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Abstract: Convex subdifferential calculus obeys various rules possibly involving approximate sub-
differentials. Some of these rules concern nonconvex functions like for instance the difference of convex
functions. In this note we point out a formula for the subdifferential of the lower semicontinuous hull of an
arbitrary extended real-valued function h. We apply the result to the case when h is the infimal convolution
of functions that need not be convex. The symmetric approach in terms of minimum sets of functions is also
investigate and argmin calculus rules are obtained. We derive from this approach the Hiriart-Urruty and
Phelps formula on the sum of two proper lower semicontinuous convex functions and provide a remarkable
topological stability property of this formula.
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1 Preliminary Notions

Let 〈 〉 : X × Y → R be a separated bilinear coupling of real vector spaces X and Y . The
ε-subdifferential (ε ≥ 0) of an extended real-valued function h : X → R (R = R ∪ {±∞})
at a point x ∈ h−1(R) is defined as

∂εh(x) = {y ∈ Y : h(u) ≥ h(x) + 〈u− x, y〉 − ε,∀u ∈ X}.
In the sequel we set

∂εh(x) = ∅ if h(x) = +∞ or h(x) = −∞.

It is worth of observing that if h takes somewhere the value −∞ or if h is identically equal
to +∞ (one then says that h is not proper) then ∂εh(x) is empty for all x ∈ X. In all cases
it is possible to express ∂εh(x) in terms of the Legendre-Fenchel conjugate h∗ of h

h∗(y) = sup
x∈X

(〈x, y〉 − h(x)) ∀y ∈ Y.

According to the sum rule +∞+(−∞) = (−∞)+(+∞) = +∞ we have, for any x ∈ X,
ε ≥ 0,

∂εh(x) = {y ∈ Y : h(x) + h∗(y) ≤ 〈x, y〉+ ε}. (1.1)
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We also consider the inverse of the multivalued mapping ∂εh that we denote by Mεh: for
any (x, y) ∈ X × Y ,

y ∈ ∂εh(x) ⇔ x ∈ Mεh(y) = ε− argmin(h− 〈., y〉)

where for k ∈ RX
we set

ε− argmin(k) = {x ∈ X : k(x) ∈ R and k(x) ≤ k(u) + ε,∀u ∈ X}.
The previous concepts can be symmetrically applied to extended real-valued functions φ
defined on Y like for instance φ = h∗. We will use the next basic fact

if h = h∗∗ then Mεh(y) = ∂εh
∗(y ) ∀ε ≥ 0,∀y ∈ Y. (1.2)

Here h∗∗ = (h∗)∗ denotes the Legendre-Fenchel biconjugate of h with respect to the coupling
〈 〉 : X × Y → R. In the sequel we equip X (resp. Y ) with a topology τ (resp. ν) such
that the coupling 〈 〉 : X × Y → R is τ × ν-continuous. Note that τ and ν are finer than
the weak topologies σ(X, Y ) and σ(Y, X) respectively. Moreover, when ν (resp. τ) is the
discrete topology, then 〈 〉 is τ × ν-continuous if and only if τ (resp. ν) is finer than σ(X, Y )
(resp. σ(Y, X)).
The case when τ or ν (or both) is the discrete topology is of particular interest. One can also
take for τ the norm topology of a normed space X and for ν the dual norm topology on the
topological dual Y of X. This covers of course the case when X = Y is an euclidean space or a
Hilbert space and τ = ν is the norm topology. Sequential forms of continuity of the coupling
〈 〉 involving the weak (resp.weak*) topology in a Banach space setting are not exploited in
this note. A nonstandard example is furnished by the choice of the core topology τ on a
real linear space X, whose open sets are the empty set and the sets (possibly nonconvex)
whose affine-hull is X and that coincide with their algebraic interior; such a topology τ is
not compatible with the linear structure unless X = R; taking for ν the discrete topology
on the space Y of all linear forms on X, the coupling (x, y) ∈ X×Y → 〈x, y〉 = y(x) is then
τ × ν- continuous.
The Kuratowski-Painlevé outer limit of sets is crucial in what follows. Recall that the
Kuratowski-Painlevé outer limit, also called limit superior, of a family (Nα)α>ε of subsets
Nα of X × Y when α → ε+ is defined by (see e.g.[1])

τ × ν − lim sup
α→ε+

Nα =
⋂
α>ε

τ × ν − cl
⋃

ε<β<α

Nβ .

This concept can be equivalently expressed in terms of outer limits of the multivalued map-
pings

Nα : X ⇒ Y, Nα(x) := {y ∈ Y : (x, y) ∈ Nα}; Mα : Y ⇒ X, Mα(y) := {x ∈ X : (x, y) ∈ Nα}.
In fact for any (x, y) ∈ X × Y the following assertions are equivalent

i)
(x, y) ∈ τ × ν − lim sup

α→ε+

Nα,

ii)
y ∈ ν − lim sup

α→ε+

u
τ→x

Nα(u) :=
⋂
αε

⋂

U∈Nτ (x)

τ − cl
⋃

ε<β<α,u∈U

Nβ(u),
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iii)
x ∈ τ − lim sup

α→ε+

v
ν→y

Mα(v) :=
⋂
αε

⋂

V ∈Nν(y)

τ − cl
⋃

ε<β<α,v∈V

Mβ(v).

When the family (Nα)α>ε is nondecreasing one has

τ × ν − lim sup
α→ε+

Nα =
⋂
α>ε

τ × ν − cl Nα.

2 The ε-subdifferential of τ − cl h

Let h ∈ RX
and denote by h the τ -l.s.c. hull of h

h = τ − cl h.

Since 〈., y〉 is τ -continuous one has, for any (y, r) ∈ Y × R ,

〈., y〉 − r ≤ h ⇒ 〈., y〉 − r ≤ h

and consequently
h∗∗ ≤ h ≤ h.

Applying the Legendre-Fenchel transform we obtain

(h)
∗

= h∗

and, for any x ∈ X,

∂εh(x) = {y ∈ Y : h(x) + h∗(y) ≤ 〈x, y〉+ ε}. (2.1)

Let us introduce the function H : X × Y → R defined by

H(x, y) = h(x) + h∗(y)− 〈x, y〉.

In terms of the graph
∂εh := {(x, y) ∈ X × Y : y ∈ ∂εh(x)}

one has from (1.1)

[H ≤ ε] := {(x, y) ∈ X × Y : H(x, y) ≤ ε} = ∂εh. (2.2)

The next lemma provides the τ × ν−l.s.c. hull H of H:

Lemma 2.1. For any (x, y) ∈ X × Y one has

H(x, y) = h(x) + h∗(y)− 〈x, y〉. (2.3)

Proof. If h∗ is not proper the conclusion is clearly true (either h∗ = +∞ and then H = H =
+∞, or h∗ = −∞ and then h = h = +∞ and so H = H = −∞). In the contrary case we
have that −∞ < h∗∗ ≤ h and −∞ < h∗; in such a case we can write

lim inf
u

τ→x

v
ν→y

(h(u) + h∗(v)) = lim inf
u

τ→x

h(u) + lim inf
v

ν→y

h∗(v) = h(x) + h∗(y)
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because h∗ is ν-l.s.c. as a supemum of affine ν-continuous functions.

Taking into account the classical relation

[H ≤ ε] =
⋂
α>ε

τ × ν − cl[H ≤ α]

together with (2.1), (2.2), (2.3), we can state

Theorem 2.2. Assume the coupling 〈 〉 is τ × ν-continuous. Then, the graph of the ε-
subdifferential of the τ -l.s.c. hull of any function h ∈ RX

is given by (for any ε ≥ 0)

∂ε(τ − cl h) = τ × ν − lim sup
α→ε+

∂αh. (2.4)

According to the properties of outer limits in a product space (see the equivalence be-
tween (i) and (ii)) we get

Corollary 2.3. For any h ∈ RX
, ε ≥ 0, (x, y) ∈ X × Y , one has

∂ε(τ − cl h)(x) = ν − lim sup
α→ε+

u
τ→x

∂αh(u) (2.5)

or, more explicitly,

∂ε(τ − cl h)(x) =
⋂
α>ε

⋂

U∈Nτ (x)

ν − cl
⋃

u∈U

∂αh(u), ∀x ∈ X. (2.6)

Remark 2.4. Provided the coupling 〈 〉 is τ × ν-continuous, the right hand members of
(2.5) and (2.6) are independant of ν. Assuming the functions 〈., y〉, y ∈ Y , are τ -continuous
and taking ν as the discrete topology we obtain

∂ε(τ − cl h)(x) =
⋂
α>ε

⋂

U∈Nτ (x)

⋃

u∈U

∂αh(u).

Remark 2.5. Assume h ∈ RX
is τ -l.s.c. at x ∈ X. Since h∗ = h

∗
one has ∂εh(x) = ∂εh(x)

and by (2.5)
∂εh(x) = ν − lim sup

α→ε+

∂αh(u) ⊃ ν − lim sup
u

τ→x

∂εh(u).

Since the inclusion
∂εh(x) ⊂ ν − lim sup

u
τ→x

∂εh(u)

always holds we get
∂εh(x) = ν − lim sup

u
τ→x

∂εh(u).

Remark 2.6. Let h ∈ RX
and x ∈ X be such that

ν − lim sup
α→0+,u

τ→x

∂αh(u) 6= ∅.

Then h is subdifferentiable at x and one has

∅ 6= ∂h(x) = ∂h∗∗(x) = ν − lim sup
α→0+

u
τ→x

∂αh(u).

The interest of the above formula lies in the fact that h∗∗ is often very difficult to compute
([2]).
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3 The ε-subdifferential of the τ-l.s.c. Hull of an Infimal Convolution

We are interested in the case when h is the infimal convolution of two extended real-valued
functions f, g ∈ RX

:
h(x) = (f�g)(x) = inf

u+z=x
f(u) + g(z).

Several formulas has been established for the ε-subdifferential of f�g for f and g convex([3]
[4] [8]...). In order to calculate the subdifferential of the l.s.c. hull of f�g in a general setting
we just need, beside Therem 2.2, the following estimation that involves the parallel sum
A ⊥ B of two multivalued mappings A,B : X ⇒ Y :

A ⊥ B = (A−1 + B−1)
−1

or, more explicitly,
(A ⊥ B)(x) =

⋃
u+z=x

A(u) ∩B(z), ∀x ∈ X.

Lemma 3.1. For any f, g ∈ RX
, α > 0, and x ∈ Xone has

∂αf�g(x) ⊂ (∂2αf ⊥ ∂2αg)(x) ⊂ ∂4α(f�g)(x).

Proof. Let us prove the first inclusion, which is clearly true if (f�g)(x) = ±∞. Assume
(f�g)(x) ∈ R and let y ∈ ∂α(f�g)(x). Since (f�g)∗(y) = f∗(y) + g∗(y) (see e.g. [7]), by
(1.1) there exist u, z ∈ X such that u + z = x and

f(u) + g(z) + f∗(y) + g∗(y)− 〈x, y〉 ≤ 2α

or equivalently

[f(u) + f∗(y)− 〈u, y〉] + [g(z) + g∗(y)− 〈z, y〉] ≤ 2α.

The two brakets been nonnegative (by Fenchel inequality) we get y ∈ ∂2αf(u)∩∂2αg(z) and
finally y ∈ (∂2αf ⊥ ∂2αg)(x).
Let us prove the second inclusion. Let u + z = x and y ∈ ∂2αf(u) ∩ ∂2αg(z). One has
f∗(y) + g∗(y) = (f�g)∗(y) ∈ R and so f�g is proper. On the other hand (f�g)(x) ≤
f(u) + g(z) < +∞, and thus (f�g)(x) ∈ R. Moreover, for any v1, v2, v ∈ X such that
v1 + v2 = v one has

f(v1)+g(v2) ≥ (f(u)+〈v1−u, y〉−2α)+(g(z)+〈v2−z, y〉−2α) ≥ (f�g)(x)+〈v−x, y〉−4α.

By taking the infimum on v1, v2, with v1 + v2 = v, we get, for any v ∈ X,

(f�g)(v) ≥ (f�g)(x) + 〈v − x, y〉 − 4α

that means y ∈ ∂4α(f�g)(x).

According to Theorem 2.2 and Lemma 3.1 we can state
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Theorem 3.2. Assume the coupling 〈 〉 is τ × ν-continuous. The subdifferential of the
τ -l.s.c. hull (f�g) of the infimal convolution of the extended real-valued functions f, g ∈ RX

is given by
∂(f�g)(x) = ν − lim sup

α→0+

u
τ→x

(∂αf ⊥ ∂αg)(u), ∀x ∈ X (3.1)

or, explicitly,

∂(f�g)(x) =
⋂
α>0

⋂

U∈Nτ (x)

ν − cl
⋃

u+z∈U

∂αf(u) ∩ ∂αg(z). (3.2)

Remark 3.3. Assuming the functions 〈., y〉, y ∈ Y , are τ -continuous and taking ν as the
discrete topology we get from (3.2) and for any f, g ∈ RX

, x ∈ X,

∂(f�g)(x) =
⋂
α>0

⋂

U∈Nτ (x)

⋃

u+z∈U

∂αf(u) ∩ ∂αg(z).

In the case when τ is the discrete topology and the functions 〈x, .〉, x ∈ X, are τ -continuous
one has from (3.2):

∂f�g(x) =
⋂
α>0

ν − cl (∂αf ⊥ ∂αg)(x).

Taking ν as the discrete topology we obtain a formula established in ([3]) for proper
σ(X, Y )-l.s.c. convex functions

∂f�g(x) =
⋂
α>0

(∂αf ⊥ ∂αg)(x)

which is in fact valid for any f, g ∈ RX
, x ∈ X.

Remark 3.4. According to the properties of outer limits in a product space (cf the equiva-
lence between ii) and iii) in Section 1) and to the definition of the parallel sum of multivalued
mappings, the formula (3.1) can be reversed as follows

M(τ − cl f�g)(y) = τ − lim sup
α→0+

v
τ→y

Mαf(v) + Mαg(v) (3.3)

for any f, g ∈ RX
, y ∈ Y . Taking for ν the discrete topology and assuming that the functions

〈., y〉 are τ -continuous we obtain

M(τ − cl f�g)(y) =
⋂
α>0

τ − cl(Mαf(y) + Mαg(y)), ∀y ∈ Y.

4 Hiriart-Urruty and Phelps Formula Revisited

As usual we denote by Γ0(X) the set of functions φ : Y → R∪ {+∞} that can be expressed
as a supremum of a (nonvoid) family of X-affine functions, φ = supi∈I〈xi, .〉 − ri, (xi, ri) ∈
X×R for any i ∈ I, and such that dom φ := {y ∈ Y : φ(y) < +∞} 6= ∅. It is wellknown that
Γ0(Y ) is the set of extended real-valued functions on Y which are proper and coincide with
their biconjugate, or the set of proper convex functions which are l.s.c. with respect to any
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locally convex vector space topology on Y compatible with the coupling 〈 〉 : X × Y → R
(that means for which the topological dual of Y coincides with {〈x, .〉 : x ∈ X}) like for
instance the weak topology σ(Y, X).
Let us consider φ, ψ ∈ Γ0(Y ) such that

dom φ ∩ dom ψ 6= ∅ (4.1)

and let f, g : X → R ∪ {+∞} be convex and such that

f∗ = φ, g∗ = ψ. (4.2)

One can take f = φ∗, g = ψ∗ but other choices are possible. In any case one has from (4.2)

∂εφ = Mεf
∗∗, ∂εψ = Mεg

∗∗, ∀ε ≥ 0. (4.3)

Let us now assume that τ is a locally convex vector space topology on Y which is compatible
with the coupling 〈 〉 : X × Y → R. According to (4.1) and (4.2), it is a classical fact that
the common τ -l.s.c.-hull of f�g and f∗∗� g∗∗ coincides with the biconjugate of f�g (see e.g.
[6], [8]); in a word

(φ + ψ)∗ = (f�g)∗∗ = τ − cl f�g = τ − cl f∗∗� g∗∗.

We therefore get by (1.2)

∂(φ + ψ)(y) = M(τ − cl f�g)(y) = M(τ − cl f∗∗� g∗∗)(y), ∀y ∈ Y. (4.4)

Appying (3.3) twice in (4.4) and using (4.3) we obtain

Corollary 4.1. Assume that τ is a locally convex vector space topology on X compatible with
the coupling 〈 〉 : X × Y → R and let ν be a topology on Y such that 〈 〉 is τ × ν-continuous.
For any φ, ψ ∈ Γ0(Y ) satisfying (4.1), any convex functions f, g : X → R∪ +{∞} satisfying
(4.2), and any y ∈ Y , one has

∂(φ + ψ)(y) = τ − lim sup
α→0+

v
ν→y

Mαf(v) + Mαg(v) (4.5)

∂(φ + ψ)(y) = τ − lim sup
α→0+

v
ν→y

∂αφ(v) + ∂αψ(v). (4.6)

Remark 4.2. The choice of the discrete topology ν on Y in (4.6) leads to the Hiriart-Urruty
and Phelps formula

∂(φ + ψ)(y) =
⋂
α>0

τ − cl (∂αφ(y) + ∂αψ(y))

while (4.5) gives
∂(φ + ψ)(y) =

⋂
α>0

τ − cl (Mαf(y) + Mαg(y)).

Also, Corollary 4.1 says that Hiriart-Urruty and Phelps formula benefits a remarkable topo-
logical stability property around each point.
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Remark 4.3. Formula (4.5) can be reversed as follows

M(φ + ψ)(x) = ν − lim sup
α→0+

u
τ→x

(∂αf ⊥ ∂αg)(u).

In the same way by reversing (4.6) we get

M(φ + ψ)(x) =
⋂
α>0

⋂

U∈Nτ (x)

ν − cl
⋃

u+z∈U

Mαφ(u) ∩Mαψ(z)

a formula for the argmin of the sum of Γ0(Y ) functions without additional condition (com-
pare with [7] Corollary 1.16).
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