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1 Introduction

The most well-known topology on the nonempty subsets P0(X) of a metric space 〈X, d〉 is
the topology of Hausdorff distance [14, 47, 49]. To describe Hausdorff distance in P0(X),
for each nonempty subset A and ε > 0, put

Aε := {x ∈ X : d(x,A) < ε}.
Aε is called the ε-enlargement or ε-neighborhood of A. Intuitively the Hausdorff distance
Hd between A and B is the minimal amount we can enlarge both sets to contain the other:

Hd(A,B) := inf {ε > 0 : A ⊆ Bε and B ⊆ Aε}.

Of course, if A were unbounded and B were bounded, the set of such ε over which the
infimum is taken is empty and we logically obtain Hd(A,B) = ∞. But this can happen
more generally, e.g., when A and B are two nonparallel lines in R2 with the Euclidean
metric. Hausdorff distance so defined gives an extended real valued pseudometric on P0(X)
which becomes an extended real valued metric on the nonempty closed subsets C0(X).
As Hd(A,B) = Hd(cl(A), cl(B)), arguably there is no loss of generality in restricted our
attention to closed subsets. The resulting metrizable topology mirrors characteristics of the
underlying space in important ways : if 〈X, d〉 is complete or totally bounded or compact,
then 〈C0(X),Hd〉 inherits the same property.
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While Hausdorff distance works well for bounded sets, it is much too strong for applica-
tions to unbounded sets. In any reasonable hyperspace topology, one would like the sequence
of lines 〈Ln〉 in R2 where each Ln has slope 1

n and passes through the origin to converge to
the horizontal axis. With respect to this criterion, the Hd topology is just not reasonable.

The Attouch-Wets topology, also know as the bounded Hausdorff topology, is a weakening
of the Hausdorff metric topology that seems to best retain its desirable properties. While this
notion appears first in the Walkup-Wets isometry theorem [69] and was subsequently noticed
by Mosco [55] in a landmark paper in which his eponymous convergence was introduced, it
was first comprehensively studied by Attouch and Wets [5, 6] in the context of epigraphical
analysis. Its inclusion in texts devoted to nonlinear and set-valued analysis is now standard
[14, 54, 62]. Convergence of a net 〈Aλ〉 of nonempty sets to A ∈ P0(X) requires that for
each ε > 0, each truncation of A (resp. Aλ) by a prescribed bounded set eventually be
contained in the ε-enlargement of Aλ (resp. A). Evidently for nets of uniformly bounded
sets, this reduces to convergence in Hausdorff distance.

After setting forth some notation and basic terminology in Section 2, Section 3 lays out
the basic facts about the Attouch-Wets topology for the nonempty closed subsets of a metric
space. In Section 4, we look at the the so-called epi-distance topology on the proper lower
semicontinuous convex functions Γ(X) defined on a normed linear space X equipped with
the Attouch-Wets topology it inherits from C0(X×R) where we associate each such function
f with {(x, α) : x ∈ X, α ∈ R and α ≥ f(x)}. Most notably, this topology is stable with
respect to duality : the Fenchel transform f 7→ f∗ is bicontinuous.

2 Preliminaries

In the sequel, all metric spaces are assumed to contain at least two points. If 〈X, d〉 is
a metric space and A ⊆ X, we denote its closure, interior and set of limit points by
cl(A), int(A), and A′, respectively. If 〈Y, ρ〉 is a second metric space, the box metric d× ρ
will be understood on X × Y . If f : X → Y , its graph will be denoted by Grf . If f is an
extended real-valued function on X, its epigraph is the following subset of X × R:

epi f := {(x, α) : x ∈ X, α ∈ R, and α ≥ f(x)}.

Such a function f is called lower semicontinuous if its epigraph is a closed subset of the
product. Equivalently, this means that ∀α ∈ R, each sublevel set at height α {x : f(x) ≤ α}
is a closed subset of X. As the epigraph of a supremum of a family of functions is the
intersection of their epigraphs, an arbitrary supremum of lower semicontinuous functions is
again lower semicontinuous.

The extended real valued function f is called proper if (i) ∀x, f(x) > −∞, and (ii)
∃x with f(x) ∈ R. In geometric terms, such a function is proper if its epigraph is nonempty
and contains no vertical line. For a proper function f , we call dom(f) := {x ∈ X : f(x) < ∞}
its effective domain.

In the case that X is a normed linear space, f : X → [−∞,∞] is called convex if its
epigraph is a convex subset of the product. We denote the proper lower semicontinuous
convex functions on a normed linear space by Γ(X). Two elements of Γ(X) associated with
a nonempty closed convex subset A of a normed linear space are its distance function d(·, A)
which is actually Lipschitz continuous and its indicator function ι(·, A) defined by

ι(x,A) =

{
0 if x ∈ A

∞ otherwise
.
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By a bornology [43] B on 〈X, d〉 we mean a cover of X by nonempty subsets that is
closed under taking finite unions and that is hereditary : B1 ∈ B and B2 ⊆ B1 with B2 6= ∅
imply B2 ∈ B. Evidently P0(X) is the largest bornology and the nonempty finite subsets
F (X) is the smallest. Intermediate in strength are the nonempty d-bounded subsets Bd(X)
(the so-called metric bornology determined by d) and the nonempty subsets with compact
closure. By a base for a bornology B, we mean a subfamily that is cofinal with respect to
inclusion. For example, a countable base for Bd(X) consists of all open balls with fixed
center x0 ∈ X and integral radius. A celebrated result of S.-T. Hu [46] describes when
a bornology B in a metrizable space X is Bd(X) for some metric d compatible with the
topology: B has a countable base and ∀B1 ∈ B ∃B2 ∈ B with cl(B1) ⊆ int(B2). Note
that the bornology of sets with compact closure forms a metric bornology if and only if
X is locally compact and separable as first noted by Vaughan [65]. When the metrizable
space is compact there is obviously just one metric bornology: P0(X). Otherwise, there
are uncountably many distinct ones [17].

If A and B are nonempty subsets of 〈X, d〉, we call

ed(B,A) := supb∈B d(b, A) = inf{ε > 0 : B ⊆ Aε}

the excess of B over A. Consistent with this formula, we agree that ed(∅, A) = 0. Dually
Dd(B,A) := infb∈B d(b, A) is called the gap between B and A. Note that gap is a symmetric
functional whereas excess is not, and that the Hausdorff distance between A and B is
Hd(A,B) = max {ed(A,B), ed(B,A)}. Note also that excess and gap are invariant under
replacing sets by their closures and that both ed(·, A) and Dd(·, A) extend distance d(·, A)
from X to P0(X) in different ways: for x ∈ X and A nonempty, we have

ed({x}, A) = Dd({x}, A) = d(x,A).

We record two important formulas, the first better known than the second (see, e.g., [14,
pp. 29-31]).

Proposition 2.1. Suppose A and B are nonempty subsets of 〈X, d〉. Then

(1) ed(B,A) = supx∈X d(x,A)− d(x,B);

(2) Dd(B,A) = infx∈X d(x,B) + d(x,A).

The first formula implies that the Hausdorff distance between A and B is the uniform
distance between their distance functionals d(·, A) and d(·, B). A natural way to topologize
the nonempty subsets of X is to identify each with its distance functional and then to equip
such functionals with a topology of uniform convergence on some bornology B within X, a
program initiated by B. Cornet [35], later taken up more generally in [28, 53]. There is no
loss of generality in assuming for this purpose that the bornology has closed base, and it was
discovered independently in [28, 53] that two such bornologies determine the same topology
on {d(·, A) : A ∈ C0(X)} if and only if the families of closed sets within each have the
same closures with respect to Hausdorff distance. The Hausdorff metric topology, where we
effectively take for our bornology P0(X), is the strongest such. The weakest such topology
results when we use the bornology F (X), in which case we get the extremely well-known
Wijsman topology, so named in recognition of its application by R. Wijsman in his seminal
study of convex duality in finite dimensions [70]. It was first seriously studied in the setting
of a general metric space by Levi and Lechicki [51].
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3 The Attouch-Wets Topology for a Metric Space

We begin with a formal definition of Attouch-Wets convergence for nets of nonempty sets
in a metric space 〈X, d〉 as described in the Introduction.

Definition 3.1. A net 〈Aλ〉 in P0(X) is called Attouch-Wets convergent to a nonempty
subset A of X if ∀B ∈ Bd(X) and ∀ε > 0, we have eventually both

A ∩B ⊆ Aε
λ and Aλ ∩B ⊆ Aε.

When this occurs we will write A = AWd − lim Aλ.

Evidently, Attouch-Wets convergence of 〈Aλ〉 to A can be expressed in terms of excess:
for each B ∈ Bd(X), both limλed(A ∩ B,Aλ) = 0 and limλed(Aλ ∩ B,A) = 0. From
this perspective and paralleling convergence in Hausdorff distance, it is easy to see that
A = AWd − lim Aλ if and only if cl(A) = AWd − lim cl(Aλ) because for nonempty sets E
and F , we have for all B ∈ Bd(X) and ε > 0,

ed(E ∩B,F ) ≤ ed(cl(E) ∩B, cl(F )) ≤ ed(E ∩Bε, F ).

One can also see easily see that if 〈xλ〉 is a net in X then lim d(x, xλ) = 0 if and only if
{x} = AWd − lim {xλ}. This means that Attouch-Wets convergence agrees with d-metric
convergence for nets of points. In Definition 3.1, one could have replaced the bornology
Bd(X) by an arbitrary bornology of subsets (see, e.g., [22, 23, 28, 31, 40, 52]). This more
encompassing notion of convergence, now called bornological convergence, will not be con-
sidered further in the current survey.

Attouch-Wets convergence on P0(X) so defined is compatible with a pseudometrizable
topology on P0(X), as it is obviously compatible with a uniformity

∑
d having as a countable

base all sets of the form
∑

d(n) := {(A1, A2) : A1 ∩Bn ⊆ A
1
n
2 and A2 ∩Bn ⊆ A

1
n
1 }

where n ∈ N and {B1, B2, B3, . . .} is an increasing cofinal family of bounded sets with respect
to set inclusion (the uniformity is independent of the particular choice of the Bn). If we
look at the trace of this uniformity on C0(X), it is separated so that the pseudometrizable
topology becomes Hausdorff and thus metrizable. We will confine our attention to the
metrizable Attouch-Wets topology τAWd

on C0(X) in this section, and state convergence
results for sequences of nonempty closed sets as they determine the topology.

The standard metric for this metrizable hyperspace arises from a different uniformity -
an often stronger uniformity - that is indicated by the following result, discovered in normed
spaces by Azé and Penot [7] and separately by the author [11]. For a proof in metric spaces,
the reader may consult [14, Prop. 3.1.6]

Theorem 3.2. Let A,A1, A2, A3, . . . be a sequence of nonempty closed sets in a metric space
〈X, d〉. Then A = AWd − lim An if and only if 〈d(·, An)〉 converges to d(·, A) uniformly on
bounded subsets of X. Thus, the mapping A 7→ d(·, A) is an embedding of 〈C0(X), τAWd

〉
into the metrizable locally convex space of continuous real functions that are bounded on
bounded sets of X, equipped with the topology of uniform convergence on bounded sets.

Thus, the Attouch-Wets topology fits within the program of Cornet even though he did
not consider it explicitly. With this in mind, another compatible uniformity ♦d on C0(X)
(or on P0(X)) has as a countable base all sets of the form
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♦d(n) := {(A1, A2) : supx∈Bn
|d(x,A1)− d(x,A2)| < 1

n
}

where again {B1, B2, B3, . . .} is an increasing cofinal family of bounded sets with respect to
set inclusion. The natural metric corresponding to this function space uniformity on C0(X)
is given by

ρAW d
(A1, A2) :=

∞∑
n=1

2−nmin{1, sup {|d(x,A1)− d(x,A2)| : x ∈ Bn}}.

The next fact about this metric was identified by Attouch, Lucchetti and Wets [3].

Theorem 3.3. Let 〈X, d〉 be a complete metric space. Then the metric space 〈C0(X), ρAW d
〉

is a complete metric space.

Showing that the limit of a ρAW d
-Cauchy sequence of distance functionals exists as a

bounded continuous function is standard; what takes a little work is showing that that the
limit is itself a distance function for a nonempty closed set. We do not know whether or not
there is a weaker topology on the continuous real functions that are bounded on bounded
sets in which the distance functionals are closed.

It is easy to verify that for each n we have ♦d(n) ⊆ ∑
d(n) which makes the second

uniformity stronger than the first. That it can be properly stronger was shown in [19]. We
also do not know of a useful metric whose uniformity is

∑
d.

Consistent with our notation for the Attouch-Wets topology on C0(X), we now write τHd

and τWd
for the Hausdorff metric and Wijsman topologies determined by d. Viewed from

the perspective of the Cornet program we have τWd
⊆ τAWd

⊆ τHd
. Coincidence of τAWd

with the other two is provided by the next two results, the first of which is totally obvious.

Theorem 3.4. Let 〈X, d〉 be a metric space. Then τHd
= τAWd

if and only if X is bounded.

Proof. Sufficiency comes the fact that X ∈ Bd(X). For necessity, if x0 ∈ X and 〈xn〉 is a
sequence with limn→∞d(xn, x0) = ∞, then {x0} = AWd − lim {x0, xn}.

A proof of the next result can be found in [14].

Theorem 3.5. Let 〈X, d〉 be a metric space. The following conditions are equivalent:

(1) τWd
= τAWd

on C0(X);

(2) τAWd
on C0(X) is second countable;

(3) Each bounded subset of 〈X, d〉 is totally bounded.

Recall that a metrizable space is called Polish if it is second countable and has a com-
patible complete metric.

Corollary 3.6. Let 〈X, d〉 be metric space. Then 〈C0(X), τAWd
〉 is Polish if and only if X

is Polish and each bounded subset of 〈X, d〉 is totally bounded.

Proof. As a result of the important theorem of Costantini regarding Polishness of the
Wijsman topology for a Polish space [36], if 〈X, d〉 is completely metrizable and each bounded
subset of 〈X, d〉 is totally bounded, then 〈C0(X), τAWd

〉 is a Polish space because X is
second countable. Conversely, if 〈C0(X), τAWd

〉 is completely metrizable, then 〈X, d〉 being
homeomorphic to the closed subhyperspace {{x} : x ∈ X} is completely metrizable. Further,
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since the hyperspace is second countable, each bounded subset of 〈X, d〉 is totally bounded.

An intricate result in the domain of infinite dimensional topology that bares on the last
corollary has been recently obtained by R. Voytsitskyy [67], who has given necessary and
sufficient conditions for 〈C0(X), τAWd

〉 to be homeomorphic to the Polish space `2 (see also
[9, 63, 68]).

Theorem 3.7. Let 〈X, d〉 be a metric space. Then 〈C0(X), τAWd
〉 is homeomorphic to `2 if

and only if

(1) X is a Polish space;

(2) no bounded subset of X has locally compact complement;

(3) each closed and bounded subset of the completion of 〈X, d〉 is compact;

(4) the completion of 〈X, d〉 has no bounded component but is locally connected.

Let X be a metrizable space and let D(X) be the family of metrics on X that are com-
patible with its topology. If d ∈ D(X) and ρ ∈ D(X), then it is well known that τHρ

⊆ τHd

if and only if the identity map id : 〈X, d〉 → 〈X, ρ〉 is uniformly continuous. This of course
means that the metric uniformity on X induced by ρ is contained in the one determined
by d. Sufficiency is trivial, while necessity is most easily established using the Efremovic
Lemma [14, p. 92]. The analogous and more difficult question for Wijsman topolgies was
resolved in [37]. A natural question to ask is this: given a metrizable topological space, what
are necessary and sufficient conditions on metrics d and ρ compatible with the topology such
that τAWρ

⊆ τAWd
? This question was answered by Beer and Di Concilio [19].

To state our result we first need a definition of independent interest.

Definition 3.8. Let B be a nonempty subset of a metric space 〈X, d〉 and let f : 〈X, d〉 →
〈Y, ρ〉 be a function. We say f is strongly uniformly continuous on B if ∀ε > 0 ∃δ > 0 such
that if d(x,w) < δ and {x,w} ∩B 6= ∅, then ρ(f(x), f(w)) < ε.

Obviously, strong uniform convergence of f on B implies the restriction of f to B is
uniformly continuous. Further, f is strongly uniformly continuous on a singleton set {x} if
and only if f is continuous at x in the usual sense. For f arbitrary, it is easy to show that
Bf := {B ⊆ X : f is strongly uniformly continuous on B} is hereditary and closed under
finite unions. Thus Bf is a bornology if and only f is globally continuous. For f globally
continuous, it is clear that Bf contains the bornology of nonempty subsets with compact
closure. A number of intriguing characterisations of strong uniform continuity are presented
in [24]. Here is one such characterization: f is strongly uniformly continuous on B if and
only if its associated direct image map f̂ : 〈P0(X),Hd〉 → 〈P0(Y ),Hρ〉 is continuous at
each nonempty subset of B.

We are now ready to answer our question.

Theorem 3.9. Let X be a metrizable topological space with compatible metrics d and ρ.
The following conditions are equivalent:

(1) τAWρ
⊆ τAWd

on C0(X);

(2)
∑

ρ ⊆
∑

d on C0(X);

(3) Bρ(X) ⊆ Bd(X) and the identity map id : 〈X, d〉 → 〈X, ρ〉 is strongly uniformly
continuous on each element of Bρ(X);
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(4) Bρ(X) ⊆ Bd(X) and if f : X → Y is ρ-strongly uniformly continuous on each
element of Bd(X), then f is d-strongly uniformly continuous on each element of Bρ(X).

Given a metrizable space X and any d ∈ D(X) it is clear from Theorem 3.9 that
τAWd

is contained in the Attouch-Wets topology determined by the bounded uniformly
equivalent metric d′ = min {d, 1} which agrees with the Hausdorff metric topology. Thus
the supremum of the Attouch-Wets topologies {τAWd

: d ∈ D(X)} coincides with sup
{τHd

: d ∈ D(X) and d is bounded} which is no smaller than sup {τHd
: d ∈ D(X)}, be-

cause a Hausdorff metric topology τHd
for an unbounded metric d is unchanged by replacing

d by d′ = min {d, 1}.
Theorem 3.10. Let X be a metrizable topological space with compatible metrics D(X). The
following are equivalent:

(a) {τAWd
: d ∈ D(X)} has a largest member;

(b) {τHd
: d ∈ D(X)} has a largest member;

(c) the set of limit points X ′ of X is compact.

Proof. The equivalence of (a) and (b) has already been argued. Now it is well-known [61]
that (c) is equivalent to the existence of d0 ∈ D(X) such that whenever 〈Y, ρ〉 is a metric
space and f : 〈X, d0〉 → 〈Y, ρ〉 is continuous, then f is uniformly continuous. Thus if X ′

is compact, then ∀d ∈ D(X), id : 〈X, d0〉 → 〈X, d〉 is uniformly continuous, so there is a
largest metric uniformity and hence a largest Hausdorff metric topology. Conversely, if X ′

is not compact, let d ∈ D(X) be arbitrary. Then there is a continuous function f defined on
〈X, d〉 with values in some metric space 〈Y, ρ〉 that is not uniformly continuous. Evidently,
d1 ∈ D(X) defined by

d1(x,w) = d(x,w) + ρ(f(x), f(w))

determines a properly larger uniformity than d, so τHd
⊂ τHd1

.

Even if there is no largest hyperspace, it is possible to describe the supremum in general.
It is the celebrated locally finite topology τLF as idenitified in [21]. To describe a base for
the topology, given a family of nonempty subsets V of X, put

V − := {A ∈ C0(X) : ∀V ∈ V , V ∩A 6= ∅}.

Then a base for the locally finite topology on C0(X) consists of all sets of the form V −∩{A :
A ⊆ W} where V is a locally finite family of nonempty open subsets of X and W is a
nonempty open subset of X.

A different but related question is this: given a metric bornology B for a metrizable
space X - that is, a bornology satisfying the conditions of Hu’s Theorem [46] listed in the
introduction - what is the supremum of {τAWd

: d ∈ D(X) and B = Bd(X) }? The desired
supremum topology, not surprisingly a variant of the locally finite topology, was identified
in [27]. As to when there is a largest Attouch-Wets topology corresponding to a prescribed
metric bornology, the reader may consult [20, 44]

While the infimum of {τHd
: d ∈ D(X)} has been identified by Costantini and Vitolo

[38], the infimum of {τAWd
: d ∈ D(X)} does not seem to be known at this writing.

The topology τ of each Tychonoff space 〈X, τ〉 can always be expressed as a weak topology
induced by some family of real valued functions defined on X. For example the continuous
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real valued functions on X with values in [0, 1] induce the topology. One of the remark-
able facts about Tychonoff hyperspace topologies is that they are often weak topologies
determined by geometric real-valued set functionals, and the Attouch-Wets topology is no
exception. As shown by Beer and Lucchetti [27], τAWd

is the weakest topology on C0(X)
such that for each B ∈ Bd(X), both

A 7→ Dd(B,A)

A 7→ ed(B,A)

are continuous functions on C0(X). Thus, the Attouch-Wets topology is the weak topology
determined by all gap and excess functionals whose left argument runs over the nonempty
d-bounded subsets of X.

We take this opportunity to provide a much simpler proof that does not involve splitting
hyperspace topologies into their upper and lower halves, taking advantage of Theorem 3.2.
We are obliged to argue using nets, as we don’t know a priori that the weak topology is first
countable. We call upon a general folk-theorem about real functions: if 〈fλ〉 is a net of real
valued functions defined on a set S that converges uniformly to a real-valued function f , then
inf {f(s) : s ∈ S} = limλ inf {fλ(s) : s ∈ S} and sup {f(s) : s ∈ S} = limλ sup {fλ(s) : s ∈
S}, whether or not the infimum/supremum is finite and without any continuity assumptions
whatever.

Theorem 3.11. Let 〈X, d〉 be a metric space. Then the Attouch-Wets topology τAWd
on

C0(X) is the weak topology determined by the family of functionals

{ed(B, ·) : B ∈ Bd(X)} ∪ {Dd(B, ·) : B ∈ Bd(X)}.

Proof. Suppose 〈Aλ〉 in C0(X) is Attouch-Wets convergent to a nonempty closed subset
A. Fix B ∈ Bd(X). By Theorem 3.2, 〈d(·, Aλ)〉 converges uniformly to d(·, A) on B. As a
result, both limλ supb∈B d(b, Aλ) = supb∈B d(b, A) and limλ infb∈B d(b, Aλ) = infb∈B d(b, A).
In view of the definitions of excess and gap, this proves that τAWd

is finer than the weak
topology.

To show the reverse inclusion, fix B0 nonempty and bounded and ε > 0. Assuming
that for each B ∈ Bd(X), ed(B,A) = limλ ed(B,Aλ) and Dd(B,A) = limλ Dd(B,Aλ), we
intend to show that

(i) eventually A ∩B0 ⊆ Aε
λ,

(ii) eventually Aλ ∩B0 ⊆ Aε.

For (i), if A∩B0 = ∅, there is nothing to show. Otherwise, A∩B0 6= ∅ and ed(A∩B0, A) =
0. Since A ∩B0 is nonempty and bounded, we have

limλ ed(A ∩B0, Aλ) = ed(A ∩B0, A) = 0.

Thus, given ε > 0, eventually ed(A ∩B0, Aλ) < ε. In particular, this means that eventually
A ∩B0 ⊆ Aε

λ. For (ii), suppose to the contrary that frequently Aλ ∩B0 * Aε. There exists
a cofinal set of indices Λ0 in the underlying directed set for the net such that

∀λ ∈ Λ0 ∃xλ ∈ B0 ∩Aλ with d(xλ, A) ≥ ε.

Put B1 := {xλ : λ ∈ Λ0}, a nonempty bounded set. Frequently, Dd(B1, Aλ) = 0 whereas
Dd(B1, A) ≥ ε. This contradicts Dd(B1, A) = limλ Dd(B1, Aλ).
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There is an enormous literature on graph convergence of continuous functions between
metric spaces 〈X, d〉 and 〈Y, ρ〉, including many results involving the Attouch-Wets conver-
gence of graphs with respect to the box metric d×ρ on X×Y (see, e.g., [19, 20, 32, 39, 44, 60]).
It is completely obvious that uniform convergence on bounded subsets of X yields Attouch-
Wets convergence of graphs. With respect to the converse, we can state the following result
[19].

Theorem 3.12. Let 〈X, d〉 and 〈Y, ρ〉 be a metric spaces. Suppose f, f1, f2, f3, . . . is a se-
quence of continuous functions from X to Y such that f is uniformly continuous on bounded
sets and ∀B ∈ Bd(X) ∃k ∈ N such that ∪n≥k fn(B) is bounded in Y . Then 〈fn〉 converges
uniformly to f on bounded subsets of X if and only if Gr f = AWd×ρ − lim Gr fn.

It is clear that the conditions of the Theorem 3.12 imply that the limit function in
either sense is bounded on bounded subsets of X. It is not difficult to show that if Bd(X)
has a base of connected sets, and if f is assumed both bounded and uniformly continuous
when restricted to bounded sets, then we get the eventual uniform boundedness of {fn :
n ∈ N} on bounded sets for free. In particular, this is true in a normed linear space.
Since convergence for continuous linear transformations in the operator norm is uniform
convergence on bounded subsets, we get as a special case the following result of Penot and
Zalinescu [58] (for earlier results on linear functionals, see also [18]).

Theorem 3.13. Let X and Y be normed linear spaces and let T, T1, T2, T3, . . . be a sequence
of continuous linear transformations from X to Y . Then 〈Tn〉 converges to T in the operator
norm topology if and only if Gr T = AWd×ρ − lim Gr Tn.

As noted earlier, one can identify a lower semicontinuous extended real valued function
with its closed epigraph in X×R, and so one can embed such functions in C0(X×R) equipped
with the Attouch-Wets topology. This topology, often called the epi-distance topology, has
become the topology of choice for “one-sided analysts”. In the next section we provide the
reader with some qualitative results for the space of proper convex lower semicontinuous
functions equipped with the epi-distance topology. The cognoscenti and those more inter-
ested in applications and precise estimation are invited to consult the 2005 survey of Penot
and Zalinescu [58] and the references therein. But additional applications continue to ap-
pear: most recently, Bauschke, Lucet and Trienis [10] have considered homotopies between
convex functions with respect to the topology.

4 Attouch-Wets Convergence for Convex Functions

Let 〈X, || · ||X〉 be a real normed linear space with closed unit ball UX and origin θ. In the
dual space X∗ of continuous linear functionals on X, we denote the closed unit ball by UX∗

and the origin by θ∗.
In this section we will restrict our attention to the epi-distance topology on Γ(X). We

will not subscript AW in the sequel with the understanding that the metric is the one
induced by the natural norm for the space, whether the space be X, X∗, or a product such
as X × R, X∗ × R, or X × R×X∗. The results we present here are in no way meant to be
exhaustive; rather they are a selection of nontechnical yet representative results that at the
same time expose the uninitiated to some of the basic constructs of convex analysis. For
further information on these constructs, the reader may consult [14, 41, 45, 59, 71].

Our first result describes how convergence in the epi-distance topology can be explained
in terms of the convergence of sublevel sets in certain cases [25].
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Theorem 4.1. Suppose X is a normed linear space and f, f1, f2, . . . is a sequence in Γ(X).

(1) If epi f = AW − lim epi fn, then ∀α > inf {f(x) : x ∈ X}, we have
f−1(−∞, α] = AW − lim f−1

n (−∞, α].

(2) If inf {f(x) : x ∈ X} = limn→∞ inf {fn(x) : x ∈ X}, then the converse
of (1) holds.

It is easy show that without convexity, we always have inf {f(x) : x ∈ X} ≥
lim supn→∞inf {fn(x) : x ∈ X}, and we note that (2) holds without the convexity assump-
tion also.

It is obvious that for a sequence of closed convex sets A,A1, A2, . . ., we have A = AW−
lim An if and only if epi ι(·, A) = AW−lim epi ι(·, An). One way to obtain the equivalence of
these conditions with epi d(·, A) = AW− lim epi d(·, An) is to apply the following attractive
result of Borwein and Vanderwerff [31] linking uniform convergence on bounded sets to a
real-valued limit with the weaker Attouch-Wets convergence of epigraphs.

Theorem 4.2. Let f ∈ Γ(X) be real valued. The following conditions are equivalent:

(1) f is bounded on bounded sets;

(2) whenever 〈fn〉 is a sequence in Γ(X) convergent to f in the
epi-distance topology, then 〈fn〉 converges uniformly to f on bounded sets.

One can try to impose standard function operations on Γ(X), or alternatively one can
perform geometric set operations on epigraphs. For example, we can add two elements of
Γ(X) using ordinary functional addition to get another, provided the effective domains of
the functions overlap. With respect to epigrahical convergence, the best result available is
the following [57, 58]:

Theorem 4.3. Suppose f, f1, f2, f3, . . . and g, g1, g2, g3, . . . are sequences in Γ(X) with
epi f = AW−lim epi fn and epi g = AW−lim epi gn. Suppose X = R+(dom(f)−dom(g)).
Then epi f + g = AW − lim epi fn + gn

Notice that the result is valid if f is continuous at some point of dom(g), as observed in
[26].

One can also add two functions in Γ(X) by taking the “vertical closure” of the vector
sum of their epigraphs. This operation ¤, called the infimal convolution or the epi-sum in
the literature, is defined formally by

(f ¤ g)(x) := inf {f(w) + g(x− w) : w ∈ X} (x ∈ X).

As important examples, note that

ι(·, A) ¤ ι(·, B) = ι(·, A + B),

and

ι(·, A) ¤ || · ||X = d(·, A).

But here too there can be pathology: if y is a nonzero continuous linear functional on X,
then epi y ¤ − y = X × R. Even if both f and g are lower bounded, f ¤ g need not be
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lower semicontinuous: let y ∈ X∗ be a norm one functional that is not norm achieving on
UX , and take the epi-sum of the indicator function of {x : < y, x >= 1} with ι(·, UX).

A standard tool of convex analysis is to form regularizations of elements of Γ(X) by taking
epi-sums with so-called smoothing kernels. For example one obtains Lipschitz regularizations
using α|| · || for large enough values of α. Regularizations by kernels of the form α|| · ||2 are
called quadratic regularizations or Moreau-Yosida regularizations [1, 5] in the literature.

One of the most important facts about elements of Γ(X) is that each is the supremum
of the continuous affine functionals that it majorizes (see, e.g. [41, p. 114]). In terms of
epigraphs, if f ∈ Γ(X) then

epi f =
⋂
{epi g : g is continuous and affine and epi f ⊆ epi g}.

Now each continuous affine functional g on X depends on two parameters: an element y
of X∗ and a scalar β where we may write

g(x) = g(y,β)(x) = < y, x > − β (x ∈ X).

The set of ordered pairs {(y, β) : g(y,β) ≤ f} forms the epigraph of a proper convex function
defined on X∗ called the Fenchel conjugate f∗ of f . Formally

f∗(y) = supx∈X < y, x > − f(x) (y ∈ X∗).

As an example, if A is a nonempty closed convex subset of X, then

ι∗(·, A)(y) = supx∈A < y, x >

. The conjugate of ι(·, A) is called the support functional for the set A.
Not only is f∗ lower semicontinuous - it is weak∗ lower semicontinuous, i.e., epi f∗ is

closed in X∗ ×R where X∗ is equipped with the weak∗ topology. Another important point
is that for f ∈ Γ(X) we have (f∗)∗ = f , where we are restricting the second conjugate from
X∗∗ to the natural embedding of X within [45, p. 46]. Two easily verified formulae that we
shall use in the sequel are

(1) (f ¤ g)∗ = f∗ + g∗ f, g in Γ(X),

and

(2) (µ|| · ||X)∗ = ι(·, µUX∗) (α > 0).

The operations ¤ and + cannot be interchanged in formula (1) without additional assump-
tions.

The celebrated result of Wijsman [70] in finite dimensions that arguably launched the
modern theory of topologies on convex functions goes as follows: if f, f1, f2, . . . is a sequence
in Γ(Rn) then 〈epi fn〉 is Wijsman convergent to epi f if and only if 〈epi f∗n〉 is Wijsman
convergent to epi f∗. Now by Theorem 3.5, Attouch-Wets convergence in finite dimensions
reduces to Wijsman convergence, and so the next result extends Wijsman’s theorem to
infinite dimensions in a totally satisfactory way.

Theorem 4.4. Let X be a normed linear space and let f, f1, f2, f3, . . . be a sequence in
Γ(X). The following conditions are equivalent:

(a) epi f = AW − lim epi fn;

(b) epi f∗ = AW − lim epi f∗n.
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The initial proof given in [12] is not as transparent as possible, and subsequently there
have been additional proofs including those that provide useful quantitative estimates (see,
e.g., [8, 34, 56]).

As one consequence of bicontinuity of the Fenchel transform, we see that Attouch-Wets
convergence of a sequence of closed convex sets is further equivalent to convergence in
the epi-distance topology of the associated sequence of support functionals. Further, if
A = AW− lim An, applying Theorem 4.4 and then Theorem 4.1 to support functionals with
α = 1, we have

{y ∈ X∗ : ∀a ∈ A < y, a >≤ 1} = AW− lim{y ∈ X∗ : ∀a ∈ An < y, a >≤ 1}.
This means that we have continuity of polarity with respect to the Attouch-Wets topology,
and for closed convex sets that contain θ, bicontinuity of polarity. That this is true for
convex cones, as discovered by Walkup and Wets [69] over forty years ago, was the point of
departure for the study of the Attouch-Wets topology in the first place.

We now give a proof of a result of the author [16] linking convergence in the epi-distance
topology to uniform convergence of Lipschitz regularizations on bounded sets that combines
much of the above machinery. We note that for f ∈ Γ(X) and µ > 0, f¤µ|| · ||X is proper
provided for some β > 0, epif does not hit the inverted cone {(x, α) : α ≤ −µ||x||X − β},
which in turn occurs if µ exceeds the distance from dom(f∗) to the origin of X∗. When the
the epi-sum is proper, it is the largest µ-Lipschitz continuous function that f majorizes [14,
pp. 251-252].

Theorem 4.5. Let X be a normed linear space and let f, f1, f2, f3, . . . be a sequence in Γ(X).
For each µ > 0 let fµ be the epi-sum of f with µ|| · ||X and let fn,µ be the corresponding
epi-sum with fn. Then the following conditions are equivalent:

(1) epi f = AW − lim epi fn;

(2) ∀µ > d(θ∗, epi f∗), 〈fn,µ〉 converges uniformly on bounded sets to fµ.

Proof. Suppose 〈fn〉 converges to f in the epi-distance topology. Now fix µ > d(θ∗, epi f∗).
We have dom(f∗) ∩ int dom(ι(·, µUX∗)) 6= ∅. Thus by the continuity of the Fenchel
transform and the remark following Theorem 4.3, we get convergence of 〈f∗n + ι(·, µUX∗)〉
to f∗ + ι(·, µUX∗). Applying bicontinuity of the Fenchel transform and the fact that the
conjugate of an epi-sum is the sum of the conjugates, we get epifµ = AW − lim epi fn,µ,
which in turn gives uniform convergence on bounded sets by Theorem 4.2, as Lipschitz
functions are bounded on bounded sets.

For the converse, fix µ > d(θ∗, epi f∗). The convergence of 〈fn,µ〉 to fµ uniformly
on bounded sets forces convergence in the epi-distance topology, and so convergence of
〈f∗n + ι(·, µUX∗)〉 to f∗ + ι(·, µUX∗). Since this is true for all large µ and since adding the
indicator function of a set to a member of Γ(X) simply restricts its effective domain to that
set, this gives epi f∗ = AW− lim epi f∗n. Once again applying Theorem 4.4, the implication
(2) ⇒ (1) follows.

Notice that when f = ι(·, A) and fn = ι(·, An) for nonempty closed convex sets A,A1,
A2, . . ., Theorem 4.5 reduces to Theorem 3.2. We also mention that a similar result holds
for Moreau-Yosida regularizations. In fact, one can work without convexity of the functions
for these and related smoothing kernels provided an appropriate minorization requirement
is in place, as shown by Attouch and Wets [5, Theorem 3.4].

Michel Théra had a hand in the last result of this section, as well as an anticipatory
result in a restricted setting [4]. First a definition.
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Definition 4.6. Let f ∈ Γ(X). We call y ∈ X∗ a subgradient of f at x ∈ X if for each
w ∈ X we have f(w) ≥ f(x) + < y, w − x > .

To say that y is a subgradient of f at x means that the hyperplane in X ×R that is the
graph of w 7→ f(x) + < y,w − x > supports the epigraph at (x, f(x)). Let us write ∂f(x)
for the set of subgradients of f at x. While x ∈ dom(f) does not guarantee that ∂f(x) is
nonempty, it can be shown that in a Banach space X the set {x ∈ dom(f) : ∂f(x) 6= ∅} is
dense in dom(f) (see, e.g., [59, p. 51]).

Next, for f ∈ Γ(X) put

4(f) := {(x, f(x), y) : x ∈ dom(f) and y ∈ ∂f(x)}.

Note that 4(f) ⊆ X × R ×X∗. We now characterize Attouch-Wets convergence in terms
of 4 [29].

Theorem 4.7. Let X be a Banach space and let f, f1, f2, f3, . . . be a sequence in Γ(X).
Then epi f = AW − lim epi fn if and only if for each bounded subset B of X ×R×X∗ and
each ε > 0, we have eventually

∆(f) ∩B ⊆ ∆(fn)ε.

Notice that Theorem 4.7 only asserts that Attouch-Wets convergence of epigraphs guar-
antees one-half of Attouch-Wets convergence of 4(fn) to 4(f). Indeed, convergence in the
other half may fail [29, p. 857]. The result is stated in a Banach space because the proof in
[29] required the comprehensive Borwein Variational Principle [59, p. 55]. It is possible to
state a result in a general normed linear space, but this requires working with approximate
subgradients, as executed by the Veronas [66].

We close this section by noting that there is another important topology on convex sets
and functions that reduces to the Wijsman topology in finite dimensions. This is the cele-
brated Joly topology [48], now frequently called the slice topology [13, 15, 16, 14, 18, 30, 42,
50, 64], which is compatible with Mosco convergence [55] in reflexive spaces but which is
stronger in general. While Joly defined his topology in terms of lower semicontinuity of the
epigraphical multifunctions f ⇒ epi f and f ⇒ epi f∗, it can be defined much more con-
cretely for closed convex subsets of a normed linear space X, later specializing to epigraphs.
For nonempty closed convex sets, it is the weak topology determined by all gap functionals
with fixed left argument running over the closed bounded convex subsets. Equivalently, it is
the supremum of the Wijsman topologies determined by equivalent renorms of the space X
[15]. Theorem 4.5 is valid if when we replace the epi-distance topology by the slice topology,
we also replace uniform convergence of regularizations on bounded sets by pointwise conver-
gence of regularizations of both the functions and their conjugates [16]. Theorem 4.7 may
of course be viewed as a variant of Attouch’s Theorem [2, 33] for slice convergence, origi-
nally proved by him for Mosco convergence in reflexive spaces [1]. As to what epigraphical
slice convergence of a net in Γ(X) means in terms of convergence of the associated net of
conjugate functions, the reader may consult [13, 14].
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[58] J.-P. Penot and C. Zălinescu, Bounded (Hausdorff) convergence : basic facts and appli-
cations, in Variational Analysis and Applications, F. Giannessi and A. Maugeri (eds.),
Kluwer Acad. Publ. Dordrecht, 2005.



THE ATTOUCH-WETS TOPOLOGY IN METRIC AND NORMED SPACES 409

[59] R. Phelps, Convex Functions, Monotone Operators and Differentiability, Lecture Notes
in Mathematics No. 1364, Springer, Berlin, 1989.

[60] P. Piccione and R. Sampalmieri, Attouch-Wets convergence and Kuratowski conver-
gence on compact sets, Comment. Math. Univ. Carolinae 36 (1995) 551–562.

[61] J. Rainwater, Spaces whose finest uniformity is metric, Pacific J. Math 9 (1959) 567–
570.

[62] R.T. Rockafellar and R. Wets, Variational Analysis (2nd Edition), Springer Verlag,
New York, 2004.

[63] K. Sakai and M. Yaguchi, Hyperspaces of Banach spaces with the Attouch-Wets topol-
ogy, Set-Valued Anal. 12 (2004) 329–344.
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