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Abstract: The paper is devoted to optimal control and feedback design of state-constrained parabolic
systems in uncertainty conditions. Problems of this type are among the most challenging and difficult in
dynamic optimization for any kind of dynamical systems. We pay the main attention to considering linear
multidimensional parabolic systems with Dirichlet boundary controls and pointwise state constraints, while
the methods developed in this study are applicable to other kinds of boundary controls and dynamical
systems of the parabolic type. The feedback design problem is formulated in the minimax sense to ensure
stabilization of transients within the prescribed diapason and robust stability of the closed-loop control
system under all feasible perturbations with minimizing an integral cost functional in the worst perturba-
tion case. Exploiting certain fundamental properties of the parabolic dynamics, we single out the worst
perturbations in the minimax control problem and efficiently solve the associated optimal control problems
for approximating ODE and the original PDE systems with pointwise state constraints. In this way, using
the transient monotonicity and turnpike asymptotic properties of the underlying parabolic dynamics on the
infinite horizon, we compute optimal (in the minimax sense) parameters of the easily implemented while rig-
orously justified three-positional suboptimal structure of the feedback boundary controls that ensure robust
stability of the closed-loop and highly nonlinear parabolic control system under consideration.
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1 Problem Formulation and Initial Discussions

This paper concerns optimal control and feedback design problems for linear multidimen-
sional parabolic systems with irregular boundary controls and uncertain distributed per-
turbations of the parabolic dynamics subject to pointwise state and control constraints.
Problems of this type are among the most challenging and difficult in dynamic optimiza-
tion and control theory for any kind of dynamical/evolution systems governed by ordinary
differential, partial differential, and functional differential equations and inclusions.

The methodology developed in this paper largely involves a number of approximation
techniques, which is in the mainstream direction of modern variational analysis and its
applications to optimization and control; see, e.g., [13] and the references therein. Note that
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efficient techniques of variational analysis has been recently applied by Michel Théra and
his collaborators [1] to evolution variational inequalities related to dynamic optimization
problems for partial differential equations and their important physical applications.

The primary motivation for our study came from practical design problems of automatic
control of the soil groundwater regime in irrigation engineering networks functioning under
uncertain weather and environmental conditions; we refer the reader to the author’s paper
[12] for the description of the original problem and its simplified one-dimensional modeling.

In this paper we consider a more realistic model motivated by [12] while certainly being
of independent interest for dynamic optimization, open-loop and closed-loop control, and
robust stability with many other potential applications. Let us present a rigorous mathe-
matical formulation of the problem to which we pay the main attention in this paper.

The system dynamics in the problem under consideration is given by the multidimen-
sional linear parabolic equation





∂y

∂t
+ Ay = w(t) a.e. in Q := [0, T ]× Ω,

y(0, x) = 0, x ∈ Ω,
y(t, x) = u(t), (t, x) ∈ Σ := [0, T ]× Γ

(1.1)

on the time interval [0, T ] with controls u(·) acting in the Dirichlet boundary conditions and
distributed perturbations w(·) on the right-hand side of the parabolic equation. In (1.1), A
is a self-adjoint and uniformly strongly elliptic operator on L2(Ω) defined by

Ay := −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂y

∂xj

)
− cy, (1.2)

where Ω ⊂ IRn is an open bounded domain with the boundary Γ that is supposed to be a
sufficiently smooth (n− 1)-dimensional manifold in IRn.

The sets of admissible controls U and admissible perturbations W are given by

U :=
{

u ∈ L∞[0, T ]
∣∣∣ − α ≤ u(t) ≤ α a.e. t ∈ [0, T ]

}
, (1.3)

W :=
{

w ∈ L∞[0, T ]
∣∣∣ − β ≤ w(t) ≤ β a.e. t ∈ [0, T ]

}
(1.4)

with some fixed bounds α, β > 0 in the pointwise constraints (1.3) and (1.4).
As is well known, the Dirichlet boundary conditions offer the least regularity properties

of the parabolic dynamics being the most challenging in control theory for parabolic systems;
see, e.g., [9, 13, 17]. By [10], for any feasible pair (u,w) ∈ U×W there is a unique generalized
solution y = y(u,w) ∈ L2(Q) to (1.1). For simplicity we omit (u,w) in the notation for the
corresponding solution y to (1.1) in what follows. Fixing an arbitrary point x0 ∈ Ω, observe
by [2, Theorem 3.9] that we can evaluate y(t, x0) for a.e. t ∈ [0, T ].

The underlying requirement on the system performance is to stabilize transients y(t, x0)
near the initial equilibrium state y(x, 0) ≡ 0 with a given accuracy η > 0 during the whole
dynamic process. This is formalized via the pointwise state constraints

−η ≤ y(t, x0) ≤ η a.e. t ∈ [0, T ]. (1.5)

A characteristic feature of the dynamical process described by (1.1) is the uncertainty of
perturbations w ∈ W : we can operate only with the bound β of the admissible region (1.4).
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Thus we can keep the system transients y(t, x0) within the prescribed stabilization region
(1.5) only by using feedback boundary controls u(·) depending on the current state position
ξ = y(t, x0) for each t ∈ [0, T ].

To formalize this description, consider any function f : IR → IR and construct boundary
controls in (1.1) via the feedback law

u(t) := f
(
y(t, x0)

)
, t ∈ [0, T ]. (1.6)

We say that such a function f defines a feasible feedback regulator if it generates controls u(t)
by (1.6) belonging to the admissible set U from (1.3) and keeps the corresponding transients
y(t, x0) of (1.1) within the prescribed constraint area (1.5) for every admissible perturbation
w ∈ W from (1.4). To estimate the quality of feasible regulators f = f(ξ), impose the
natural summability condition

∣∣f(
γ(t)

)∣∣ ∈ L1[0, T ] whenever γ(t) ∈ L2[0, T ] (1.7)

on f and consider the (energy-type) cost functional

J(f) := max
w∈W

{∫ T

0

∣∣f(
y(t, x0)

)∣∣ dt
}

. (1.8)

The maximum operation in (1.8) reflects the required control energy needed to neutralize
the adverse effect of the worst perturbations from (1.4) and to keep the state performance
within the prescribed area (1.5). Denote by F the set of all feasible feedback regulators
satisfying the summability condition (1.7) and suppose that F 6= ∅ referring the reader to
[16], where this issue has been studied in more detail. Finally, we formulate the minimax
feedback control problem (P ) as follows:

minimize J(f) over f ∈ F . (1.9)

It has been well recognized in control theory and applications that feedback control
problems are the most challenging and important for any type of dynamical systems, while
PDE systems provide additional difficulties and much less investigated in comparison with
the ODE dynamics; see more discussions and references in [13]. Furthermore, significant
complications come from pointwise/hard state constraints, which are of high nontriviality
even for open-look control problems. We are not familiar with any constructive device
applicable to the feedback control problem (P ) under consideration among a variety of
approaches and results available in the theories of differential games, H∞-control, Riccati’s
feedback synthesis, and other developments in general settings; see, e.g., [3, 7, 9] with the
discussions and references therein.

The constructive approach presented in this paper is initiated in [12] for the case of the
one-dimensional heat equation in (1.1). Further results in this direction have been recently
obtained in [14] for the case of Dirichlet boundary controls and in [15] for similar problems
with boundary controls acting in the Robin/mixed boundary conditions. This paper dealing
with irregular controls in the Dirichlet boundary conditions (which are essentially more
difficult for the parabolic dynamics in comparison with the Neumann boundary conditions
as well as the Robin/mixed ones considered in [15]) significantly improves, clarifies, and
simplifies the results and arguments presented in [14] for this case and then developed in
[14] for controls in mixed boundary conditions. We employ, in particular, a more efficient
device to compute and justify optimal controls for open-loop approximating ODE systems
with pointwise state constraints.
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The rest of the paper is organized as follows. In Section 2 we formulate and discuss the
basic (rather general) assumptions on the initial data of (P ) and present some preliminary
material on parabolic systems broadly used in proofs of the main results.

Section 3 deals with choosing and justification of the one-sided worst perturbations in the
feedback control problem (P ) and then solving auxiliary open-loop optimal control problems
corresponding to (P ) in the case of realizing the worst perturbations of this type. It is
shown, based on the fundamental Maximum Principle for the parabolic dynamics and the
convolution representation of the transients that the one-sided worst perturbations can be
selected, with a certain simplification, as the extreme ones in the admissible region (1.4).
Considering further the resulting open-loop parabolic control problem under one-sided worst
perturbations, we constructively approximate it by the corresponding ODE optimal control
systems with state constraints and justify the possibility to determine an appropriate sub-
optimal control structure for the parabolic system on a sufficiently large time interval by
studying the first-order ODE approximation. The latter state-constrained optimal control
problem is precisely solved by using appropriate tools of ODE optimal control. Finally in this
section, we optimize the justified suboptimal open-loop control structure along the parabolic
dynamics with taking into account the imposed state constraints.

In Section 4 we employ the open-loop control results from Section 3 and the underlying
monotonicity property of the parabolic dynamics to justify the structure of three-positional
feedback regulator in the Dirichlet boundary conditions of the original parabolic system and
optimize its parameters in such a way that the obtained closed-loop control system ensures
the required state performance within the prescribed constraint region under arbitrary one-
sided admissible perturbation and, furthermore, provides the best result (in the sense of
minimizing the cost functional) when the worst/maximum perturbations of this type are
realized. The resulting closed-loop control system is highly nonlinear and can loose its
robust stability (stability in the large) maintaining the required state performance in a self-
vibrating regime. Finally in Section 4, we establish efficient conditions for robust stability of
the closed-loop system by developing a variational approach to robust stability that reduces
the stability issue to a certain open-loop optimal control problem on the infinite horizon.

2 Basic Assumptions and Preliminaries

In this paper we consider the parabolic system (1.1), where the differential operator A in
(1.2) is self-adjoint and uniformly strongly elliptic satisfying the properties:

aij ∈ C∞(cl Ω), aij(x) = aji(x), x ∈ Ω, i, j = 1, . . . , n,
n∑

i,j=1

aij(x)vivj ≥ ν
n∑

i=1

v2
i , x ∈ Ω, (v1, . . . , vn) ∈ IRn (2.1)

with some ν > 0 and an arbitrary constant c ∈ IR in (1.2).
Consider further the homogeneous boundary value problem

{ −Aφ + λφ = 0,
φ|∂Ω = 0 (2.2)

and recall that the number component λ in the nontrivial pair (λ, φ) satisfying (2.2) is an
eigenvalue, while φ is the corresponding eigenfunction for the operator A under the Dirichlet
boundary condition. From assumptions (2.1) we have the following properties:

(a) the eigenvalues λi, i = 1, 2, . . . , are real and form a nondecreasing sequence that
accumulates only at ∞;
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(b) the corresponding orthonormal system of eigenvalues {φi(x)} ⊂ C∞(Ω) is complete
in the space L2(Ω);

(c) the first eigenvalue λ1 is simple and has the positive eigenfunction φ1(x);
(d) c + λ > 0 for any eigenvalue of A with an arbitrary constant c ∈ IR from (1.2).

The proofs of properties (a)–(c) can be found in [4, Theorems 8.37, 8.38]; the one for (d)
is given in [14, Proposition 2.1].

To establish the main results of this paper, we need to add the only one extra hypothesis
to the standard assumptions in (2.1):

(H) The first eigenvalue λ1 of the operator A is positive.

The general sufficient condition for the fulfillment of (H) is obtained in [14, Proposition 2.2]
in terms of the initial data of A and the diameter d of the domain Ω ⊂ IRn:

c <
2nν

d2
, where d := sup

x1,x2∈Ω
‖x1 − x2‖.

Thus, by properties (a), (c) and assumption (H), we have

0 < λ1 < λ2 ≤ λ3 ≤ . . . ≤ . . . . (2.3)

As mentioned above, for every feasible input pair (u,w) ∈ L∞[0, T ] × L∞[0, T ] the
parabolic system (1.1) admits a unique generalized solution y ∈ L2(Q). The next basically
known result (see [14, Proposition 2.3] and its proof for more details) gives a convenient
spectral representation of this solution via a Fourier-like series involving the eigenvalues and
eigenfunctions (λi, φi) of the operator A.

Proposition 2.1. (spectral representation of transients). Let (u,w) ∈ L2[0, T ] ×
L2[0, T ] in (1.1) under assumptions (2.1) on the strongly elliptic operator A, and let (λi, φi)
be the corresponding eigenvalues and eigenfunctions of A with the weights

µi :=
∫

Ω

φi(x) dx, i = 1, 2, . . . .

Then the unique solution y ∈ L2(Q) to (1.1) admits the spectral representation

y(t, x) =
∞∑

i=1

µi

( ∫ t

0

w(θ)eλiθdθ + (c + λi)
∫ t

0

u(θ)eλiθdθ
)
e−λitφi(x), (2.4)

where the series in (2.4) strongly converges in the space L2(Q).

Finally in this section, we present the following monotonicity property of the parabolic
dynamics with respect to both boundary controls and distributed perturbations established
in [14, Theorem 3.1] on the base of the classical Maximum Principle for parabolic systems
[8] and an additional smooth approximation procedure dealing with irregular data (u,w).

Proposition 2.2. (monotonicity property of the parabolic dynamics). Let (u1, w1)
and (u2, w2) be admissible control-perturbation pairs from U ×W such that

u1(t) ≥ u2(t) and w1(t) ≥ w2(t) a.e. t ∈ [0, T ],

and let y1, y2 ∈ L2(Q) be the corresponding generalized solutions to the parabolic system
(1.1). Then we have the relationship

y1(t, x) ≥ y2(t, x) a.e. (t, x) ∈ Q.
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3 Optimal Control under One-Sided Worst Perturbations

A conventional approach to optimal solutions of minimax problems is to identify them with
saddle points that consist, in the framework of problem (P ), of interrelated pairs (u,w) of
worst perturbations and optimal controls. However, it does not seem realistic to implement
this approach in full generality in such a complicated hard-constrained setting as in the
problem (P ) under consideration. To develop an implementable control design, we simplify
the situation splitting the problem into the two symmetric one-sided cases:

0 ≤ w(t) ≤ β and − α ≤ u(t) ≤ 0 a.e. t ∈ [0, T ]; (3.1)

−β ≤ w(t) ≤ 0 and 0 ≤ u(t) ≤ α a.e. t ∈ [0, T ]. (3.2)

The above splitting seems reasonable (although does not cover the general case) due to the
symmetricity of the initial data in problem (P ), the monotonicity of the parabolic dynamics,
and the fact that controls of the opposite sign are required to keep transients within the
prescribed constraint area (1.5) neutralizing the adverse impact of perturbations. We refer
the reader to [12] for certain practical motivations and to [14] for some arguments that
support such a symmetric splitting and the subsequent design procedure by considering the
class of odd and nonincreasing feedback regulators f ∈ F in (1.7) employed also in [15].

Without loss of generality we justify the choice of worst perturbations only in the upper
case (3.1), since the lower case (3.2) is fully symmetric. The following result is partly due to
the specific structures of the cost functional and boundary controls in (P ), related to each
other, while it is largely based on the fundamental Maximum Principle for the parabolic
dynamics and the related convolution representation of the transients; see the proof.

Theorem 3.1 (one-sided worst perturbations). Under the standing assumptions made,
the worst perturbation w(t) in (P) over all w ∈ W satisfying (3.1) can be chosen as the
maximal one from the admissible area, i.e.,

w(t) ≡ β for a.e. t ∈ [0, T ]. (3.3)

Proof. By [16, Theorem 5.1], the transients ξ(t) := y(t, x0) of (1.1) generated by admissible
pairs (u,w) ∈ U ×W have the convolution representation for all t ∈ [0, T ]:

ξ(t) = ϕ(t) ∗ w(t) + ψ(t) ∗ u(t) :=
∫ t

0

ϕ(t− s)w(s) ds +
∫ t

0

ψ(t− s)u(s) ds, (3.4)

where the functions ψ ∈ L∞[0, T ] and ϕ ∈ L∞[0, T ] are positive on [0, T ] and independent
of (u,w); this is mainly due to the Maximum Principle for the parabolic dynamics.

To proceed further, fix a feedback function f ∈ F and, given an arbitrary perturbation
w(t) from (3.1), get by (1.6) the corresponding boundary control u(t) in (1.1) formed via
this feedback law f :

u(t) = f
(
y(t, x0)

)
= f

(
ξ(t)

)
a.e. t ∈ [0, T ].

Then the cost functional (1.8) is written as

∫ T

0

∣∣f(
y(t, x0)

)∣∣ dt =
∫ T

0

∣∣u(t)
∣∣ dt = −

∫ T

0

u(t) dt (3.5)
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due to the control constraints in (3.1). By the convolution representation (3.4), the state
constraints (1.5) imposed on y(t, x0) = ξ(t) reduces to

∫ T

0

ϕ(t− s)w(s) ds +
∫ T

0

ψ(t− s)u(s) ds ≤ η, 0 ≤ t ≤ T. (3.6)

Since both functions ϕ and ψ are positive on [0, T ], it follows directly from (3.6) that the
bigger magnitude of a perturbation is, the more control of the opposite sign should be applied
to neutralize this perturbation in the sense of ensuring the required state performance (3.6).
Thus the maximum value of the cost functional in (3.5) subject to (3.1) and (3.6) corresponds
to the maximal perturbation (3.3), which requires the maximal control response to keep (3.6)
along the parabolic dynamics (1.1). This completes the proof of the theorem.

By the afore-mentioned symmetry of (P ), we conclude that in the lower perturbation
case (3.2) the worst one-sided perturbation w(·) can be selected as

w(t) ≡ −β for a.e. t ∈ [0, T ]. (3.7)

In the rest of this section we consider the specification of problem (P ) under realizing the
worst perturbations (3.3) and (3.7) in the system. By the above discussions, it is sufficient to
study only the upper case (3.1) when the worst perturbation is w ≡ β. Taking into account
that in this case the control systems does not involve any uncertainty, we associate with (P )
as w ≡ β the following open-loop optimal control problem (P ):

minimize J(u) := −
∫ T

0

u(t) dt (3.8)

along the parabolic system




∂y

∂t
+ Ay = β a.e. (t, x) ∈ Q,

y(0, x) = 0, x ∈ Ω,
y(t, x) = u(t) a.e. (t, x) ∈ Σ

(3.9)

under the pointwise control and state constraints

u(·) ∈ L∞[0, T ] with − α ≤ u(t) ≤ 0 a.e. t ∈ [0, T ], (3.10)

y(·, x0) ∈ L2[0, T ] with y(t, x0) ≤ η a.e. t ∈ [0, T ]. (3.11)

Observe that (P ) is a state-constrained Dirichlet boundary control problem, which was
considered in [13, 17] and the references therein in more generality with deriving rather
complicated necessary optimality conditions involving Borel measures, which are difficult to
apply to computing optimal or suboptimal controls.

In what follows we develop another strategy to solve (P ) that is based on its approx-
imation by ODE state-constrained control problems and determining in this way an im-
plementable suboptimal control structure to (P ), which is then optimized along the state-
constrained parabolic dynamics (3.9). Let us use the spectral representation

y(t, x0) =
∞∑

i=1

µi

( β

λi

(
eλit − 1

)
+ (c + λi)

∫ t

0

u(θ)eλiθdθ
)
e−λitφi(x0) (3.12)
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of solutions to the parabolic system (3.9) at x = x0, which follows from Proposition 2.1.
Taking any natural N = 1, 2, . . ., replace series (3.12) by the finite N -sum

yN (t, x0) =
N∑

i=1

µi

( β

λi

(
eλit − 1

)
+ (c + λi)

∫ t

0

u(θ)eλiθdθ
)
e−λitφi(x0) (3.13)

for which yN (t, x0) → y(t, x0) strongly in L2[0, T ]. It is easy to see that yN (t, x0) in (3.13)
is represented as the sum

yN (t, x0) =
N∑

i=1

yi(t), 0 ≤ t ≤ T, (3.14)

where each yi(t), i = 1, . . . , N , satisfies the corresponding ODE:

ẏi = −λiyi + µiφi(x0)
(
β + (c + λi)u(t)

)
a.e. t ∈ [0, T ], yi(0) = 0. (3.15)

To proceed, we observe that the feedback control problem (P ) as well as the open-loop
control problem (P ) are formulated on the fixed time interval [0, T ]. In many applications
the time duration T is sufficiently large and can be taken conventionally as the infinite
horizon, which allows us to involve t → ∞ in the asymptotic analysis. If in the latter case
the first term in (3.12) involving e−λ1t is not zero, it obviously dominates the other terms
in the exponential series as t →∞ due to the basic eigenvalue relationships (2.3).

Having this in mind, our special attention is paid to the case of N = 1 in (3.13)–(3.15),
which provides an adequate ODE approximation of the PDE system under consideration on
sufficiently large time intervals and thus allows us to determine an appropriate suboptimal
control structure in the open-loop problem (P ) for the parabolic dynamics (3.9). Then we
optimize parameters of this suboptimal structure along the initial parabolic system.

By the afore-mentioned symmetry, it is sufficient to consider the following open-loop
control problem (P 1) approximating the PDE dynamics at x = x0: minimize the cost func-
tional (3.8) over admissible controls u(t) satisfying the constraints in (3.10) and generating
absolutely continuous trajectories y : [0, T ] → IR of the ODE system

ẏ = −λ1y + µ1φ1(x0)
(
β + (c + λ1)u(t)

)
a.e. t ∈ [0, T ], y(0) = 0 (3.16)

subject to the pointwise state constraints

y(t) ≤ η for all t ∈ [0, T ]. (3.17)

Observe that the presence of the state constraints (3.17) places problem (P 1) among difficult
problems for ODE control. Standard optimality conditions for such problems involve Borel
measures that make them challenging for implementations and applications. In [14, 15], we
developed an efficient while rather involved procedure to study (P 1) by using a penalty-type
approximation of state constraints and then by passing to the limit in optimality conditions
for penalized approximating problems.

Now we use a new device, which takes into account certain specific features of (P 1)
and allows us to obtain the exact solution to this problem by a direct application of less
conventional and less known results of ODE control theory for state-constrained systems.

Theorem 3.2 (exact solution to the state-constrained ODE control problem).
Assume that both conditions

µ1φ1(x0)β > λ1η, µ1φ1(x0)
(
β − α(c + λ1)

) ≤ λ1η (3.18)
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are satisfied and that the time duration T is sufficiently large:

T >
1
λ1

ln
µ1φ1(x0)β

µ1φ1(x0)β − λ1η
. (3.19)

Define the switching time τ ∈ (0, T ) by

τ :=
1
λ1

ln
µ1φ1(x0)β

µ1φ1(x0)β − λ1η
(3.20)

and consider the piecewise constant, two-positional control

ū(t) =





0 if t ∈ [0, τ),

v :=
λ1η − µ1φ1(x0)β
µ1φ1(x0)(c + λ1)

if t ∈ [τ , T ]. (3.21)

Then control (3.21) is optimal to problem (P 1), i.e., it is feasible with respect to both control
constraints (3.10) and state constraints (3.17) and gives the minimum value to the cost
functional (3.8) subject to these constraints along the dynamical system (3.16).

Proof. We begin with observing that if either the first condition (3.18) is not satisfied, or it
is satisfied while (3.19) is not, then the trivial control u(t) ≡ 0 on [0, T ] is feasible and hence
optimal to (P 1); see [14]. Furthermore, it is proved in [14] that if both above conditions
are satisfied while the second one in (3.18) is not, then problem (P 1) does not have feasible
controls. On the other hand, we can directly check, integrating (3.16) and using properties
(c) and (d) of the operator A presented in Section 2, that control (3.21) with the switching
time (3.20) is well defined and feasible to (P 1) under the fulfillment of (3.18) and (3.19).
Let us show that control (3.21) is actually optimal to (P1) under the assumptions made.

In what follows we employ optimality conditions of the Pontryagin maximum principle
type for state-constrained control problems, which do not involve measures—or, more pre-
cisely, the corresponding measure multiplier reduces to a density. The conditions used below
were initiated probably in [6], with a heuristic proof, and then were rigorously justified and
developed in [11]; see also survey [5] for more details and discussions.

Applying the necessary optimality conditions from [5, Theorem 4.1], we observe first that
the state constraint (3.17) in (P 1) is of order one and satisfies the regularity condition

∂(ẏ)
∂u

= µ1φ1(x0)(c + λ1) 6= 0

by equation (3.16), properties (c) and (d), and assumption (H) from Section 2. In this case
the corresponding measure in the necessary optimality conditions is a density δ(t)dt, and
hence the Hamilton-Pontryagin function in (P 1) is

H(y, p, δ, u) = −u + p
[− λ1y + µ1φ1(x0)

(
β + (c + λ1)u

)]
+ δ(y − η), (3.22)

where p ∈ IR is the adjoint variable. By (3.22) the adjoint equation is

ṗ = −∂H

∂y
= λ1p− δ, 0 ≤ t ≤ T, (3.23)

with p(T ) ≥ 0, since the state constraint (3.17) is obviously active at t = T . Further, we
form the switching function s(t) involving of the control coefficients in (3.22) as

s(t) = −1 + p(t)µ1φ1(x0)(c + λ1), 0 ≤ t ≤ T. (3.24)
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By definition of the switching function and by the second assumption in (3.18) we have that
the switching function vanishes

s(t) = 0 for all t ∈ [τ, T ] (3.25)

on each boundary arc, i.e., on the part of the corresponding trajectory that entirely lies on
the state constraint boundary starting with the switching time τ when the trajectory hits
the constraint boundary y(τ) = η. It follows from (3.24) and (3.25) that

p(t) =
1

µ1φ1(x0)(c + λ1)
, τ ≤ t ≤ T. (3.26)

Furthermore, we have by differentiating the expression (3.24) for δ(t) on [τ, T ] and by taking
(3.23) and (3.25) into account that

ṡ(t) = µ1φ1(x0)(c + λ1)ṗ(t) = µ1φ1(x0)(c + λ1)
(
λ1p(t)− δ(t)

)
= 0, τ ≤ t ≤ T,

which yields λ1p(t)− δ(t) = 0 on [τ, T ] and, by (3.26), allows us to calculate σ(t) on [τ, T ]:

δ(t) =
λ1

µ1φ1(x0)(c + λ1)
> 0, τ ≤ t ≤ T.

Further, let us consider the corresponding interior arc of (3.16) under the state constraint
(3.17), i.e., the part of y(t) for which y(t) < η as 0 ≤ t < τ . Taking into account that δ(t) = 0
for t ∈ [0, τ) and using relationships (3.23) and (3.26), we get the Cauchy problem

ṗ = λ1p on 0 ≤ t < τ with p(τ) =
1

µ1φ1(x0)(c + λ1)

for the adjoint arc p(t) on [0, τ ], which has the unique solution

p(t) =
1

µ1φ1(x0)(c + λ1)
eλ1(t−τ), 0 ≤ t ≤ τ.

The latter yields, by the switching function formula (3.24), that s(t) < 0 for 0 ≤ t < τ .
By employing the minimum condition from [5, Theorem 4.1], we conclude that any optimal
control ū(t) to (P 1) must satisfy the relationship

s(t)ū(t) = min
−α≤u≤0

s(t)u, 0 ≤ t ≤ T, (3.27)

which immediately implies that ū(t) = 0 for 0 ≤ t < τ , since the switching function is
negative on this interval. Observe that the minimum condition (3.27) does not give any
information about optimal controls on [τ, T ], where the switching function s(t) vanishes.
This means that [τ, T ] is a singular control interval, which [0, τ) provides a bang-bang mode.

It remains to find, in the framework of this procedure, optimal values of the switching
time τ and control ū(t) on the singularity interval [τ , T ]. It follows from the above arguments
that the optimal switching time τ = τ can be found from the entry condition y(τ) = η, where
y(t) is the solution to the state equation (3.16) with u(t) ≡ 0. Integrating this system, we
arrive at the expression (3.20) for τ and easily check that 0 < τ < T under the assumptions
made. To determine ū(t) on [τ , T ], recall that it corresponds to the boundary arc y(t) ≡ η
on [τ , T ]. Hence ẏ(t) ≡ 0 on this interval, and we get the constant value ū(t) ≡ v on [τ , T ]
from formula (3.21).
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Thus, the above procedure allows us to compute the control function ū(t) in (3.21) that
satisfies the necessary optimality conditions from [5, Theorem 4.1]. Since these conditions
are also sufficient for optimality in problem (P 1), by the linear-convex structure of this
problem (see [5, Theorem 8.2]), we complete the proof of the theorem.

Based on the discussions presented right before formulating Theorem 3.2, we can consider
the optimal control found in this theorem as a first-order approximation of an optimal
solution to the open-loop control problem (P ) for the state-constrained parabolic system
(3.9). Moreover, this approximation is fairly adequate, under the basic assumption (H)
made in Section 2, when the time interval [0, T ] is sufficiently large.

We can do even better in what follows. Let us accept a two-positional control structure
of the exact solution to problem (P1) founded in Theorem 3.2 as a suboptimal structure of
feasible controls to problem (P ) and optimize its parameters along the original parabolic
dynamics. This leads us to the following parametric dynamic optimization problem (P̂ ) for
the state-constrained parabolic system under consideration:

minimize J(v, τ) := −
∫ T

0

u(t) dt (3.28)

over admissible Dirichlet boundary controls of the form

u(t) =
{

0 if t ∈ [0, τ),
−v if t ∈ [τ, T ] (3.29)

subject to the constraints on control recourses v and switching control times τ given by

0 ≤ v ≤ α, 0 < τ ≤ T (3.30)

and the pointwise state constraints (3.11) on trajectories of the parabolic system (3.9).
The next theorem gives exact solutions to problem (P̂ ) in the case when the time interval

[0, T ] is sufficiently large and also in the asymptotic case of this problem when T = ∞, i.e.,
when (P̂ ) is considered on the infinite horizon [0,∞].

Theorem 3.3 (optimal parameters of open-loop suboptimal control for the state-
constrained parabolic system). In addition to the standing assumptions of Section 2,
impose the following conditions:

0 < γβ − η ≤ min
{

α(1 + cγ),
β(1 + cγ)

c + λ1

}
, (3.31)

where γ is the aggregate spectral parameter of the elliptic operator A from (1.2) defined by

γ :=
∞∑

i=1

µiφi(x0)
λi

.

Let T0 > 0 be a unique solution to the equation

η = β
(
γ −

∞∑

i=1

µiφi(x0)
λi

e−λit
)
, (3.32)

which exists under the assumptions made. Then for all T > T0 the equation
∞∑

i=1

µiφi(x0)
λi

e−λiT
[
(c + λi)(γβ − η)eλiτ − β(1 + cγ)

]
= 0 (3.33)
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has a unique solution τ = τ(T ) ∈ (0, T ) and the boundary control

uτ (t) =





0 if t ∈ [0, τ),
η − γβ

1 + cγ
:= −v̄ if t ∈ [τ, T ] (3.34)

is feasible to (P̂ ) whenever 0 < τ ≤ τ(T ). When τ = τ(T ), the control ū(t) := uτ(T )(t)
is optimal to problem (P̂ ) among any controls of type (3.34). Furthermore, τ(T ) ↓ τ∞ as
T →∞, where the asymptotically optimal switching time τ∞ is computed by

τ∞ :=
1
λ1

ln
β(1 + cγ)

(c + λ1)(γβ − η)
(3.35)

and is maximal among the switching times τ ≥ 0 generating controls (3.34) with T = ∞,
which all are admissible by the state constraints (3.11) along the parabolic system (3.9) on
the infinite horizon [0,∞).

Proof. Let u(t) be a boundary control of form (3.29) satisfying (3.30), and let y(t, x) be the
corresponding trajectory of (3.9) generated by this control. Denoting

y(t) := y(t, x0) on [0, τ ] and y(t; τ) := y(t, x0) on [τ, T ]

and employing Proposition 2.1, we have the representations:

y(t) = β
(
γ −

∞∑

i=1

µiφi(x0)
λi

e−λit
)
, t ∈ [0, τ ], (3.36)

y(t; τ) = γβ − (1 + cγ)v +
∞∑

i=1

µiφi(x0)
λi

e−λit
[
(c + λi)veλiτ − β

]
, t ∈ [τ, T ], (3.37)

with y(τ) = y(τ ; τ). By γβ − η > 0, the equation y(t) = η in (3.32) has a solution t = T0,
which is unique by the monotonicity of y(t) in (3.36). Taking now T > T0 and using the
monotonicity of y(t; τ) with respect to τ that follows from Proposition 2.2, we conclude that
the equation y(T ; τ(T )) = η, which reduces to (3.33) due to (3.37), has a unique solution
τ(T ) ∈ (0, T ). Furthermore, the same monotonicity property and the explicit representation
of y(t; τ) in (3.10) imply under the assumptions made that y(t; τ) ≤ η whenever t ∈ [0, T ] for
every transient generated by the controls uτ (t) from (3.34) with τ ≤ τ(T ). Thus τ = τ(T )
is maximal among all τ generating feasible controls to (P̂ ) with the control resource v̄.
It follows directly from structure (3.28) of the cost functional in (P̂ ) that the Dirichlet
boundary control ū(t) = uτ (t) is indeed optimal to problem (P̂ ) among any feasible controls
(3.34) whenever T > T0.

It remains to consider the asymptotic case of problem (P̂ ) as T → ∞ and its behavior
on the infinite horizon. Similarly to the prof of Proposition 2.2 based on the Maximum
Principle for the parabolic dynamics, we conclude that the optimal switching time τ(T ) in
(P̂ ) is strictly decreasing in T and it is obviously bounded from below. Thus τ(T ) converges
as T → ∞, and its limit τ∞ reduces to that computed in (3.35) due to the eigenvalue
properties (2.3), which reflect the first eigenvalue dominance.

Further, we observe directly from (3.37) that the control uτ (t) from (3.34) with T = ∞
and τ = τ∞ preserves the state constraints (3.11) for the corresponding transient in (3.36)
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and (3.37) whenever t ≥ 0, i.e., this control is feasible to problem (P̂ ) on the infinite horizon
[0,∞). Furthermore, τ∞ is the maximal switching time τ in (3.34) satisfying this property.
First of all, we easily check that the state constraints (3.11) are satisfied on [0,∞) if τ < τ∞

in (3.34) with T = ∞. Considering now any τ > τ∞, apply the Fermat stationary rule to
(3.37) on the open interval (τ,∞) by differentiating y(t; τ) in t. We check in this way that
the maximum of y(t; τ) over (τ,∞) is bigger than η whenever τ > τ∞. This completes the
proof of the theorem.

Observe that the asymptotically optimal switching time τ∞ in (3.35) can be computed
directly from the condition of vanishing the first term in the series of (3.37):

(c + λ1)veλ1τ − β = 0

with v = v̄ computed in (3.34). This justifies the simple and convenient first term rule to
deal with the parabolic dynamics under the basic assumption (H) as t →∞.

The results obtained above describe the best possible reaction of the control system to
keep the required state constraints under the realization of the upper/maximal case of the
worst perturbations w(t) ≡ β on [0, T ]. Due to the full symmetry of the initial problem (P )
discussed in Section 2, the lower case w(t) ≡ −β of the worst perturbations on [0, T ] can be
considered similarly by using open-loop Dirichlet boundary controls

u(t) =
{

0 if t ∈ [0, τ),
v ∈ [0, α] if t ∈ [τ, T ] (3.38)

for the linear parabolic system





∂y

∂t
+ Ay = −β a.e. (t, x) ∈ Q,

y(0, x) = 0, x ∈ Ω,
y(t, x) = u(t) a.e. (t, x) ∈ Σ

(3.39)

subject to the pointwise state constraints

y(·, x0) ∈ L2[0, T ] with y(t, x0) ≥ −η a.e. t ∈ [0, T ]. (3.40)

Then, taking into account the sign changes in (3.38)–(3.40), we have exactly the same for-
mulas for computing optimal parameters (v̄, τ(T ), τ∞) in the open-loop problem

minimize
∫ T

0

u(t) dt over constraints (3.38)–(3.40) (3.41)

and its asymptotic infinite horizon version.

Finally in this section, we conclude from the results of Theorem 3.3 and their counter-
parts for the lower case of the worst perturbations that the passage to the infinite horizon
allows us to significantly simplify optimal solutions to the open-loop control problems under
consideration and to arrive at the convenient analytic formulas for computing their optimal
parameters. The discovered phenomenon reveals a certain turnpike property, which happens
to be a characteristic feature of such state-constrained control problems governed by the
parabolic dynamics.
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4 Feedback Control Design and Robust Stability of the Closed-
Loop Parabolic System

The last section of the paper is devoted to the construction and justification of a suboptimal
feedback regulator for the original minimax feedback control problem (P ) and then computing
the range of parameters of this regulator, which ensures robust stability of the designed
closed-loop control system.

Recall that the purpose of feedback controls in (P ) is to keep transients within the given
state constraint region (1.5) for all uncertain perturbations w ∈ W from (1.4) subject to
the imposed constrains on controls in such a way that the cost functional (1.8) is minimized
under the realization of the (one-sided) worst perturbations determined in (3.3) and (3.7).
The results obtained above for computing optimal open-loop controls in the case of the worst
perturbations allow us to justify the following suboptimal structure f = f(ξ) of feedback
controls (1.6) acting in the Dirichlet boundary conditions of the parabolic system (1.1):

f(ξ) =




−v if ξ ≥ σ,
0 if − σ < ξ < σ,
v if ξ ≤ −σ

(4.1)

describing a three-positional feedback regulator with the “dead region” (−σ, σ). Observe
that the feedback control law f(ξ) in (4.1) is given by an odd and nonincreasing function
satisfying all the requirements of Theorem 3.1.

The feedback control design, in the minimax sense of problem (P ), reduces therefore to
computing appropriate parameters (v, σ) in (4.1) such that the resulting closed-loop control
system keeps the state position ξ = y(t, x0) under observation within the admissible state
constraint area (1.5) for all uncertain perturbation w ∈ W and then ensures the minimum
value of the cost functional (1.8) under the realization of the worst perturbations. As in
Section 3, we split the problem into the two symmetric one-sided cases (3.1) and (3.2)
considering both feasibility and optimality issues for these cases separately.

The next theorem provides in the exact calculation of the optimal value σ(T ) on the
given time interval [0, T ] and fully describes its limiting/asymptotic behavior as T → ∞,
which corresponds to problem (P ) on the infinite horizon.

Theorem 4.1 (optimal parameters of the three-positional regulator in the mini-
max feedback control problem for the parabolic system). Let the feedback boundary
control regulator f(ξ) in (1.6) and (1.1) have the suboptimal three-positional structure (4.1),
let T0 be a unique solution to equation (3.32), and let the control resource v̄ be computed in
(3.34). The following assertions hold, where the feasibility and optimality are understood in
the afore-mentioned one-side sense:

(i) For any T > T0 the feedback control (4.1) is feasible to (P ) on the time interval [0, T ]
whenever 0 < σ ≤ σ(T ) with

σ(T ) := β
(
γ −

∞∑

i=1

µiφi(x0)
λi

e−λiτ(T )
)
, (4.2)

where τ(T ) is a unique solution to the transcendental equation (3.33). Moreover, the dead
region

(− σ(T ), σ(T )
)

is optimal to problem (P ) with the feedback control structure (4.1).
(ii) We have σ(T ) ↓ σ as T →∞, where the number σ∞ ≥ 0 is computed by

σ∞ := β
(
γ −

∞∑

i=1

µiφi(x0)
λi

[ (c + λ1)(γβ − η)
β(1 + cγ)

] λi
λ1

)
(4.3)
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being in fact positive under the condition

γβ − η <
β(1 + cγ)

c + λ1
. (4.4)

In this case the three-positional regulator (4.1) with the resource v ∈ (0, α] computed in (3.34)
is feasible to (P ) on [0,∞) whenever 0 < σ ≤ σ∞, while the dead region

( − σ∞, σ∞
)

is
optimal to (P ) with the feedback control structure (4.1) on the infinite horizon [0,∞).

Proof. Due to Proposition 2.2 on the monotonicity of transients with respect to controls
(and thus with respect to switching times τ) and also due to the time-monotonicity of
y(t) in (3.36), the feasible and optimal values of σ asserted in the theorem directly relate,
concerning the one-sided worst perturbations, to the corresponding values of y(t) at T0

and τ(T ) determined in Theorem 3.3 and its proof. On the other hand, these values of
σ found for the case of the worst perturbations occur to be appropriate for any one-sided
perturbations from the admissible area (1.4) with the symmetric splitting (3.1) and (3.2) due
to the extremality of the worst perturbations by Theorem 3.1 and due to the monotonicity
of transients with respect to perturbations by Proposition 2.2. In this way we arrive at all
the conclusions of assertion (i).

Regarding assertion (ii) of the theorem, we can observe that the value of σ∞ in (4.3)
corresponds to σ∞ = y(τ∞) with y(t) from (3.36) and the asymptotically optimal switching
time τ∞ computed by (3.35) due to the above arguments based on the monotonicity results
of Proposition 2.2. The limiting conclusion σ(T ) ↓ σ∞ as T →∞ and the other conclusions
in (ii) can be checked directly employing by the transient monotonicity.

For further simplifications and developments of the results obtained, impose the following
additional assumption:

∞∑

i=2

µiφi(x0)
λi

θ−
λi
λ1 < 0 whenever θ > 1, (4.5)

which surely holds for various standard parabolic equations in the presence of symmetry, in
particular, for the multidimensional heat equation defined on rectangulars, balls, etc.; see,
e.g., [4, 8] and the references therein.

Taking now the first term

σ1 := β
(
γ − µ1φ1(x0)(c + λ1)(γβ − η)

λ1β(1 + cγ)

)
(4.6)

in the series (4.3), we have under assumptions (4.4) and (4.5) that 0 < σ1 < σ∞ and thus
conclude from Theorem 4.1(ii) that the three-positional feedback regulator (4.1) with v = v̄
and σ = σ1 is feasible in the above sense to problem (P ) on the infinite horizon.

Let us consider next the closed-loop control system




∂y

∂t
+ Ay = w(t), x ∈ Ω, t ≥ 0,

y(0, x) = 0, x ∈ Ω,
y(t, x) = f

(
y(t, x0)

)
, x ∈ ∂Ω, t ≥ 0,

(4.7)

where f = f(ξ) is a (discontinuous) three-positional feedback regulator with parameters
(v, σ) given in (4.1). Our goal in what follows is to derive efficient conditions ensuring
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the robust stability of system (4.7) and (4.1) in the sense precisely defined below and then
to combine these conditions with the relationships on (v, σ) established above from the
viewpoint of minimax optimality in the feedback control problem (P ) for the parabolic
system (4.7) subject to the control and state constraints. In this way we arrive at the
reliable feedback control design ensuring the required suboptimal performance of the closed-
loop control system in a stable regime acceptable for applications.

Note that the minimax design results developed above establish relationships between
parameters of the parabolic dynamics, feedback boundary controls, perturbations, and im-
posed constraints under which the closed-loop control system (4.7) allows us to keep the
transients at the point of observation within the prescribed state constraint area for any
one-sided admissible uncertain perturbations with the optimal effect in the worst perturba-
tion case. However, the minimax control design procedure developed above does not address
stability issues for the resulting closed-loop control system that are of crucial importance
for practical applications. Let us indicate the following two major sources that can cause
possible instability of the closed-loop control system given by (4.7) and (4.1):

(1) The closed-loop control system described by (4.7) and (4.1) is highly nonlinear,
despite the linearity of its parabolic dynamics. Of course, the source of nonlinearity is the
discontinuous three-positional regulator (4.1) in the Dirichlet boundary conditions of (4.7).

(2) The parabolic dynamical system (4.7) is of distributed parameters. The most visible
manifestation of the distributed parameter nature in (4.7) is that the control acts in the
boundary conditions while the feedback is formed by observing the current state position
ξ = y(t, x0) at the intermediate point x0 ∈ Ω of the space domain. The latter generates
delay in the closed-loop control parabolic system that significantly affects stability.

We can easily see that if the current state position ξ = y(t, x0) lies inside the dead
region (−σ, σ) after terminating all the perturbations, then the closed-loop control system
(4.7) with the three-positional regulator (4.1) maintains the starting stationary equilibrium
regime y ≡ 0 as t → ∞. This signifies stability in the small of the initial equilibrium state
y ≡ 0 in this system for any dead region (−σ, σ) as σ > 0. However, the latter property is not
sufficient for the acceptable functioning of the nonlinear control system given by (4.7) and
(4.1) with distributed parameters. We need in fact robust stability, or stability in the large,
of the equilibrium state y ≡ 0 for the closed-loop system under consideration, which in our
case means that y(t, x0) → 0 as t →∞ even if the current state ξ of (4.7) is outside the dead
region of (4.1) after terminating all the perturbations. The presence of perturbations w(t)
on some finite interval [0, T ] is clearly irrelevant to this stability issue, which is an internal
property of the parabolic dynamics generated by the elliptic operator A from (1.2) on the
infinite horizon and the three-positional feedback regulator (4.1) in the Dirichlet boundary
conditions of (4.7).

It has been well recognized in the literature that stability in the large (or robust stability)
issues are among the most challenging in stability theory for nonlinear dynamics, even in the
case of finite-dimensional control systems governed by ordinary differential equations. We
are not familiar with any results in this direction for the parabolic systems studied in this
paper. To derive efficient conditions for stability in the large of the equilibrium state y ≡ 0
in the closed-loop control system (4.7) with the three-positional feedback regulator (4.1),
we develop a variational approach to such robust stability, which is largely based on the
monotonicity properties of the parabolic dynamics discussed above and reduces the stability
issue to solving an open-loop optimal control problem for the initial system (1.1) on the
infinite horizon.
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To proceed, observe from the structure of the closed-loop control system under consid-
eration that the required robust stability of its stationary equilibrium state y ≡ 0 can be
lost if the dead region in (4.1) is not sufficiently wide. Indeed, in such cases the transients
ξ = y(t, x0) would move back and forth between the dead region boundaries under switching
control positions in (4.1) with no external perturbations, just by inertia of the control system
that relates to a certain time-delay. This means that the closed-loop control system given
by (4.7) and (4.1) may start functioning in a non-acceptable self-vibrating regime as t →∞
thus signifying instability in the large of the initial equilibrium stare y = 0. We intend to
find efficient and verifiable conditions that exclude such instability.

It follows from the above discussions that the unstable self-vibrating regime will not
occur if the transient y(t, x0) starting at one boundary of the dead region does not reach
the other boundary whenever t > 0 under the control switching in (4.1) with no external
perturbations. Moreover, the limiting stability resource of the system relates to the minimal
width of the dead region ensuring the afore-mentioned property. This allows us to derive
efficient stability conditions by solving an open-loop optimal control problem for (1.1) on
the infinite horizon as is done in the proof of the next theorem.

Theorem 4.2 (robust stability of the closed-loop parabolic control system). Let
(4.7) be a closed-loop parabolic system under the standing assumptions of Section 2, and
let (4.1) be a three-positional feedback regulator in the boundary conditions of (4.7) with
arbitrary parameters v > 0 and σ > 0. Then the closed-loop control system given by (4.7)
and (4.1) exhibits robust stability in the above sense if its parameters satisfy the relationship

σ ≥ −v(1 + cγ)
2

+
v + σ

2

∞∑

i=1

µiφi(x0)(c + λi)
λi

( v

v + σ

) λi
λ1

, (4.8)

where the right-hand side is always positive. Furthermore, if the additional assumption (4.5)
is satisfied, then the stability condition can be simplified as

σ ≥ v

2λ1

[
µ1φ1(x0)(c + λ1)− λ1(1 + cγ)

]
, (4.9)

where the right-hand side in (4.9) is always greater than the one in (4.8) whenever v, σ > 0.

Proof. Developing a variational approach to robust stability, we consider the following open-
loop control system on the infinite horizon:





∂y

∂t
+ Ay = 0, x ∈ Ω, t > 0,

y(0, x) = 0, x ∈ Ω,
y(t, x) = u(t), x ∈ ∂Ω, t > 0,

(4.10)

with piecewise constant Dirichlet boundary controls given by

u(t) =
{

h + ∆h if 0 ≤ t ≤ τ,
h if t > τ,

(4.11)

where h and ∆h are some positive numbers (to be specified later) while τ is a control
switching time to be determined. Employing Proposition 2.1 on the spectral representation
of the trajectories yτ (t, x) for system (4.10) generated by controls (4.11) and taking into
account the relationships

∞∑

i=1

µiφi(x) = 1 in L2(0, T ) and
∞∑

i=1

µiφi(x0)
λi

= γ,
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we get the explicit formulas for yτ (t, x0) used in what follows:

yτ (t, x0) =
∞∑

i=1

µiφi(x0)(c + λi)e−λit

∫ t

0

u(θ)eλiθ dθ

=
∞∑

i=1

µiφi(x0)(c + λi)e−λit
( ∫ τ

0

(h + ∆h)eλiθ dθ +
∫ t

τ

heλiθ dθ
)

= (1 + γc)h +
∞∑

i=1

µiφi(x0)(c + λi)
λi

[
∆heλiτ − (h + ∆h)

]
e−λit.

(4.12)

It is easy to see from (4.12) that

yτ (t, x0) → (1 + cγ)h as t →∞ whenever τ > 0. (4.13)

However, the transient y(t, x0) may intersect the stabilization level (4.13) if the switching
time τ is not properly chosen. We intend to find efficient conditions under which the latter
situation does not occur. These conditions, being of certain interest for their own sake,
ensure the required robust stability of the closed-loop system (4.7), (4.1) when the control
levels h and ∆h in (4.11) are appropriately specified.

To proceed, consider the following auxiliary dynamic optimization problem for the parabolic
system (4.10) on the infinite horizon:





minimize J(τ) := (1 + cγ)h− yτ (τ, x0)
subject to (4.10), (4.11), and the state constraint
yτ (t, x0) < (1 + cγ)h for all t > 0.

(4.14)

The meaning of this problem is to find an optimal switching time τ = τ > 0 in (4.11)
such that the corresponding trajectory yτ (t, x0) of system (4.10) lies strictly below the
stabilization level (4.13) for all t > 0 and that the distance between the stabilization level
(4.13) and the underlying switching level

y(τ , x0) := yτ (τ , x0)

is minimal in comparison with any other switching time τ satisfying all the constraints in
(4.14). According to the above discussions on robust stability, solving the optimal control
problem (4.14) leads us to required robust stability conditions.

It follows from the monotonicity property of Proposition 2.2 that

yτ1(t, x0) ≤ yτ2(t, x0) whenever t > 0 and τ1 ≤ τ2

for the transients yτ (t, x0) generated in (4.12) by the switching controls (4.11). This implies
that the optimal switching time τ to (4.14) is the largest one under which the corresponding
transient yτ (t, x0) does not intersect the stabilization level (1 + cγ)h for all t > 0. The
exact solution to the open-loop control problem (4.14) on the infinite horizon is given in
Theorem 3.3. It is provided by the first term rule, i.e., by vanishing the first term in the
last series of (4.12). By this result we have the rigorously justified formula for the optimal
switching time to (4.14):

τ =
1
λ1

ln
(h + ∆h

∆h

)
> 0 whenever v, σ > 0,
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and hence the exact optimal value of the cost functional in this problem is computed by:

ϑ : = J(τ) = (1 + cγ)h− y(τ , x0)

= −∆h(1 + cγ) + (h + ∆h)
∞∑

i=1

µiφi(x0)(c + λi)
λi

( ∆h

h + ∆h

) λi
λ1

> 0.
(4.15)

Imposing the additional assumption (4.5), we get the feasible first-order approximation

ϑ1 := ∆h
[µ1φ1(x0)(c + λ1)

λ1
− (1 + cγ)

]
> ϑ > 0 (4.16)

to (4.15), which occurs to be independent of the control level h in (4.11).
According to the description of the instability phenomenon given before the formulation

of Theorem 4.2, robust stability of the closed-loop control system given by (4.7) and (4.1)
is ensured if the width of the dead region 2σ is not smaller than the value ϑ in (4.15) with
h = σ and ∆h = v. Substituting these data into (4.15), we arrive at the stability condition
(4.8) of the theorem. The explicit first-order approximation condition (4.9) corresponds
to substituting the above values of h and ∆h into formula (4.16) for ϑ1 via the sufficient
stability requirement 2σ ≥ ϑ1. This completes the proof of the theorem.

Finally, we combine the feedback control results derived in Section 6 from the viewpoint of
controllability and minimax optimality with the robust stability conditions obtained in this
section; thus we establish optimal relationships between all the parameters of the feedback
control system that ensure its required behavior from the viewpoints of feasibility, minimax
(sub)optimality, and robust stability.

Theorem 4.3 (optimal parameters of the stable feedback control design). Consider
the closed-loop control parabolic system (4.7) with uncertain perturbations w ∈ W from (1.4)
and with the there-positional feedback regulator (4.1) in the Dirichlet boundary conditions.
In addition to the standing assumptions of Section 2, suppose that

0 < γβ − η < min
{

α(1 + cγ),
β(1 + cγ)

c + λ1

}
(4.17)

and that σ0 ≤ σ∞, where σ∞ > 0 is computed by (4.3) and where

σ0 : =
γβ − η + η(1 + cγ)

2(1 + cγ)

∞∑

i=1

µiφi(x0)(c + λi)
λi

( γβ − η

γβ − η + η(1 + cγ)

) λi
λ1

+
η − γβ

2
> 0.

(4.18)

Then the feedback control system given by (4.7) and (4.1) with the control resource v = v̄
computed by

v̄ =
γβ − η

1 + cγ
(4.19)

and the dead region parameter σ > 0 belonging to the nonempty interval

σ0 ≤ σ ≤ σ∞ (4.20)

is reliable on the infinite horizon in the sense that it is feasible by all the constraints in (P)
on [0,∞) for any one-sided perturbations w ∈ W enjoying simultaneously robust stability.
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If in addition the first-order approximation assumption (4.5) and the inequality

3µ1φ1(x0)(c + λ1)(γβ − η) ≤ λ1(3γβ − η)(1 + cγ) (4.21)

are satisfied, then we have

σ0 < σ0
1 :=

γβ − η

2λ1(1 + cγ)

[
µ1φ1(x0)(c + λ1)− λ1(1 + cγ)

]
≤ σ1 (4.22)

with σ1 ∈ (0, σ) computed in (4.6), and the feedback control system given by (4.7) and (4.1)
with the control resource v = v̄ from (4.19) and the dead region parameter σ > 0 satisfying

σ0
1 ≤ σ ≤ σ1 (4.23)

is reliable on the infinite horizon in the sense described above.

Proof. To a large extend, this theorem unifies and summarizes the feedback control design
and robust stability results derived above.

Indeed, Theorem 4.2 ensures robust stability of system (4.7) with the three-positional
regulator (4.1), where v is computed by (4.19) and where σ ≥ σ0 with σ0 computed by
(4.18). This follows from the observation that the value of σ0 in (4.18) is in fact obtained
by substituting v̄ from (4.19) into the right-hand side of (4.8) and by replacing σ with η
therein. Further, we easily conclude that σ0 satisfies inequality (4.8) whenever 0 < σ ≤ η
in the right-hand side of it, which is the case under consideration. The other statements in
the first part of the theorem follow directly from Theorem 4.1.

To justify the last part of the theorem, under conditions (4.5) and (4.21), we first observe
that the value of σ0

1 in (4.22) is obtained by substituting v̄ from (4.19) into the right-hand
of (4.9). Furthermore, condition (4.21) easily follows from σ0

1 ≤ σ1 by substituting there σ1

from (4.6) and σ0
1 from (4.22). Thus the one-sided feasibility of the three-positional regulator

(4.1) with v = v̄ from (4.19) and σ from (4.23) follows from Theorem 4.1 due to

σ0
1 ≤ σ ≤ σ1,

while the corresponding robust stability of the closed-loop system given by (4.7) and (4.1)
with σ from (4.23) follows from the last part of Theorem 4.2.

Observe finally the first order reliability condition (4.21) can be surprisingly rewritten
in the very simple form σ1 ≥ η/3 via just the first-order suboptimality value σ1 computed
by (4.6). Note that the equality therein can be used as an additional equation for shape
optimization to determine, e.g., the optimal parameters of the domain Ω ensuring a stable
feedback control design under the other given data of the minimax problem (P ) and the
feedback regulator (4.1).

Acknowledgment. I am gratefully indebted to Helmut Maurer for drawing my attention to
the possibility of applying the approach developed in [5, 6, 11] to solve the state-constrained
optimal control problem (P 1) in Section 3.
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