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1 Introduction

This paper is devoted to express the Lipschitz modulus of the optimal set mapping (also called
argmin mapping) of a canonically perturbed convex optimization problem (see (1.1)) as the
maximum of the Lipschitz moduli associated with appropriate subproblems with exactly n
constraints. These subproblems are minimal in a sense which is made precise below. Some
antecedents for the particular case of linear optimization problems can be found in [5], [18]
and [19] (see also [1], [17] and [21] for the feasible set mapping). In the context of linear
problems with finitely many constraints the Lipschitz modulus of the optimal set mapping
becomes itself a Lispchitz constant (referred to as sharp Lipschitz constant in [18]). More
specifically, for such problems, [18] provides the sharp Lipschitz constant for the feasible set
mapping and a Lispchitz constant (which can be sharp or not, depending on the problem)
for the optimal set mapping. Paper [5], making use of some tools of [19], provides the
sharp Lipschitz constant for the optimal set mapping at any linear problem (with only -
finitely many- inequality constraints). On the other hand, [8] provides an upper bound
for the modulus in the semi-infinite (infinitely many constraints) convex setting, and the
exact modulus in the finite case. Our approach here allows us to simplify the referred latter
expression (see (2.1) in §2).

We are concerned with the parametrized convex programming problem, in Rn,

P (c, b) : Inf f(x) + 〈c, x〉
s. t. gi (x) ≤ bi, i = 1, . . . , m,

(1.1)
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where x ∈ Rn is the vector of variables, c ∈ Rn, 〈., .〉 represents the usual inner product in Rn,
m ≥ n, f, g1, ..., gm : Rn → R are given convex functions, and b = (b1, . . . , bm) ∈ Rm. The
pair (c, b) ∈ Rn×Rm is regarded as the parameter to be perturbed. In other words, our model
is subject to canonical perturbations, i.e., linear perturbations of the objective function and
right hand side perturbations of the constraints. In the parameter space Rn×Rm we consider
the norm

‖(c, b)‖ := max {‖c‖ , ‖b‖∞} , (1.2)

where Rn is equipped with any given norm, ‖·‖ , and ‖b‖∞ := max1≤i≤m |bi| . The corre-
sponding dual norm in Rn is given by ‖u‖∗ := max {〈u, x〉 | ‖x‖ ≤ 1} and d∗ denotes the
associated distance.

Given a subset D ⊂ {1, . . . , m} with |D| = n (|D| denotes the cardinality of D), we
consider the associated subproblem

PD (c, β) : Inf f(x) + 〈c, x〉
s. t. gi (x) ≤ βi, i ∈ D,

(1.3)

where β = (βi)i∈D ∈ RD (≡ Rn) . The parameter space Rn×RD is endowed with a norm
analogous to (1.2).

Associated with the parametrized problem P (c, b) , we consider the optimal set mapping,
F∗ : Rn × Rm ⇒ Rn, which assigns to each parameter (c, b) ∈ Rn×Rm the optimal set of
P (c, b) ; i.e.,

F∗ (c, b) := arg min {f(x) + 〈c, x〉 | gi (x) ≤ bi, i = 1, . . . , m} .

For (1.3), the mapping F∗D : Rn × RD ⇒ Rn is defined in a completely analogous way.
Paper [9] introduces a sufficient condition for the strong Lipschitz stability of F∗ at a

given
((

c, b
)
, x

) ∈ gphF∗ (the graph of F∗); in other words, for the single-valuedness and
Lipschitz continuity of F∗ in a neighborhood of

(
c, b

)
(equivalently, the strict continuity of

F∗ at
(
c, b

)
, according to [22, Def. 9.1(b)]). Although the standard definition requires local

single-valuedness (see, e.g., [16]), we can say single-valuedness because F∗ is convex-valued.
This sufficient condition (given in §2) is called Extended Nürnberger Condition, ENC for
short, in [7]. That paper shows that, under ENC at

((
c, b

)
, x

)
, the Lipschitz modulus of

F∗ at
(
c, b

)
, denoted by lipF∗ (

c, b
)

(recall that F∗ is single-valued around
(
c, b

)
) turns out

to be equal to lip F̃ (
b
)
, where F̃ (b) := F∗ (c, b) for b ∈ Rm. In other words, under ENC,

small perturbations of the objective function are negligible in our analysis and

lipF∗ (
c, b

)
= lip F̃ (

b
)

:= lim sup
b,b′→b, b 6=b′

‖F∗ (c, b)−F∗ (c, b′)‖
‖b− b′‖∞

, (1.4)

where we have identified F∗ (c, b) with its only element, for b near b, in order to avoid
additional notation. Nevertheless, we have preferred to give the statements of Theorems 1
and 2 in terms of

(
c, b

)
instead of b only.

The strong Lipschitz stability of F∗ at
((

c, b
)
, x

)
is known to be equivalent to the metric

regularity of the inverse mapping G∗ := (F∗)−1 at
(
x,

(
c, b

))
(see, e.g., [15, Cor. 4.7]). Recall

that (F∗)−1 is defined by (c, b) ∈ (F∗)−1 (x) ⇔ x ∈ F∗ (c, b) . The metric regularity of G∗
at

(
x,

(
c, b

)) ∈ gphG∗ is defined as the existence of certain neighborhoods, U of x and W

of (c, b), and a constant κ ≥ 0 such that

d (x,F∗ (c, b)) ≤ κd ((c, b) ,G∗ (x)) for all x ∈ U and all (c, b) ∈ V. (1.5)
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The infimum of κ for which associated U and W verifying (1.5) exist is the so-called modulus
of metric regularity, denoted by reg G∗ (

x | (c, b)) , which coincides with lipF∗ (
c, b

)
under

the ENC assumption. Papers [7] and [9] follow the terminology of metric regularity, whereas
[8] is in terms of strong Lipschitz stability and Lipschitz modulus.

Concerning the structure of the paper, §2 gathers the additional notation and preliminary
results needed along the paper, and §3 is oriented to establish Theorem 3.6, which is the
main contribution of the paper. Final conclusions are presented in §4. At this moment we
point out the fact that the approach of the present paper does not extend to the semi-infinite
case (with infinitely many constraints), on spite of being strongly connected with [8]. In
fact, the question of whether or not Theorem 3.6 extends to the semi-infinite case remains
as an open problem even in the particular case of linear problems (see [5, Sect. 5]).

2 Preliminaries

This section provides the necessary notation and preliminary results needed later on. Given
∅ 6= X ⊂ Rp, p ∈ N, we denote by co (X) and cone (X) the convex hull and the conical
convex hull of X, respectively. It is assumed that cone (X) always contains the zero-vector,
0p, and so cone(∅) = {0p}. From the topological side, int(X) denotes the interior of X.

For a given b = (b1, ..., bm) ∈ Rm, we denote the constraint system of (1.1) by σ (b) ,
i.e., σ (b) := {gi (x) ≤ bi, i = 1, . . . , m}, and F (b) represents the associated feasible set, i.e.,
F (b) := {x ∈ Rn | gi (x) ≤ bi, i = 1, . . . , m}. Given b ∈ Rm and x ∈ F (b) , we denote by
Tb (x) the associated active index set given by

Tb (x) := {i ∈ {1, ..., m} | gi (x) = bi} .

System σ (b) is said to satisfy the Slater constraint qualification (SCQ) if Tb(x0) is empty
for some feasible point x0 ∈ F (b) .

Next we recall the well-known Karush-Kuhn-Tucker (KKT) optimality conditions. Here
∂ represents the classical subdifferential in convex analysis.

Lemma 2.1. (see, for instance, [12, Ch. VII]) Let (c, b) ∈ Rn × Rm and x ∈ F (b) . If

(c + ∂f(x)) ∩ cone
(∪i∈Tb(x) (−∂gi (x))

) 6= ∅
then x ∈ F∗ (c, b) . The converse holds when σ (b) satisfies SCQ.

Definition 2.2. The extended Nürnberger condition (ENC, for short) is said to be satisfied
at

((
c, b

)
, x

) ∈ gph (F∗) if

σ
(
b
)

satisfies SCQ and there is no D ⊂ Tb (x)
with |D| < n such that (∂f(x) + c) ∩ cone

(⋃
i∈D (−∂gi (x))

) 6= ∅.

Observe that, because of Carathéodory’s Theorem and KKT conditions, the existence of
such a D with |D| ≤ n is guaranteed. So, ENC entails |D| = n.

In [9, Thm. 10] ENC is shown to be sufficient for the strong Lipschitz stability of F∗
at

(
c, b

)
in a semi-infinite setting more general than (1.1), namely, when the index set is

assumed to be a compact metric space and the associated gi’s depend continuously on i.
In this setting, but restricted to linear problems, ENC is in fact equivalent to the strong
Lipschitz stability of F∗ at

(
c, b

)
[9, Thm. 16]. For linear problems, ENC constitutes a

reformulation of the condition given in [20] for characterizing those problems in the interior
set of problems having a strongly unique optimal solution. The following lemma is a direct
consequence of [9, Prop. 9(i)].
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Lemma 2.3. Assume that ENC holds at
((

c, b
)
, x

) ∈ gph (F∗) . Then there exists a neigh-
borhood W of

((
c, b

)
, x

)
such that ENC is satisfied at any ((c, b) , x) ∈ W ∩ gph (F∗) .

Taking [13] and [14] as a starting point, papers [6], [7], and [8] provide different steps
in the way of computing (through the formula (2.1)) the Lipschitz modulus. The first
step, provided in [6], is highly connected with the problem of finding error bounds for
a certain lower semicontinuous function related to functions fb defined in (2.2) (see [2]
for characterizations of error bounds for generic lower semicontinuous functions). Indeed,
the same idea of studying the Lipschitz behavior of F∗ by means of the distance function
(x, b) 7→ fb (x) has been exploited by different authors in more general settings, as pointed
out in [3] (see also references therein). Under ENC, and in the referred semi-infinite setting,
[8, Thm. 4] provides an upper bound on lipF∗ (

c, b
)

in terms of the nominal problem’s data,
i.e., functions f and gi’s. In the finite case, which is our current setting, this upper bound
equals the exact modulus and admits a certain simplification.

Specifically, for our problem (1.1) and assuming that ENC holds at
((

c, b
)
, x

) ∈ gph (F∗) ,
we have (see [8, Thm. 4]):

lipF∗(c, b) = lim sup
(z,b)→(x,b)

fb(z)>0

min
D∈T

b
(x)

fb(z)=fD
b

(z)

(
d∗

(
0n, ∂̂fD

b (z)
))−1

, (2.1)

where

• fb is defined by
fb (x) = d∞

(
b, G̃ (x)

)
, (2.2)

• d∞ refers to ‖·‖∞ ,

• G̃ := F̃−1 is the inverse multifunction of F̃ (given by b ∈ G̃ (x) ⇔ x ∈ F̃ (b) :=
F∗ (c, b)),

•
Tb (x) :=

{
D ⊂ Tb (x) | |D| = n, and

(∂f(x) + c) ∩ cone (∪i∈D (−∂gi (x))) 6= ∅
}

(2.3)

is the set of minimal subsets of indices involved in KKT conditions, according to ENC,

• for each D ∈ Tb (x) , fD
b is given by

fD
b (x) := max{|gi (x)− bi| , i ∈ D; gi (x)− bi, i ∈ {1, ..., m} \D}, (2.4)

and

• ∂̂ stands for the regular (Fréchet) subdifferential. We recall that, for ϕ : Rn → R ∪
{+∞} and z ∈ Rn with ϕ(z) < +∞, one has

∂̂ϕ(z) :=
{

u ∈ Rn | lim inf
τ↘0, w′→w

ϕ (z + τw′)− ϕ (z)
τ

≥ 〈u,w〉 for all w ∈ Rn

}
.

(For convex functions it coincides with the ordinary subdifferential in convex analysis.)

The following lemma is a straightforward consequence of [8, Thm. 3] and provides an
operative expression for fb (x) with (x, b) near

(
x, b

)
.
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Lemma 2.4. Assume that ENC is satisfied at
((

c, b
)
, x

) ∈ gph (F∗). Then there exist some
neighborhoods U and V of x and b, respectively, verifying

fb (x) = min
D∈Tb(x)

fD
b (x), for all x ∈ U and all b ∈ V. (2.5)

For further details about these ingredients, the reader is addressed to [7] and [8]. At the
moment we emphasize that each fD

b is a d.c. function (difference of convex functions), and
a d.c. decomposition may be obtained in terms of f and gi’s. In such a way, ∂̂fD

b may be
expressed in terms of the ordinary subdifferentials of the convex functions appearing in the
d.c. decomposition, which are also given in terms of ∂gi’s. An explicit expression for ∂̂fD

b

can be found in [8, Lem. 2].

3 Lipschitz Modulus via Minimal Subproblems

In this section we approach the calculus of lipF∗ (
c, b

)
(see (1.4)) by means of subproblems

(1.3), with D ∈ Tb(x). It is obvious from the definition that, if ENC holds at
((

c, b
)
, x

) ∈
gph (F∗) , then this property also holds for subproblem PD

(
c, bD

)
, with a fixed D ∈ Tb(x),

at
((

c, bD

)
, x

) ∈ gph (F∗D) , where bD :=
(
bi

)
i∈D

. Note that we are just considering the
subproblem of the nominal one consisting only of those constraints whose indices are in D.
Moreover, for subproblem PD

(
c, bD

)
, the role played by Tb(x) in the whole problem is now

played by {D} , i.e., D itself is the only possible subset of D associated with KKT conditions
at

((
c, bD

)
, x

)
.

The following theorem is a straightforward consequence of (2.1) and Lemma 2.4. In it
we use the notation

hD
β (z) := max {|gi (z)− βi| : i ∈ D} , for z ∈ Rn, β ∈ RD. (3.1)

Theorem 3.1. Assume that ENC is satisfied at
(
(c, b), x

) ∈ gph (F∗) and let D ∈ Tb(x).
Then, F∗D is strongly Lipschitz stable at

(
(c, bD), x

) ∈ gph (F∗D) and its Lipschitz modulus
is given by

lipF∗D(c, bD) = lim sup
(z,β)→(x,bD)

hD
β

(z)>0

(
d∗

(
0n, ∂̂hD

β (z)
))−1

.

The following corollary is used in [5] for approaching the case of linear programs (see
Corollary 3.7 below). Recall that in this case ENC is equivalent to the strong Lipschitz
stability of the optimal set mapping. Although the result comes straightforwardly from
Lemma 2.3 and [10, Exa. 1.1], here we provide a self-contained proof as an illustration of
Theorem 3.1.

Corollary 3.2. Let f ≡ 0 and let gi ≡ 〈ai, ·〉, i = 1, . . . , m, be given linear functions, and
assume that ENC holds at

(
(c, b), x

) ∈ gph (F∗) . Then, for every D ∈ Tb(x), F∗D is strongly
Lipschitz stable at

(
(c, bD), x

)
and

lipF∗D(c, bD) =
∥∥A−1

D

∥∥ ,

where AD is the matrix whose rows are ai, i ∈ D.

Remark 3.3. Here, under ENC, Lemma 2.3 entails the following equivalence: ((c, β), x) ∈
gph (F∗D) for β close enough to bD if and only if ADx = β. Then [10, Exa. 1.1] can be
applied.



416 M.J. CÁNOVAS, A. HANTOUTE, M.A. LÓPEZ AND J. PARRA

Proof. Fix D ∈ Tb(x). We shall use the expression

∥∥A−1
D

∥∥ =
(

min
‖λ‖1=1

‖AᵀDλ‖∗
)−1

, (3.2)

which can be found in [5, Sect. 4] and follows from [4, Cor. 3.2] (AᵀD is the transpose of
AD). Keeping the notation of the previous theorem, we have

hD
β (z) := max {|〈ai, z〉 − βi| : i ∈ D} , for z ∈ Rnand β ∈ RD,

and, so, hD
β is itself a convex function. By applying Valadier’s formula (see for instance [12,

Cor. VI.4.3.2]) we obtain

∂̂hD
β (z) = ∂hD

β (z) = co{ai, i ∈ Iβ(z);−ai, i ∈ Jβ(z)},

where

Iβ(z) := {i ∈ D | hD
β (z) = 〈ai, z〉 − βi}, Jβ(z) := {i ∈ D | hD

β (z) = βi − 〈ai, z〉}.

Thus,
∂̂hD

β (z) ⊂ co{±ai, i ∈ D} = {AᵀDλ : ‖λ‖1 = 1} ,

hence
d∗

(
0n, ∂̂hD

β (z)
)
≥ min
‖λ‖1=1

‖AᵀDλ‖∗ ,

and then we conclude lipF∗D(c, bD) ≤ ∥∥A−1
D

∥∥ by applying Theorem 3.1 and (3.2).
Conversely, for any given D ∈ Tb(x), let I ⊂ D, and λ̄1, . . . , λ̄n ≥ 0 be such that

λ̄1 + · · ·+ λ̄n = 1 and

min
‖λ‖1=1

‖AᵀDλ‖∗ =

∥∥∥∥∥∥
∑

i∈I

λ̄iai −
∑

i∈D\I
λ̄iai

∥∥∥∥∥∥
∗

.

Then, considering the vector βr ∈ RD defined for r = 1, 2, . . . by

βr
i = bi − 1

r
if i ∈ I and βr

i = bi +
1
r

if i ∈ D\I,

we obtain, taking Theorem 3.1 into account,

lipF∗D(c, bD) ≥ lim sup
r→∞

d∗(0n, ∂hD
βr (x))−1

= d∗(0n, co{ai, i ∈ I; − ai, i ∈ D\I})−1

=
(

min
‖λ‖1=1

‖AᵀDλ‖∗
)−1

=
∥∥A−1

D

∥∥ .

Theorem 3.6 below constitutes the main original contribution of the present paper. In
the proof we shall apply the following two lemmas. In the first one we appeal to the notation

D (x) := {D ⊂ {1, ..., m} : |D| = n, (∂f(x) + c) ∩ cone (∪i∈D (−∂gi (x))) 6= ∅}
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for x ∈ Rn, and according to (2.3) we define, for b ∈ Rm and x ∈ F (b)

Tb (x) := {D ∈ D (x) : D ⊂ Tb (x)} .

Roughly speaking, Tb (x) refers to sets of indices D (if any) associated with KKT conditions
at point x for problem P (c, b) , whereas D (x) provides the part of KKT conditions which
only depend on x, not referring to any b. In this way, if x ∈ F (b) and some D ∈ D (x)
is included in Tb (x) for some b, then x ∈ F∗ (c, b) . The following lemma is an immediate
consequence of [7, Thm. 4].

Lemma 3.4. Assume that ENC is satisfied at
((

c, b
)
, x

) ∈ gph (F∗). Then, there exist
neighborhoods U and V of x and b, respectively, verifying

∅ 6= Tb (x) ⊂ Tb (x) ⊂ D (x) for all x ∈ U and all b ∈ V. (3.3)

In the following paragraphs let V be an open convex subset of Rm. Recall that a function
ϕ : V → Rn is said to be Lipschitz continuous on V with rank λ ≥ 0, denoted by ϕ ∈
Lip (λ, V ), if

‖ϕ (b)− ϕ (b′)‖ ≤ λ ‖b− b′‖∞ for all b, b′ ∈ V.

We say that ϕ is calm on V with rank λ ≥ 0, denoted by ϕ ∈ Clm (λ, V ), if for any b ∈ V
there exists a neighborhood of b, W ⊂ V, such that

‖ϕ (b)− ϕ (b′)‖ ≤ λ ‖b− b′‖∞ for all b′ ∈ W.

Obviously, ϕ ∈ Clm (λ, V ) implies the continuity of ϕ on V. The following lemma is a
particular case of [19, Thm. 2.1] (see also [5, Lem. 3]).

Lemma 3.5. With the previous notation, if ϕ ∈ Clm (λ, V ) then ϕ ∈ Lip (λ, V ) .

Now we establish the aimed relationship between the Lipschitz modulus of the whole
problem P

(
c, b

)
-see (1.1)- and the moduli of subproblems PD

(
c, bD

)
with D ∈ Tb(x).

Recall that the latter moduli are given by Theorem 3.1.

Theorem 3.6. Assume that ENC holds at
(
(c, b), x

) ∈ gph (F∗). Then, we have

lipF∗(c, b) = max
D∈Tb(x)

lipF∗D(c, bD). (3.4)

Proof. According to the negligibility of the perturbations of c pointed out in (1.4), we will
refer to mappings F̃ , G̃ (:= F̃−1), F̃D := F∗D (c, ·) , and G̃D := F̃−1

D , with D ∈ Tb(x). Recall
that lipF∗(c, b) = lip F̃(b) and lipF∗D(c, bD) = lip F̃D(bD) (see (1.4)).

First we establish ≥ in (3.4). Fix any λ > lip F̃(b) and let us see that lip F̃D(bD) ≤ λ for
all D ∈ Tb(x). Appealing to the metric regularity terminology, together with (2.2), consider
neighborhoods U and V of x and b, respectively, such that

d
(
x, F̃ (b)

)
≤ λd∞

(
b, G̃ (x)

)
= fb (x) , for all x ∈ U and all b ∈ V. (3.5)

It is not restrictive to assume that U and V are small enough to ensure that (2.5) and (3.3)
hold, F̃ is single-valued and Lipschitz continuous on V, and ENC is satisfied at any ((c, b) , x)
with (b, x) ∈ (V × U) ∩ gph(F̃) (the last assumption is due to Lemma 2.3).

Recall that the fulfillment of ENC at
((

c, b
)
, x

)
ensures that this property also holds at((

c, bD

)
, x

)
, associated with subproblem PD

(
c, bD

)
, for all D ∈ Tb(x) -see our comments at
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the beginning of this section-. In particular, for all D ∈ Tb(x), F̃D is single-valued in some
neighborhood of bD and F̃D

(
bD

)
= {x}.

Now, if we fix arbitrarily D0 ∈ Tb(x) we can see that lip F̃D0(bD0) ≤ λ. Specifically, we
are going to find certain neighborhoods of x and bD0 , say U0 ⊂ Rn and V0 ⊂ RD0(≡ Rn)
such that

d
(
z, F̃D0 (β)

)
≤ λd∞

(
β, G̃D0 (z)

)
for all z ∈ U0 and all β ∈ V0.

Take ε > 0 such that
{
b ∈ Rm :

∥∥b− b
∥∥
∞ < ε

} ⊂ V. The continuity of the gi’s and the
ENC at

((
c, bD0

)
, x

)
(together with its consequences commented above) ensure the existence

of neighborhoods U0 ⊂ Rn and V0 ⊂ RD0 of x and bD0 , respectively, such that

U0 ⊂ U (3.6)

max
i=1,··· ,m

|gi(x)− gi(x̄)| < ε for all x ∈ U0, (3.7)

F̃D0 is single-valued on V0 (3.8)

F̃D0 (V0) ⊂ U0, (3.9)

d∞(β, G̃D0(z)) = hD0
β (z) for all z ∈ U0, and all β ∈ VD0 , (3.10)

where hD0
β (z) is defined as in (3.1). In relation to (3.10), observe that, as a consequence of

the ENC assumption, G̃D0(z)) = {(gi (z) , i ∈ D0)} for z close enough to x. Now let us see
that the aimed Lipschitzian inequality holds for these neighborhoods U0 and V0.

Pick any z ∈ U0 and β ∈ V0. Let y be the only point of F̃D0(β), which entails gi(y) = βi

for all i ∈ D0, and define b ∈ Rm as follows:

bi =
{

βi (= gi(y)), if i ∈ D0,

max{bi, gi(z), gi(y)}, if i 6∈ D0.
(3.11)

Let us see that b ∈ V. For i ∈ D0 one has
∣∣bi − bi

∣∣ = |gi(y)− gi(x)| < ε, according to (3.7)
and (3.9). For i /∈ D0 one has, according to (3.11), and denoting by [α]+ = max {α, 0} the
positive part of α ∈ R,

∣∣bi − bi

∣∣ = max
{[

gi(z)− bi

]
+

,
[
gi(y)− bi

]
+

}
.

Recalling that z ∈ U0 we have

[
gi(z)− bi

]
+
≤ [gi(z)− gi(x)]+ +

[
gi(x)− bi

]
+
≤ |gi(z)− gi(x)|+ 0 < ε,

and a completely analogous inequality holds for y instead of z, because y ∈ U0 from (3.9).
Thus,

∥∥b− b
∥∥
∞ < ε and, so, b ∈ V.

Now we show that y is the only point of F̃ (b) (recall that F̃ is single-valued in V ). In
fact, (3.11) entails y ∈ F (b) and D0 ⊂ Tb (y) , and we have D0 ∈ D (y) because of (3.3).
Hence, D0 ∈ Tb (y) , providing KKT conditions, and so F̃ (b) = {y}. Then, we have (see
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comments after the formula):

d(z, F̃D0(β)) = d(z, F̃ (b)) ≤ λd∞
(
b, G̃ (z)

)
= λfb (z)

= λ min
D∈Tb(x)

fD
b (z) ≤ λfD0

b (z)

= λ max{|gi (z)− bi| , i ∈ D0; gi (z)− bi, i /∈ D0}
= λ max {|gi (z)− gi (y)| , i ∈ D0}
= λ max {|gi (z)− βi| , i ∈ D0}
= λhD0

β (z) = λd∞(β, G̃D0(z)).

In the first row we use the definitions of b and y, the facts that b ∈ V, y ∈ U0 ⊂ U, and (3.5);
the second row comes from the fact that U and V have been chosen to verify (2.5); in the
third we use (2.4); in the fourth, we appeal to the facts that gi (z)− bi ≤ 0 for i /∈ D0 and
bi = gi (y) for i ∈ D0, both coming from (3.11); in the fifth we use gi(y) = βi for i ∈ D0;
and in the last row we appeal to (3.10). So, we conclude lip F̃D0(bD0) ≤ λ, and the proof of
≥ in (3.4) is complete.

Next we prove the converse inequality, i.e., lip F̃(b) ≤ maxD∈Tb(x) lip F̃D(bD).

Take any µ > maxD∈Tb(x) lip F̃D(bD) and let us see that µ is a Lipschitz constant for F̃
in a certain open and convex neighborhood of b, say V ′. Specifically, we define V ′ :={
b ∈ Rm :

∥∥b− b
∥∥
∞ < η

}
such that F̃ and F̃D are single-valued in V ′ and V ′

D, respectively,
for all D ∈ Tb(x), where V ′

D :=
{
β ∈ RD :

∥∥β − bD

∥∥
∞ < η

}
, and in addition

∥∥∥F̃D (β)− F̃D

(
β′

)∥∥∥ ≤ µ
∥∥β − β′

∥∥
∞ for all β, β′ ∈ V ′

D and all D ∈ Tb(x).

Here, in order to avoid additional notation, we have identified F̃D (β) and F̃D

(
β′

)
with

their unique elements. The same will be done with F̃ in the following paragraphs. Let us
see that F̃ ∈ Clm (µ, V ′) , and then Lemma 3.5 will ensure F̃ ∈ Lip (µ, V ′) , which itself
entails lip F̃(b) ≤ µ. This will conclude the proof.

For any given b ∈ V ′ let W ⊂ V ′ be a neighborhood of b such that, for all b′ ∈ W one
has

Tb′
(
F̃(b′)

)
⊂ Tb

(
F̃(b)

)
for all b′ ∈ W.

(Such a neighborhood exists as an immediate consequence of Lemma 3.4.)

Then, for any b′ ∈ W and any D ∈ Tb′
(
F̃(b′)

)
one has

∥∥∥F̃ (b)− F̃ (b′)
∥∥∥ =

∥∥∥F̃D (bD)− F̃D (b′D)
∥∥∥ ≤ µ ‖bD − b′D‖∞ ≤ µ ‖b− b′‖∞ .

Thus F̃ ∈ Clm (µ, V ′) , as we aimed to prove.

In the particular case of linear problems of the form

Inf 〈c, x〉
s. t. 〈ai, x〉 ≤ bi, i = 1, . . . , m,

(3.12)

we obtain the following corollary, in which we appeal to the notation of Corollary 3.2.
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Corollary 3.7. [5, Cor. 2] For the parametrized linear problem (3.12), assume that ENC
holds at

((
c̄, b

)
, x

) ∈ gphF∗. Then one has

lipF∗(c, b) = max
D∈Tb(x)

∥∥A−1
D

∥∥

where
∥∥A−1

D

∥∥ := max
‖y‖∞≤∞

∥∥A−1
D y

∥∥ =
(

min
‖λ‖1=1

∥∥A>Dλ
∥∥
∗

)−1

.

4 Conclusions

In this section we point out the main advantages of expression (3.4) in Theorem 3.6 (see
also Theorem 3.1) with respect to formula (2.1). Putting all together we have

lipF∗(c, b) = lim sup
(z,b)→(x,b)

fb(z)>0

min
D∈Tb(x)

fb(z)=fD
b (z)

(
d∗

(
0n, ∂̂fD

b (z)
))−1

= max
D∈Tb(x)

lim sup
(z,β)→(x,bD)

hD
β

(z)>0

(
d∗

(
0n, ∂̂hD

β (z)
))−1

.

In (2.1) (first row), for any pair (z, b) close to
(
x, b

)
we have to find D ∈ Tb(x) such that

fb(z) = fD
b (z). This D depends on (z, b) . In contrast, (3.4) (second row) each D ∈ Tb(x)

is dealt with separately, and for each D only constraints with indices in D are considered.
Moreover, functions hD

β are easier to handle than fD
b (the latter considers all indices, not

only the ones in D). In such a way, d.c. decompositions of hD
β is easier than the one of

fD
b , and so the expression of ∂̂hD

β (z) is also easier than the one of ∂̂fD
b (z) (the reader is

addressed to [8] for details), and this constitutes a new advantage of our current approach.
Of course, the present paper is highly based on [8], but we also should mention that the
current approach does not extend to the semi-infinite case (infinitely many indices). In fact,
the question of whether or not Corollary 3.7 extends to the semi-infinite case remains as an
open problem, as pointed out at the end of [5, Sect. 5].
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