conclusion

In this paper we introduced the concept of bi-parametric support set sensitivity analysis for
LO. We presented auxiliary LO problems that enable us to identify associated regions. We
are interested in developing the results of this study to the bi-(tetra)parametric expansion
support set sensitivity analysis for general LO problems and CQO, as well.
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