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Abstract: In this paper, we establish a necessary and sufficient condition for a globally stable minimax
equality, where the minimax equality holds for each convex perturbation of the convex-concave bi-function
involved. The necessary and sufficient condition is expressed as a closedness condition using conjugate
functions of the bi-function. As an application, we obtain a necessary and sufficient condition for a globally
stable Lagrangian duality theorem, and also a constraint qualification which completely characterizes the
strong Lagrangian duality theorem for convex minimization problems. As a consequence of these results, we
obtain a globally stable Farkas’ lemma for cone-convex systems.
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1 Introduction

The minimax theorem is the basis to the remarkable theory of zero-sum games and it has
played a significant role in optimization, operations research and economics. The inequality,

sup
y∈B

inf
x∈A

h(x, y) ≤ inf
x∈A

sup
y∈B

h(x, y), (1.1)

always holds for a bi-function h(., .) on a product set A×B. The development of conditions,
ensuring the equality in (1.1) has been the subject of research for over many years, and
the equality is commonly known as “minimax theorem”. For such developments, the reader
is referred to [1, 3, 11, 12]. The classic convex minimax theorem for a convex-concave
bi-function h(·, ·) on a closed convex set A×B states that

max
y∈B

inf
x∈A

h(x, y) = inf
x∈A

sup
y∈B

h(x, y) ,
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where at the left hand side the sup is attained and thus replaced by max. On the other
hand, for each choice of function f on A,

sup
y∈B

inf
x∈A

[f(x) + h(x, y)] ≤ inf
x∈A

sup
y∈B

[f(x) + h(x, y)]. (1.2)

Conditions ensuring the equality in (1.2) where sup can be replaced by max are of great
interest in optimization as then the equality readily applies to constrained optimization
through the Lagrangian function [2, 8, 9], covers the conventional minimax theorem, [1, 12]
and leads to solvability of systems of inequalities of Farkas’ type [2, 5, 6, 7].

The purpose of this paper is to establish conditions on the convex-concave bi-function
h(., .), characterizing the minimax equality

inf
x∈A

sup
y∈B

[
f(x) + h(x, y)

]
= max

y∈B
inf
x∈A

[
f(x) + h(x, y)

]
, (1.3)

which holds for each choice of continuous convex function f(·). We refer this equality as
the globally stable convex minimax theorem. We show that a simple closedness condition
on a convex epigraph set involving conjugate functions is necessary and sufficient for the
globally stable minimax theorem. The same closedness condition has also been used in
[10] for characterizing the minimax equality (1.3) in the sense that (1.3) holds for each
choice of continuous linear function f(·). For related results on stable minimax theorems,
see [3, 4]. As an application, we obtain a necessary and sufficient condition for a globally
stable Lagrangian duality theorem, and a constraint qualification which characterizes strong
Lagrangian duality theorem for convex minimization problems. As a consequence of these
results, we also establish a globally stable Farkas’ lemma for cone-convex systems.

2 Preliminaries

We recall in this section some notations and basic results that will be used later in the paper.
Let X and X ′ be linear spaces in duality with respect to the bilinear form 〈·, ·〉 such that X ′

is endowed with the w∗-topology σ(X ′, X). Then X ′ is locally convex and its topological
dual is X. Let Y be another linear space. Let h : X → R∪{−∞,+∞} be a convex function.
The conjugate function of h, h∗ : X∗ → R ∪ {+∞}, is defined by

h∗(v) := sup{〈v, x〉 − h(x) | x ∈ dom h},

where dom h := {x ∈ X | h(x) < +∞} is the effective domain of h. The function h is said
to be proper if h does not take on the value −∞ and dom h 6= ∅. The epigraph of h is
defined by

epi h := {(x, r) ∈ X × R | x ∈ dom h, h(x) ≤ r}.
For a closed convex subset D of X, the indicator function δD is defined as δD(x) = 0 if

x ∈ D and δD(x) = +∞ if x /∈ D.

For proper lower semicontinuous convex functions g, h : X → R ∪ {+∞}, the infimal
convolution of g with h, denoted g2h, is defined by

(g2h)(x) = inf
x1+x2=x

{g(x1) + h(x2)}.

The lower semicontinuous envelope and lower semicontinuous convex hull of a function g :
X → R∪{−∞,+∞} are denoted respectively by clg and clcog. That is, epi(clg) = cl(epi g)
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and epi(cl cog) = cl co(epi g). For details, see [13]. Let g, h and gi, i ∈ I (where I is an
arbitrary index set) be proper lower semicontinuous convex functions. It is well known from
the conjugate operation (see [13]) that if domγ ∩ dom h 6= ∅, then

(g2h)∗ = g∗ + h∗, (g + h)∗ = cl(g∗2h∗)

and if supi∈Igi is proper, then

(supi∈Igi)∗ = cl co(infi∈Ig
∗
i ).

Thus we can check that

epi(g + h)∗ = cl(epig∗ + epih∗) and epi(supi∈Igi)∗ = cl co(
⋃

i∈I

epig∗i ).

The closure in the first equation is superfluous if one of g and h is continuous at some
x0 ∈ dom g ∩ dom h (see [13] for details). Let S be a closed convex cone in Y . Denote by
S+ the dual cone of S, defined as

S+ = {y∗ ∈ Y ∗ | 〈y∗, y〉 ≥ 0 for any y ∈ S}.
We say that the map g : X → Y is S−convex if for any x1, x2 ∈ X and any λ ∈ [0, 1],

g(λx1 + (1− λ)x2) ∈ λg(x1) + (1− λ)g(x2)− S.

Note that g−1(−S) := {x ∈ X | − g(x) ∈ S}.
Let A be a nonempty (closed) convex subset of X and let B be a nonempty convex subset

of Y . Let h : A×B → R∪{+∞} be a function, which is proper lower semicontinuous convex
in x and concave in y. We extend h on X×B by setting for any y ∈ B, h(x, y) = +∞ if x 6∈
A.

Lemma 2.1. Let h : A× B → IR ∪ {+∞} be a proper lower semicontinuous function that
is convex in x and concave in y. Then

⋃

y∈B

epi(h(·, y))∗

is a convex set.

Proof. Let (ui, αi) ∈ E :=
⋃

y∈B

epi(h(·, y))∗, i = 1, 2 and λ ∈ (0, 1). Then there exist

yi ∈ B, i = 1, 2 such that, for i = 1, 2, (h(·, yi))∗(ui) ≤ αi. Thus,

sup{〈ui, x〉 − h(x, yi) | x ∈ A} ≤ αi.

Let ᾱ = λ1α1 + (1 − λ)α2, ȳ = λy1 + (1 − λ)y2, ū = λu1 + (1 − λ)u2. Then by convexity
of B and concavity of h(x, ·), ȳ ∈ B and for each x ∈ A,

h(x, y) ≥ λh(x, y1) + (1− λ)h(x, y2)
≥ λ[〈u1, x〉 − α1] + (1− λ)[〈u2, x〉 − α2]
= 〈u, x〉 − α.

Hence (h(·, ȳ))∗(ū) ≤ ᾱ, and so, (ū, ᾱ) ∈ E . In passing note that only concavity in y is
needed for the preceding Lemma.
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3 A Globally Stable Minimax Theorem

In this Section, we establish our globally stable minimax theorem.

Theorem 3.1. (Globally Stable Minimax Theorem) Let h : A × B → R ∪ {+∞} be
proper lower semicontinuous convex in x and concave in y. Assume that there exists x̂ ∈ A
such that sup

y∈B
h(x̂, y) < +∞. Then the following statements are equivalent:

(i)
⋃

y∈B

epi (h(·, y))∗ is w∗-closed in X ′ × R;

(ii) For each continuous convex function f : X → R,

inf
x∈A

sup
y∈B

[
f(x) + h(x, y)

]
= max

y∈B
inf
x∈A

[
f(x) + h(x, y)

]
.

Proof. Suppose that (i) holds. Let f : X → R be a continuous convex function. Then by
Lemma 2.1, and by (i), we have,

⋃

y∈B

epi[f(·) + h(·, y)]∗ =
⋃

y∈B

[epif∗ + epi(h(·, y))∗]

= epif∗ +
⋃

y∈B

epi(h(·, y))∗

= epif∗ + clco
⋃

y∈B

epi(h(·, y))∗

= epif∗ + epi(sup
y∈B

h(·, y))∗

= epi(f(·) + sup
y∈B

h(·, y))∗

Since epi(f(·) + supy∈B h(·, y))∗ is w∗−closed, it follows that
⋃

y∈B epi(f(·) + h(·, y))∗ is
w∗−closed. Moreover,

⋃
y∈B epi(f(·) + h(·, y))∗ is convex. Let α = inf

x∈A
sup
y∈B

[f(x) + h(x, y)].

The existence of x̂ ∈ A such that sup
y∈B

h(x̂, y) < +∞, ensures that f(x̂) + sup
y∈B

h(x̂, y) < +∞,

and so, α < +∞. If α = −∞, the result holds trivially. Assume that α is finite. Then we
have

−α = sup
x∈A

inf
y∈B

[−f(x)− h(x, y)] = sup
x∈X

inf
y∈B

[−f(x)− h(x, y)]

= sup
x∈X

(− sup
y∈B

[f(x) + h(x, y)]) = (sup
y∈B

[f(·) + h(·, y)])∗(0).

Thus (0,−α) ∈ epi (sup
y∈B

[f(·)+h(·, y)])∗ = clco
⋃

y∈B

epi [f(·)+h(·, y)]∗ as sup
y∈B

[f(·)+h(·, y)]

is proper, lower semicontinuous and convex. Since
⋃

y∈B

epi [f(·) + h(·, y)]∗ is w∗−closed and

convex,
(0,−α) ∈

⋃

y∈B

epi [f(·) + h(·, y)]∗.

So, there exists y ∈ B such that [f(·) + h(·, y)]∗(0) ≤ −α, that is, inf
x∈A

[f(x) + h(x, y)] ≥ α.

This gives us that ,

max
y∈B

inf
x∈A

[f(x) + h(x, y)] ≥ inf
x∈A

sup
y∈B

[f(x) + h(x, y)].
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Hence (ii) holds.
Conversely, suppose that (ii) holds. Let E :=

⋃
y∈B

epi(h(·, y))∗ and let (u, r) ∈ clE . Then

there exist nets {yt} ⊂ B and {(ut, rt)} ⊂ X ′ × R such that (ut, rt) ∈epi(h(·, yt))∗ and
lim(ut, rt) = (u, r) in the w∗-topology in X ′ × R. This gives, for each x ∈ X,

〈ut, x〉 − h(x, yt) ≤ rt.

So, for each x ∈ A,
0 ≤ rt − 〈ut, x〉+ sup

y∈B
h(x, y).

Hence in the limit, 0 ≤ r − 〈u, x〉+ sup
y∈B

h(x, y) for each x ∈ A.

Let f(x) = r − 〈u, x〉. Then, clearly, f is continuous and convex and so,

inf
x∈A

sup
y∈B

[
f(x) + h(x, y)

]
≥ 0.

By (ii),
max
y∈B

inf
x∈A

[
f(x) + h(x, y)

]
≥ 0.

This means that there exists y ∈ B such that for each x ∈ A, f(x) + h(x, y) ≥ 0. By the
construction of f , for each x ∈ A, 〈u, x〉 − h(x, y) ≤ r. As h(x, y) = +∞ for x 6∈ A, we get
that (u, r) ∈ epi(h(·, y))∗. Thus (u, r) ∈ E and hence E is w∗−closed.

The following minimax theorem which is closely related to the well known convex mini-
max theorem (see e.g, Theorem 2.12 [11]) follows easily from Theorem 3.1.

Theorem 3.2. Let h : A × B → R ∪ {+∞} be proper lower semicontinuous convex in x
and concave in y. Assume that there exists x̂ ∈ A such that sup

y∈B
h(x̂, y) < +∞. If

⋃
y∈B

epi

(h(·, y))∗ is w∗−closed, then

inf
x∈A

sup
y∈B

h(x, y) = max
y∈B

inf
x∈A

h(x, y).

Proof. The conclusion follows from (ii) of Theorem 3.1 in the case where f = 0.

Now we give examples illustrating Theorem 3.1. First we give an example where the
usual minmax theorem holds, but the globally stable minimax theorem does not hold.

Example 3.3. Let A = R, B = [0,∞), f(x) = −x and let h(x, y) = y
[
max{0, x}

]2

. Then,
inf
x∈A

sup
y∈B

h(x, y) = 0. For any y ∈ B, inf
x∈A

h(x, y) = 0 and hence max
y∈B

inf
x∈A

h(x, y) = 0. Thus

inf
x∈A

sup
y∈B

h(x, y) = max
y∈B

inf
x∈A

h(x, y).

Morover, we have,

sup
y∈B

[
f(x) + h(x, y)

]
=

{ −x if x ≤ 0
+∞ if x > 0

and
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inf
x∈A

[
f(x) + h(x, y)

]
=




−∞ if y = 0

− 1
4y

if y > 0.

Thus, inf
x∈A

sup
y∈B

[
f(x) + h(x, y)

]
= 0 and sup

y∈B
inf
x∈A

[
f(x) + h(x, y)

]
= 0. However there does

not exist y ∈ B such that inf
x∈A

[
f(x) + h(x, y)

]
= max

y∈B
inf
x∈A

[
f(x) + h(x, y)

]
. One can check

that ⋃

y∈B

epi(h(·, y))∗ = {0} × R+

⋃
{(x, y) ∈ R2 | x > 0, y > 0},

where R+ = {x ∈ R | x ≥ 0} and
⋃

y∈B

epi (h(·, y))∗ is not closed in R2.

Example 3.4. Let A = R2, B = [0,∞), f(x1, x2) = x1 and let h(x1, x2, y) =

y(
√

x1
2 + x2

2 − x2). Then for each (x1, x2) ∈ A sup
y∈B

[
f(x1, x2) + h(x1, x2, y)

]
=

{
0 if

√
x1

2 + x2
2 − x2 ≤ 0

+∞ otherwise.
Note that for any fixed x1 with x1 < 0, lim

x2→+∞
(
√

x1
2 + x2

2 − x2) = 0. So we have, for

each y ∈ B,

inf
(x1,x2)∈A

[
f(x1, x2) + h(x1, x2, y)

]
= −∞.

Thus, inf
(x1,x2)∈A

sup
y∈B

[
f(x1, x2)+h(x1, x2, y)

]
= 0, but sup

y∈B
inf

(x1,x2)∈A

[
f(x1, x2)+h(x1, x2, y)

]
=

−∞. Moreover, one can check that
⋃

y∈B

epi(h(·, y))∗ = {(0, 0, z) ∈ R3 | z ≥ 0}
⋃

{(x, y, z) ∈ R3 | x ∈ R, y > 0, z ≥ 0},

Thus.
⋃

y∈B

epi (h(·, y))∗ is not closed in R3.

Example 3.5. Let A = [0,∞) , B = [0,∞) and h(x, y) = x(−y2). Then, one can easily
check that ⋃

y∈B

epi(h(·, y))∗ = {(x, y) ∈ R2 | x ≤ 0, y ≥ 0}.

which is closed in R2. Moreover, we can easily check that for each convex function f : R→ R,

inf
x∈A

sup
y∈B

[f(x) + h(x, y)] = inf
x∈A

f(x)

= max
y∈B

inf
x∈A

[f(x) + h(x, y)].

So, Theorem 3.1 holds.

4 Applications

In this section, we apply our minimax Theorem of Section 3 to derive a globally stable
Lagrangian duality theorem for convex optimization problems and a stable Farkas’ lemma
for cone-convex systems.
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Theorem 4.1 (Globally Stable Lagrangian Duality). Let ϕ : X −→ R ∪ {+∞} be a
proper lower semicontinuous convex function. Let S ⊂ Y be a closed convex cone and let
g : X −→ Y be a continuous S−convex mapping with domϕ ∩ {x ∈ X | g(x) ∈ −S} 6= ∅.
Then the following statements are equivalent.

(i) epiϕ∗ +
⋃

y∗∈S+
epi(y∗ ◦ g)∗ is w∗−closed;

(ii) For each continuous convex function f : X → R,

inf
x∈g−1(−S)

{ϕ(x) + f(x)} = max
y∗∈S+

inf
x∈X

{ϕ(x) + (y∗ ◦ g)(x) + f(x)}.

Proof. Let A = X, B = S+ ⊂ Y ′ and h(x, y∗) = ϕ(x) + (y∗ ◦ g)(x) for x ∈ A and y∗ ∈ B.
Since domϕ∩ {x ∈ X | g(x) ∈ −S} 6= ∅, sup

y∗∈B
h(x, y∗) = ϕ(x) for each x ∈ domϕ∩ g−1(−S)

and hence sup
y∗∈B

h(·, y∗) is a proper, lower semicontinuous convex function. As y∗ ◦ g is

continuous on domϕ ∩ {x ∈ X | g(x) ∈ −S},
epi(ϕ + (y∗ ◦ g))∗ = epiϕ∗ + epi(y∗ ◦ g)∗.

Hence the conclusion follows from Theorem 3.1.

As a special case of Theorem 4.1, we derive a constraint qualification which completely
characterizes strong Lagrangian duality of convex optimization problems.

Corollary 4.2. Let S ⊂ Y be a closed convex cone and let g : X → Y be a continuous
S-convex mapping. Suppose that {x ∈ X | g(x) ∈ −S} 6= ∅. Then the following statements
are equivalent.

(i)
⋃

y∗∈S+
epi(y∗ ◦ g)∗ is w∗-closed;

(ii) For each continuous convex function f : X → R,

inf
x∈g−1(−S)

f(x) = max
y∗∈S+

inf
x∈X

{f(x) + (y∗ ◦ g)(x)}.

Proof. Let ϕ = 0. Then epiϕ∗+
⋃

y∗∈S+
epi(y∗ ◦g)∗ =

⋃
y∗∈S+

epi(y∗ ◦g)∗. Hence the conclusion

follows from Theorem 4.1.

Theorem 4.3 (Globally Stable Farkas’ Lemma). Let ϕ : X −→ R ∪ {+∞} be a
proper lower semicontinuous convex function. Let S ⊂ Y be a closed convex cone and let
g : X −→ Y be a continuous S−convex mapping with domϕ ∩ {x ∈ X | g(x) ∈ −S} 6= ∅.
Then the following statements are equivalent.

(i) epiϕ∗ +
⋃

y∗∈S+
epi(y∗ ◦ g)∗ is w∗−closed;

(ii) For each continuous convex function f : X → R,
[− g(x) ∈ S ⇒ ϕ(x) + f(x) ≥ 0

] ⇔ (∃λ ∈ S+)(∀x ∈ X) ϕ(x) + (λ ◦ g)(x) + f(x) ≥ 0.

Proof. Let A = X, B = S+ and h(x, λ) = ϕ(x) + (λ ◦ g)(x) for x ∈ A and λ ∈ B. Then, one
can check that (ii) is equivalent to the condition that, for each continuous convex function
f : X → R,

inf
x∈X

sup
λ∈S+

[
f(x) + h(x, λ)

] ≥ 0 ⇒ max
λ∈S+

inf
x∈X

[
f(x) + h(x, λ)

] ≥ 0.

Hence we can check that the conclusion follows from Theorem 3.1.
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