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1 Introduction

The theory of optimal decision under uncertainty and risk has gained much attention due
to its practical relevance and theoretical challenges. Several approaches to risk-aversion in
optimization are established. One classical approach is based on expected utility theory. Von
Neumann and Morgenstern ([30]) have established from a set of axioms that every rational
decision maker has a utility function u(·) such that she prefers random outcome X over
outcome Y if and only if E[u(X)] > E[u(Y )]. In practice, however, it is almost impossible
to elicit the utility function of a decision maker explicitly. Additional difficulties arise when
there is a group of decision makers with different utility functions who have to come to a
consensus.

Recently, the dual utility theory (or rank dependent expected utility theory) has attracted
much attention in economics ([22], [33]). It is related to Choquet integral theory (see [7, 29]).
From a different system of axioms, than those of von Neumann and Morgenstern, one derives
that every decision maker has a certain rank dependent utility function w : [0, 1] → R. The
decision maker prefers a nonnegative outcome X over a nonnegative outcome Y , if and only
if ∫ 1

0

F(−1)(X; p) dw(p) ≥
∫ 1

0

F(−1)(Y ; p) dw(p). (1.1)

Here, F(−1)(X; ·) denotes the inverse distribution function of X. For a comprehensive treat-
ment, see [23]. The dual utility theory plays an important role in actuarial mathematics,
see [31, 32].
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Another approach to risk-averse optimization is represented by mean-risk models. In
these models the objective is a combination of a certain mean outcome (calculated with
respect to some fixed probability measure µ̄), and some dispersion or deviation statistics,
representing the uncertainty of the outcome. This direction was pioneered by Markowitz
[16], who introduced the mean-variance model. Recently, there is a lot of attention devoted
to the development of proper mathematical models of risk (see, e.g., [4, 28]).

An approach to risk-averse optimization based on stochastic dominance constraints has
been proposed and developed in ([8, 9, 10, 11]). Our analysis demonstrated that both utility
theories provide dual models to the problem with stochastic dominance constraints. Von
Neumann–Morgenstern utility functions play the role of Lagrange multipliers associated
with the dominance constraint formulated in the direct form, and rank-dependent utility
functions appear as Lagrange multipliers associated with the inverse dominance constraint.

The main goal of this paper is to demonstrate similar connection to the theory of risk
measures. We demonstrate that stochastic dominance constraints lead to a certain implied
risk measure. In this way an optimization model with a coherent measure of risk can be
interpreted as a dual problem to a problem with stochastic dominance constraints.

We use (Ω,F , P ) to denote an abstract probability space, and Lp(Ω,F , P ), where p ≥ 1,
denotes the space of measurable real functions X : Ω → R such that |X|p is integrable. The
symbol P(I) denotes the set of probability measures on the interval I ⊂ R.

2 Measures of Risk

A measure of risk ρ assigns to an uncertain outcome X ∈ Lp(Ω,F , P ) a real value ρ(X) and
can take values in the extended real line R = R ∪ {+∞} ∪ {−∞}. For X, Y ∈ L1(Ω,F , P ),
the notation Y º X means that Y (ω) ≥ X(ω) for all ω ∈ Ω. A coherent measure of risk is
a functional ρ : L1(Ω,F , P ) → R satisfying the following axioms:

Convexity : ρ(αX +(1−α)Y ) ≤ αρ(X)+ (1−α)ρ(Y ) for all X, Y ∈ L1(Ω,F , P ) and α ∈
[0, 1].

Monotonicity : If X, Y ∈ L1(Ω,F , P ) and Y º X, then ρ(Y ) ≤ ρ(X).

Translation Equivariance : If a ∈ R and X ∈ L1(Ω,F , P ), then ρ(X + a) = ρ(X)− a.

Positive homogeneity : If t > 0 and X ∈ L1(Ω,F , P ), then ρ(tX) = tρ(X).

The concept of coherent measures of risk was introduced by Artzner, Delbaen, Eber and
Heath in [4] for functionals ρ defined on L∞(Ω,F , P ). For further developments, see [27, 28]
and the references therein.

In the theory of measures of risk a special role is played by the functional called the
Average Value at Risk and denoted AVaR(·) (see [2, 26]). To introduce this concept we define
the left-continuous inverse of the cumulative distribution function F1(X; η) = P{X ≤ η} as
follows:

F(−1)(X; p) = inf {η : F1(X; η) ≥ p} for 0 < p < 1.

It is clear that F(−1)(X; p) is the left p-quantile of X. The Value at Risk of X at level
p is defined as VaRp(X) = −F(−1)(X; p). Next, we define the absolute Lorenz function
F(−2)(X; ·) : [0, 1] → R̄, introduced in [15], as the cumulative quantile function:

F(−2)(X; p) =
∫ p

0

F(−1)(X; t) dt for 0 < p ≤ 1, (2.1)
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and F(−2)(X; 0) = 0. The Average Value at Risk of X at level p is defined as

AVaRp(X) = −1
p
F(−2)(X; p) =

1
p

∫ p

0

VaRt(X) dt.

A measure of risk ρ is called spectral (see [1]) if there exists a probability measure µ ∈
P((0, 1]) such that for all X

ρ(X) =
∫ 1

0

AVaRp(X) µ(dp).

We say that a measure of risk ρ is a Kusuoka measure, if there exists a convex set M ⊂
P((0, 1]) such that for all X we have

ρ(X) = sup
µ∈M

∫ 1

0

AVaRp(X) µ(dp).

A fundamental result in the theory of coherent measures of risk is the Kusuoka theorem
[14]: For a nonatomic space Ω, every law invariant, finite-valued coherent measure of risk
on L∞(Ω,F , P ) is a Kusuoka measure.

3 Stochastic Dominance

For a random variable X ∈ Lm(Ω,F , P ) we construct the integrated distribution functions

Fk(X; η) =
∫ η

−∞
Fk−1(X;α) dα for η ∈ R, k = 2, . . . , m + 1. (3.1)

The stochastic dominance relation of order k is defined as follows:

X º(k) Y ⇔ Fk(X; η) ≤ Fk(Y ; η) for all η ∈ R. (3.2)

The relations express that X is stochastically larger than Y . Of special importance is the
second order stochastic dominance relation, as a fundamental model of risk-averse prefer-
ences.

The stochastic dominance relation has an equivalent characterization by utility functions.
Relation X º(1) Y means that E[u(X)] ≥ E[u(Y )] for every nondecreasing utility function
u(·) for which these expected values exist. The second order stochastic dominance rela-
tion X º(2) Y means that E[u(X)] ≥ E[u(Y )] for every nondecreasing and concave utility
function u(·) (see, e.g., [12, 18]).

Stochastic dominance relations can also be characterized by quantile functions. From
the definition of the first order dominance we see that

X º(1) Y ⇔ F(−1)(X; p) ≥ F(−1)(Y ; p) for all 0 < p < 1. (3.3)

The second order dominance can be characterized by the use of the Lorenz function (2.1):

X º(2) Y ⇔ F(−2)(X; p) ≥ F(−2)(Y ; p) for all 0 ≤ p ≤ 1. (3.4)

This fact is widely used in economics and statistics (see [3, 13, 17, 21]).
In [10], we provide an equivalent characterization by rank dependent utility functions,

which is analogous to the characterization by expected utility functions. Consider the setW0

of all continuous nondecreasing functions w : [0, 1] → R, and the set W1 ⊂ W0 of functions
which are concave and subdifferentiable at 0.
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Lemma 3.1.
(i) For any two random variables X, Y ∈ L1(Ω,F , P ) the relation X º(1) Y holds true if
and only if for all w ∈ W0

∫ 1

0

F(−1)(X; p) dw(p) ≥
∫ 1

0

F(−1)(Y ; p) dw(p). (3.5)

(ii) For any two random variables X, Y ∈ L1(Ω,F , P ) the relation X º(2) Y holds true if
and only if (3.5) is satisfied for all w ∈ W1.

The functions w(·) appearing in the characterization are rank dependent (dual) utility
functions.

First relations between stochastic orders and mean-risk models are developed in [19],
where mean-risk models providing stochastically non-dominated solutions are called consis-
tent with the stochastic dominance relation. Further consistency results for specific mean-
risk models are presented in [20, 21, 24]. Conditions for consistency of general risk function
with the stochastic dominance relation of second order are established in ([28]).

4 Dominance Constrained Optimization

In our earlier paper [8] we have introduced the following optimization problem:

max f(X)
subject to X º(k) Y

X ∈ C

(4.1)

Here C is a closed convex subset of Lk−1(Ω,F , P ) and f : Lk−1(Ω,F , P ) → R is a concave
continuous functional. The random variable Y is a benchmark outcome in Lk−1(Ω,F , P ),
k ≥ 1. From now on we concentrate on the case of k = 2.

In [9], we developed optimality and duality theory for the following relaxation of model
(4.1):

max f(X) (4.2)
subject to F2(X; η) ≤ F2(Y ; η) ∀ η ∈ [a, b], (4.3)

X ∈ C. (4.4)

In constraint (4.3), we restrict the range of η to a compact interval [a, b], rather than the
whole real line, in order to formulate constraint qualification conditions. When a = −∞ no
reasonable constraint qualification condition can be satisfied. We associated with problem
(4.2)–(4.4) the Lagrangian

L(X, u) = f(X) + E
[
u(X)− u(Y )

]
, (4.5)

where the “Lagrange multiplier” u(·) is a certain von Neumann–Morgenstern utility function.
If f(X) = E[X], then in (4.5) the function g(x) = x + û(x) becomes the implied utility
function resulting from the benchmark Y . Thus, the expected utility approach may be
regarded as dual to the model with stochastic dominance constraints with respect to a
random benchmark.



DUALITY OF RISK MEASURES AND DOMINANCE CONSTRAINTS 437

Now, we consider the following optimization problem:

max f(X) (4.6)
subject to F(−2)(X; p) ≥ F(−2)(Y ; p) ∀ p ∈ [α, β], (4.7)

X ∈ C. (4.8)

Here, [α, β] ⊂ (0, 1). We call (4.7) the inverse dominance constraint. The restriction of the
inequality F(−2)(X; p) ≥ F(−2)(Y ; p) to an interval [α, β] ⊂ (0, 1) is needed for a constraint
qualification condition. We use the following constraint qualification condition for problem
(4.6)–(4.8):

Definition 4.1. Problem (4.6)–(4.8) satisfies the uniform inverse dominance condition if
there exists a point X̃ ∈ C such that

inf
p∈[α,β]

{
F(−2)(X̃; p)− F(−2)(Y ; p)

}
> 0.

In [10], we developed optimality and duality theory for this optimization problem. Let us
introduce the set W1([α, β]) of concave and nondecreasing functions w : [0, 1] → R satisfying
the following conditions:

w(p) = 0 for all p ∈ [β, 1];
w(p) = w(α) + c(p− α), with some c > 0, for all p ∈ [0, α].

We define the Lagrangian of problem (4.6)–(4.8), Φ : C ×W1([α, β]) → R, as follows

Φ(X, w) = f(X) +
∫ 1

0

F(−1)(X; p) dw(p)−
∫ 1

0

F(−1)(Y ; p) dw(p). (4.9)

It is well defined, because w(·) has bounded subgradients and for every X ∈ L1(Ω,F , P ) we
have the following identity: ∫ 1

0

F(−1)(X; p) dp = E[X]. (4.10)

Theorem 4.2 ([10], Thm.2). Assume that the uniform inverse dominance condition is sat-
isfied. If X̂ is an optimal solution of (4.6)–(4.8) then there exists a function ŵ ∈ W1([α, β])
such that

Φ(X̂, ŵ) = max
X∈C

Φ(X, ŵ); and (4.11)
∫ 1

0

F(−1)(X̂; p) dŵ(p) =
∫ 1

0

F(−1)(Y ; p) dŵ(p). (4.12)

Conversely, if for some function ŵ ∈ W1([α, β]) an optimal solution X̂ of (4.11) satisfies
(4.7) and (4.12), then X̂ is an optimal solution of (4.6)–(4.8).

Similarly to the results in ([8]), we observe that the “Lagrange multipliers” w to the
stochastic dominance constraints are directly related to rank dependent expected utility
theory. A point X̂ is a solution to (4.6)–(4.8) if there exists a dual utility function ŵ(·) such
that X̂ maximizes over C the objective functional f(X) augmented with this dual utility. In
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particular, when f(X) = E[X], we can use the identity (4.10) to transform the Lagrangian
(4.9) in the following way:

Φ(X, w) =
∫ 1

0

F(−1)(X; p) dp +
∫ 1

0

F(−1)(X; p) dw(p)−
∫ 1

0

F(−1)(Y ; p) dw(p)

=
∫ 1

0

F(−1)(X; p) dv(p)−
∫ 1

0

F(−1)(Y ; p) dw(p),

where v(p) = p + w(p). At the optimal solution the function v̂(p) = p + ŵ(p) is the implied
rank-dependent utility function associated with the benchmark Y . Since

∫ 1

0
F(−1)(Y ; p) dw(p)

is fixed, the problem at the right hand side of (4.11) becomes a problem of maximizing the
implied rank dependent expected utility in C.

A duality theory can be based on Lagrangian (4.9). For every function w ∈ W1([α, β])
the problem

max
X∈C

{
f(X) +

∫ 1

0

F(−1)(X; p) dw(p)−
∫ 1

0

F(−1)(Y ; p) dw(p)
}

(4.13)

is a Lagrangian relaxation of problem (4.6)–(4.8). Its optimal value

Ψ(w) = sup
X∈C

Φ(X, w)

is always greater than or equal to the optimal value of (4.6)–(4.8). Indeed, any feasible
solution X of (4.6)–(4.8) is feasible for (4.13), and the dominance relation (4.7) implies that

∫ 1

0

F(−1)(X; p) dw(p) ≥
∫ 1

0

F(−1)(Y ; p) dw(p),

by virtue of Lemma 3.1. We define the dual problem as

min
w∈W1([α,β])

Ψ(w). (4.14)

The set W1([α, β]) is a closed convex cone in C([0, 1]) and Ψ(·) is a convex functional, so
problem (4.14) is a convex optimization problem.

Theorem 4.3 ([10], Thm.3). Assume that the uniform inverse dominance condition is
satisfied and problem (4.6)–(4.8) has an optimal solution. Then problem (4.14) has an op-
timal solution and the optimal values of both problems coincide. Furthermore, the set of
optimal solutions of (4.14) is the set of functions ŵ ∈ W1([α, β]) satisfying (4.11)–(4.12) for
an optimal solution X̂ of (4.6)–(4.8).

5 The Implied Measure of Risk

The objective of this section is to demonstrate that optimization of a measure of risk can
be interpreted as a Lagrangian dual to a problem with dominance constraints in the inverse
form. First, we establish a correspondence between rank dependent utility functions and
spectral measures of risk.

Lemma 5.1. For every function w ∈ W1 there exists a spectral risk measure ρ and a
constant κ ≥ 0 such that for all X ∈ L1(Ω,F , P )

∫ 1

0

F(−1)(X; p) dw(p) = −κρ̂(X). (5.1)
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Conversely, for every spectral measure of risk ρ there exists a function w ∈ W1 such that
equation (5.1) holds true with κ = 1.

Proof. Consider the functional

σ(X) =
∫ 1

0

F(−1)(X; p) dw(p). (5.2)

For any w ∈ W1, the left derivative of w,

w′−(p) = lim
τ↑p

[w(p)− w(τ)]/(p− τ), p ∈ (0, 1],

is well-defined, nondecreasing and continuous from the left. By [6, Theorem 12.4], after an
obvious adaptation, there exists a unique regular nonnegative measure ν on [0, 1] satisfying

ν([p, 1]) =

{
w′−(p) for p ∈ (0, 1],
w′+(0) for p = 0.

By the concavity of w(·), the measure ν is nonnegative. Substitution into (5.2) and integra-
tion by parts yield

σ(X) =
∫ 1

0

F(−1)(X; p) ν([p, 1]) dp =
∫ 1

0

∫ 1

p

dν(t)F(−1)(X; p) dp

=
∫ 1

0

∫ t

0

F(−1)(X; p) dp ν(dt) =
∫ 1

0

F(−2)(X; t) ν(dt) =
∫ 1

0

1
t
F(−2)(X; t) tν(dt).

(5.3)
Define κ =

∫ 1

0
t ν(dt). Observe that κ = 0 means that w(p) ≡ 0 for all p ∈ [0, 1]. If κ > 0

we define the measure µ(dt) = tν(dt)/κ, and we obtain that

σ(X) = −κ

∫ 1

0

AVaRt(X) µ(dt). (5.4)

Clearly, µ is a probability measure on (0, 1]. Hence, ρ(·) = −σ(·)/κ is a spectral measure of
risk.

To prove the converse, consider a spectral measure of risk

ρ(X) =
∫ 1

0

AVaRt(X)µ(dt),

with some probability measure µ on (0, 1]. We define the measure ν on (0, 1] by the relation
ν(dt) = (1/t)µ(dt). Now we define the function ξ(τ) = ν([τ, 1]) as the ν-measure of the set
[τ, 1], and the function w : [0, 1] → R as follows:

w(p) = −
∫ 1

p

ξ(τ) dτ.

We observe that ξ(·) is a nonnegative, non-increasing function on the interval [0, 1]. There-
fore, w(·) is concave. Furthermore, w(·) is nondecreasing by construction. Using the function
w, we proceed as in (5.3) (in the reverse order) to derive the representation (5.1) of the risk
measure ρ(·).

Now, we formulate and prove necessary conditions of optimality for problems with dom-
inance constraints where the “Lagrangian” involves a spectral risk measure.
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Theorem 5.2. Assume that the uniform inverse dominance condition is satisfied. If X̂ is
an optimal solution of (4.6)–(4.8) then there exists a spectral risk measure ρ̂ and a constant
κ ≥ 0 such that X̂ is also an optimal solution of the problem

max
X∈C

{
f(X)− κρ̂(X)

}
; and, (5.5)

κρ̂(X̂) = κρ̂(Y ). (5.6)

Proof. The optimal solution of problem (4.6)–(4.8) is also an optimal solution of (4.13). The
last term in this expression does not depend on X and can be skipped. By Lemma 5.1,
there exist a constant κ ≥ 0 and a spectral measure of risk ρ̂(·) such that the second term
of (4.13) can be written as follows:

σ(X) =
∫ 1

0

F(−1)(X; p) dw(p) = −κρ̂(X).

An identical equation holds true for Y . Therefore the optimal solution of problem (4.6)–
(4.8) is also a solution of the problem (5.5). By the complementarity condition (4.12) of
Theorem 4.2, we get σ(X) = σ(Y ), which is the same as (5.6).

Observe that if the dominance constraint (4.6) is active (i.e., its removal would change
the optimal value), we have κ > 0, and the complementarity condition (5.6) takes on the
form

ρ̂(X̂) = ρ̂(Y ).

It is also clear that the support of the measure µ in the spectral representation of ρ̂(·) is
included in [α, β].

Consider the special case of finite Ω with elementary events ωi, i = 1, . . . , m, occurring
with probability 1/m each. Then we identify random variables on Ω with vectors in Rm and
the set C is a subset of Rm. For a random variable X we denote xi = X(ωi), i = 1, . . . , m.
We use the symbol x[i] to denote the ordered coordinates of X, that is,

x[1] ≤ x[2] ≤ · · · ≤ x[m].

We have shown in [10] that, in this case, problem (4.6)–(4.8) with [α, β] = [0, 1] takes on
the form

max f(X) (5.7)

subject to
i∑

k=1

x[k] ≥
i∑

k=1

y[k], i = 1, . . . , m, (5.8)

X ∈ C. (5.9)

By [10, Lem.2], constraints (5.8) are convex polyhedral. Slater’s constraint qualification
condition can be formulated for problem (5.7)–(5.9) as follows: there exists X̃ ∈ relintC
such that

i∑

k=1

x̃[k] >
i∑

k=1

y[k], i = 1, . . . , m.

The Lagrangian takes on the form

Ψ(x, ν) = f(x) +
m∑

i=1

νi

( i∑

k=1

x[k] −
i∑

k=1

y[k]

)
. (5.10)
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Using necessary conditions of optimality, e.g., [25, Thm. 28.2], we obtain the existence of
Lagrange multipliers ν such that the optimal solution X̂ is also an optimal solution of the
problem

max
X∈C

Ψ(x, ν).

Setting κ = 1
m

∑m
i=1 iνi and µi = iνi/(κm), we see that the results of Theorem 4.2 remain

valid for [α, β] = [0, 1]. The implied spectral measure of risk has the form:

ρ̂(X) = −
m∑

i=1

νi

i∑

k=1

x[k].

Consider now the special case when f(X) = E[X].

Corollary 5.3. Assume that the uniform inverse dominance condition is satisfied. If X̂ is
an optimal solution of (4.6)–(4.8) then there exists a spectral risk measure ρ̄ such that X̄ is
also an optimal solution of the problem

min
X∈C

ρ̄(X); and (5.11)

E[X] + κ̄ρ̄(X̂) = E[Y ] + κ̄ρ̄(Y ) (5.12)

with some κ̄ ≥ 1.

Proof. Using formula (5.4) from the proof of Theorem 4.2 we obtain

E[X] + σ(X) = −AVaR1(X)− κ

∫ 1

0

AVaRt(X) µ(dt).

Now we define the measure µ̄ = (κµ + δ1)/(κ + 1), where δ1 is an atom of mass 1 at 1.
Again, µ̄ is a probability measure. We conclude that E[X] + σ(X) = −(1 + κ)ρ̄(X), with
ρ̄(X) =

∫ 1

0
AVaRt(X) µ̄(dt). Therefore (5.5) takes on the form (5.11). From (5.6) we get

σ(X̂) = σ(Y ) and thus

E[X] + (1 + κ)ρ̄(X) = E[Y ] + (1 + κ)ρ̄(Y ).

In fact, the spectral measure ρ̄ has an atom λ ∈ (0, 1) at 1, and κ̄ satisfies λ(1 + κ̄) = 1.
Now, we prove sufficient conditions of optimality for optimization problems with domi-

nance constraints based on the Lagrangian involving spectral risk measures.

Theorem 5.4. If for some spectral risk measure ρ̂ and some κ ≥ 0 an optimal solution X̂ of
(5.5) satisfies (4.7) with [α, β] = [0, 1] and (5.6), then X̂ is an optimal solution of (4.6)–(4.8)
with [α, β] = [0, 1].

Proof. If κ = 0 the solution of problem maxX∈C f(X) satisfies (4.7) and thus it is optimal
for problem (4.6)–(4.8). Assume now that there exist a positive constant κ and a coherent
risk measure ρ̂(·) such that (5.5) and (5.6) are satisfied for some feasible random variable
X̂. Then for every X ∈ C

f(X)− κρ̂(X) ≤ f(X̂)− κρ̂(X̂) = f(X̂)− κρ̂(Y ).
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Using Lemma 5.1, with the risk measure ρ̂(·) we associate a function w ∈ W1([0, 1]). We set
ŵ(·) = κw(·) and substituting the identity (5.1) to obtain

f(X) +
∫ 1

0

F(−1)(X; p) dŵ(p) ≤ f(X̂) +
∫ 1

0

F(−1)(Y ; p) dŵ(p).

If X º(2) Y , Lemma 3.1(b) implies that

f(X) ≤ f(X̂) +
∫ 1

0

F(−1)(Y ; p) dŵ(p)−
∫ 1

0

F(−1)(X; p) dŵ(p) ≤ f(X̂).

This means that X̂ is an optimal solution of problem (4.6)–(4.8) with [α, β] = [0, 1].

6 The Implied Dominance Constraint

One can also ask an inverse question. We are given the problem

max
X∈C

{
f(X)− κρ(X)

}
(6.1)

with κ > 0 and a coherent law invariant measure of risk ρ(·) and we want to construct a
problem of form (4.1), such that the solutions of both problems are the same. Denote the
solution of (6.1) by X̂. We want to determine a benchmark function F(−2)(Y ; p) for the
right hand side of the dominance constraint (4.7) with [α, β] = [0, 1]:

F(−2)(X; p) ≥ F(−2)(Y ; p) ∀ p ∈ [0, 1], (6.2)

such that X̂ is also a solution of problem (4.6)–(4.8).
We assume that ρ is a Kusuoka risk measure with the representation:

ρ(X) = sup
µ∈M

∫ 1

0

AVaRt(X) µ(dt), (6.3)

where M ⊂ P([0, 1]). We consider P([0, 1]) as a subset of the space rca([0, 1]) of regular
countably additive measures on the interval [0, 1], which is the topological dual to the space
of continuous functions C([0, 1]). We assume that M is compact in the weak∗ topology in
rca([0, 1]).

Theorem 6.1. Assume that X̂ is a solution of problem (6.1), where ρ has a representation
(6.3) such that the set M is compact in the weak∗ topology in rca([0, 1]). Then there exists
a measure µ̂ ∈M such that

ρ(X̂) =
∫ 1

0

AVaRt(X̂) µ̂(dt),

and for every Y ∈ L1(Ω,F , P ) satisfying the conditions

F(−2)(Y ; t) ≤ F(−2)(X̂; t), for all t ∈ [0, 1],

F(−2)(Y ; t) = F(−2)(X̂; t), for all t ∈ supp(µ̂),
(6.4)

the point X̂ is also an optimal solution of problem (4.6)–(4.8) with [α, β] = [0, 1].
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Proof. The problem (6.1) corresponds to the following problem:

sup
X∈C

{
f(X)− κρ(X)

}
= sup

X∈C
inf

µ∈M
{
f(X)− κ

∫ 1

0

AVaRt(X) µ(dt)
}
. (6.5)

The supremum on the left hand side is achieved at the point X̂ by assumption. Observe that
for every µ ∈M the functional X 7→ f(X)−κ

∫ 1

0
AVaRt(X) µ(dt) is concave and continuous

in the space L1(Ω,F , P ). For every X, the function t → AVaRt(X) is continuous on [0, 1].
Therefore, the functional µ 7→ − ∫ 1

0
AVaRt(X) µ(dt) is linear and continuous in the weak∗

topology on rca([0, 1]). The set M is assumed compact in the weak∗ topology. Therefore,
the assumptions of the asymmetric min-max theorem (see [5, Theorem 6.2.7]) are satisfied
and we can exchange the supremum and the infimum operations in (6.5). Moreover, the
infimum with respect to µ ∈M is achieved. We obtain

sup
X∈C

inf
µ∈M

{
f(X)− κ

∫ 1

0

AVaRt(X) µ(dt)
}

= min
µ∈M

sup
X∈C

{
f(X)− κ

∫ 1

0

AVaRt(X) µ(dt)
}
. (6.6)

Let µ̂ ∈ M be the measure at which the minimum on the right hand side is achieved. It
follows that the pair (X̂, µ̂) is a saddle point of the function f(X) − κ

∫ 1

0
AVaRt(X) µ(dt).

Consequently, X̂ is a solution of the problem

max
X∈C

{
f(X)− κ

∫ 1

0

AVaRt(X) µ̂(dt)
}
.

Defining the spectral measure

ρ̂(X) =
∫ 1

0

AVaRt(X) µ̂(dt)

we conclude that X̂ is also a solution of the problem maxX∈C

{
f(X)−κρ̂(X)

}
. We can now

apply Theorem 5.4. Conditions (6.4) are equivalent to (4.7) with [α, β] = [0, 1] and (5.6),
and the assertion follows.

By Lemma 5.1, there is one-to-one correspondence between spectral measures of risk
and rank-dependent utility functions. Each measure µ ∈ M gives rise to a rank-dependent
utility function w(·) such that

∫ 1

0

AVaRt(X) µ(dt) = −
∫ 1

0

F(−1)(X; p) dw(p).

We denote the collection of rank-dependent utility functions obtained via the measures from
M by WM, and the function corresponding to the measure µ̂ by ŵ.

Owing to (6.6), the problem (6.1) corresponds to the following min-max problem:

max
X∈C

{
f(X)− κρ(X)

}
= min

µ∈M
sup
X∈C

{
f(X)− κ

∫ 1

0

AVaRt(X)µ(dt)
}

= min
w∈WM

sup
X∈C

{
f(X) + κ

∫ 1

0

F(−1)(X; p) dw(p)
}
.

Therefore, the function ŵ is a solution of a certain dual problem, similar to (4.14). There
are two differences: the set W1 is replaced by its subset κWM, and the linear terms in µ
involving the benchmark Y are absent.
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