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Abstract: Dykstra’s algorithm employs the projectors onto two closed convex sets in a Hilbert space to
construct iteratively the projector onto their intersection. In this paper, we use a duality argument to devise
an extension of this algorithm for constructing the resolvent of the sum of two maximal monotone operators
from the individual resolvents. This result is sharpened to obtain the construction of the proximity operator
of the sum of two proper lower semicontinuous convex functions.
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1 Introduction

Throughout this paper H is a real Hilbert space with scalar product 〈· | ·〉 and norm ‖ · ‖.
The projector onto a nonempty closed convex set U ⊂ H is denoted by PU , and → denotes
strong convergence.

A standard problem in applied mathematics is to find the projection of a point z ∈ H
onto the intersection of two nonempty closed convex subsets U and V of H. In the case
when U and V are vector subspaces, an algorithmic solution to this problem was found in
1933 by von Neumann in the form of the classical alternating projection method (see [12]
for historical background and applications in various disciplines).

Theorem 1.1 (von Neumann’s algorithm). [23] Let z ∈ H, let U and V be closed vector
subspaces of H, and set

x0 = z and (∀n ∈ N) yn = PV xn and xn+1 = PUyn. (1.1)

Then xn → PU∩V z and yn → PU∩V z.

Unfortunately, this result fails in two respects when U and V are general intersecting
closed convex sets: first, while weak convergence of the sequences (xn)n∈N and (yn)n∈N in
(1.1) holds [8], strong convergence can fail [16]; second, as simple examples show [9], the
limit point need not be the projection of z onto U ∩ V . In the case when U and V are
closed convex cones in a Euclidean space, a modification of the iteration (1.1), proposed
by Dykstra in [14] in the form of (1.2) below, provides convergence to PU∩V z. This result
was then extended to closed convex sets as follows (for further analysis on this theorem, see
[5, 13, 15, 22]).
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Theorem 1.2 (Dykstra’s algorithm). [7] Let z ∈ H, let U and V be closed convex subsets
of H such that U ∩ V 6= ∅, and set




x0 = z

p0 = 0
q0 = 0

and (∀n ∈ N)

{
yn = PV (xn + pn)
pn+1 = xn + pn − yn

and

{
xn+1 = PU (yn + qn)
qn+1 = yn + qn − xn+1.

(1.2)
Then xn → PU∩V z and yn → PU∩V z.

The objective of this paper is to propose a generalization of Theorem 1.2 for finding the
resolvent of the sum of two maximal monotone operators. This generalization is proposed
in Section 2. In the case of subdifferentials, our results are sharpened in Section 3, where
we provide an algorithm for finding the proximity operator of the sum of two proper lower
semicontinuous convex functions. This analysis captures in particular Theorem 1.2.

2 The Resolvent of the Sum of Two Monotone Operators

We first recall some basic notation and definitions.

Notation 2.1. Let A : H → 2H be a set-valued operator. Then domA =
{
x ∈ H | Ax 6= ∅}

is the domain of A, ranA =
{
u ∈ H | (∃x ∈ H) u ∈ Ax

}
is its range, zer A =

{
x ∈ H |

0 ∈ Ax
}

is its set of zeros, and gra A =
{
(x, u) ∈ H ×H | u ∈ Ax

}
is its graph. The inverse

of A is the operator A−1 : H → 2H with graph
{
(u, x) ∈ H ×H | u ∈ Ax

}
and the resolvent

of A is JA = (Id +A)−1. We set

A∼ : H → 2H : x 7→ −A−1(−x). (2.1)

Now, suppose that A is monotone, i.e., for every (x, u) and (y, v) in graA,

〈x− y | u− v〉 ≥ 0. (2.2)

Then JA : ran(Id +A) → H is single-valued. Moreover, A is declared maximal monotone
when the following property is satisfied for every (x, u) ∈ H × H: if (2.2) holds for every
(y, v) ∈ graA, then (x, u) ∈ graA. Minty’s theorem states that A is maximal monotone if
and only if ran(Id +A) = H. In this case, we have

JA−1 = Id−JA and (JA−1)∼ = Id +A∼. (2.3)

Finally, the strong relative interior of a convex subset C of H is

sri C =
{

x ∈ C

∣∣∣∣
⋃

λ>0

λ(C − x) = span(C − x)
}

. (2.4)

For background on monotone operators, see [4] and [21].

Let C and D be maximal monotone operators from H to 2H. As discussed in [3], pairing
the inclusion 0 ∈ Cx + Dx with the dual inclusion 0 ∈ C−1u + D∼u brings useful insights
into the analysis of various problems in nonlinear analysis. This approach relies on the
simple equivalence

zer(C + D) 6= ∅ ⇔ zer(C−1 + D∼) 6= ∅. (2.5)

In [6], this duality framework proved particularly useful in the investigation of the asymptotic
behavior of the composition of two resolvents. Some of these results will be instrumental in
the present paper.
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Proposition 2.2. Let C and D be maximal monotone operators from H to 2H. Then
zer(C + Id−JD) 6= ∅ if and only if JC−1+D∼ 0 exists, in which case zer(C−1 + Id +D∼) ={
JC−1+D∼ 0

}
.

Proof. By definition, JC−1+D∼ 0 is the unique solution to the inclusion 0 ∈ (Id+C−1+D∼)u,
i.e., the unique point in zer(C−1+Id +D∼). On the other hand, we derive from (2.5) applied
to the maximal monotone operators C and JD−1 , and from (2.3) that

zer(C + Id−JD) 6= ∅ ⇔ zer(C−1 + (JD−1)∼) 6= ∅ ⇔ zer(C−1 + Id+D∼) 6= ∅.
(2.6)

The proof is now complete.

Theorem 2.3. Let C and D be maximal monotone operators from H to 2H, and set

u0 ∈ H and (∀n ∈ N) vn = JDun and un+1 = JCvn. (2.7)

Then the following hold.

(i) Suppose that zer(C + Id−JD) 6= ∅. Then vn − un → JC−1+D∼ 0 and vn − un+1 →
JC−1+D∼ 0.

(ii) Suppose that zer(C + Id−JD) = ∅. Then ‖un‖ → +∞ and ‖vn‖ → +∞.

Proof. (i): [6, Theorem 3.3]. (ii): [6, Theorem 3.5].

The main result of this section is the following theorem on the asymptotic behavior
of the extension of (1.2) from projectors onto closed convex sets to resolvents of maximal
monotone operators.

Theorem 2.4. Let z ∈ H, let A and B be maximal monotone operators from H to 2H, and
set




x0 = z

p0 = 0
q0 = 0

and (∀n ∈ N)

{
yn = JB(xn + pn)
pn+1 = xn + pn − yn

and

{
xn+1 = JA(yn + qn)
qn+1 = yn + qn − xn+1.

(2.8)
Then the following hold.

(i) Suppose that z ∈ ran(Id+A + B). Then xn → JA+B z and yn → JA+B z.

(ii) Suppose that z /∈ ran(Id+A + B). Then ‖pn‖ → +∞ and ‖qn‖ → +∞.

Proof. It follows from (2.8) that

(∀n ∈ N) pn+1 + qn + yn = xn + pn − yn + qn + yn = xn + pn + qn. (2.9)

On the other hand, (∀n ∈ N) pn + qn = z − xn. Indeed, in view of (2.8), this identity is
certainly true for n = 0 and, if pn + qn = z − xn for some n ∈ N, then pn+1 + qn+1 =
xn + pn − yn + yn + qn − xn+1 = z − xn+1. Altogether, we have

(∀n ∈ N) z = pn+1 + qn + yn = pn + qn + xn (2.10)
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and we can therefore rewrite (2.8) as




x0 = z

p0 = 0
q0 = 0

and (∀n ∈ N)

{
yn = JB(z − qn)
pn+1 = z − qn − yn

and

{
xn+1 = JA(z − pn+1)
qn+1 = z − pn+1 − xn+1.

(2.11)
Now set

u0 = −z and (∀n ∈ N) un = qn − z and vn = −pn+1. (2.12)

We infer from (2.12) and (2.10) that

(∀n ∈ N) vn − un = −pn+1 − qn + z = yn and vn − un+1 = −pn+1 − qn+1 + z = xn+1.
(2.13)

Furthermore, it follows from (2.12) and (2.11) that the sequences (un)n∈N and (vn)n∈N are
coupled via the equations

(∀n ∈ N) vn = −pn+1 = qn − z + yn = un + JB(−un)
and un+1 = qn+1 − z = −pn+1 − xn+1 = vn − JA(vn + z). (2.14)

Now define two maximal monotone operators by

C : H → 2H : v 7→ A−1(v + z) and D = B∼. (2.15)

It is easily seen that
C−1 = −z + A and D∼ = B. (2.16)

Moreover, (2.3) yields

(∀u ∈ H)(∀v ∈ H) u = v − JA(v + z) ⇔ u + z = v + z − JA(v + z) = JA−1(v + z)
⇔ v − u ∈ A−1(u + z) = Cu

⇔ u = JCv (2.17)

and
(∀u ∈ H) u + JB(−u) = −(−u− JB(−u)) = −JB−1(−u) = JDu. (2.18)

Thus, we can rewrite (2.14) as

(∀n ∈ N) vn = JDun and un+1 = JCvn, (2.19)

which is precisely the iteration described in (2.7) with initial point u0 = −z. On the other
hand, it follows from (2.16) that, for every x ∈ H,

x = JA+B z ⇔ 0 ∈ x + (−z + Ax + Bx) ⇔ x = J(−z+A)+B 0 = JC−1+D∼ 0. (2.20)

Hence,

z ∈ ran(Id+A + B) ⇔ z ∈ dom(Id+A + B)−1

⇔ JA+B z exists
⇔ JC−1+D∼ 0 exists. (2.21)

Therefore, we deduce from Proposition 2.2 and Theorem 2.3 the following.
(i): If z ∈ ran(Id+A + B), then (2.13) yields yn = vn − un → JC−1+D∼ 0 = JA+B z and

xn+1 = vn − un+1 → JC−1+D∼ 0 = JA+B z.
(ii): If z /∈ ran(Id+A + B), then (2.12) yields ‖pn+1‖ = ‖vn‖ → +∞ and ‖qn‖ =

‖un + z‖ ≥ ‖un‖ − ‖z‖ → +∞.
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Remark 2.5. Suppose that in Theorem 2.4 we make the additional assumption that A+B
is maximal monotone, as is true when 0 ∈ sri(domA − dom B); see [2, Corollaire 1] or
[21, Theorem 23.2]. Then item (ii) never occurs in Theorem 2.4 and therefore (∀z ∈ H)
xn → JA+B z and yn → JA+B z.

3 The Proximity Operator of the Sum of Two Convex Functions

In this section, we turn our attention to the intermediate situation between (1.2) and (2.11)
in which proximity operators are used.

Notation 3.1. A function f : H → ]−∞,+∞] is proper if dom f =
{
x ∈ H | f(x) < +∞} 6=

∅. The class of proper lower semicontinuous convex functions from H to ]−∞,+∞] is de-
noted by Γ0(H). Now let f ∈ Γ0(H). The conjugate of f is the function f∗ ∈ Γ0(H) defined
by f∗ : u 7→ supx∈H 〈x | u〉−f(x), the subdifferential of f is the maximal monotone operator

∂f : H → 2H : x 7→ {
u ∈ H | (∀y ∈ H) 〈y − x | u〉+ f(x) ≤ f(y)

}
, (3.1)

the set of minimizers of f is argmin f = zer ∂f , the Moreau envelope of f is the continuous
convex function

env f : H → R : x 7→ inf
y∈H

f(y) +
1
2
‖x− y‖2, (3.2)

and the reflection of f is the function f∨ : x 7→ f(−x). For every x ∈ H, the function
y 7→ f(y)+‖x−y‖2/2 admits a unique minimizer, which is denoted by proxf x. Alternatively,
proxf = J∂f . See [19, 24] for background on convex analysis, and [11, 18, 20] for background
on proximity operators.

We require an additional result from [6], which sharpens Theorem 2.3.

Theorem 3.2. Let ϕ and ψ be functions in Γ0(H) such that

inf (ϕ + env ψ)(H) > −∞, (3.3)

and set
u0 ∈ H and (∀n ∈ N) vn = proxψ un and un+1 = proxϕ vn. (3.4)

Then the following hold.

(i) The function ϕ∗+ψ∗∨+‖·‖2/2 admits a unique minimizer w. Moreover, vn−un → w
and vn − un+1 → w.

(ii) Suppose that argminϕ + env ψ = ∅. Then ‖un‖ → +∞ and ‖vn‖ → +∞.

Proof. [6, Theorem 4.6].

Theorem 3.3. Let z ∈ H, let f and g be functions in Γ0(H) such that

dom f ∩ dom g 6= ∅, (3.5)

and set




x0 = z

p0 = 0
q0 = 0

and (∀n ∈ N)

{
yn = proxg(xn + pn)
pn+1 = xn + pn − yn

and

{
xn+1 = proxf (yn + qn)
qn+1 = yn + qn − xn+1.

(3.6)
Then the following hold.
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(i) xn → proxf+g z and yn → proxf+g z.

(ii) Suppose that argmin f∗(·+ z) + env g∗∨ = ∅. Then ‖pn‖ → +∞ and ‖qn‖ → +∞.

Proof. Set A = ∂f and B = ∂g. Then JA = proxf , JB = proxg, and (3.6) is therefore a
special case of (2.8). Let us set, as in (2.12),

u0 = −z and (∀n ∈ N) un = qn − z and vn = −pn+1. (3.7)

Then we obtain, as in (2.13),

(∀n ∈ N) vn − un = yn and vn − un+1 = xn+1 (3.8)

and, as in (2.14),

(∀n ∈ N) vn = un + proxg(−un) and un+1 = vn − proxf (vn + z). (3.9)

Now define two functions in Γ0(H) by

ϕ : H → ]−∞,+∞] : v 7→ f∗(v + z)− 1
2
‖z‖2 and ψ = g∗∨. (3.10)

Then
ϕ∗ = f − 〈· | z〉+

1
2
‖z‖2, ψ∗ = g∨, and (env ψ)∗ = g∨ +

1
2
‖ · ‖2. (3.11)

Therefore

(∀x ∈ H) ϕ∗(x) + ψ∗∨(x) +
1
2
‖x‖2 = f(x)− 〈x | z〉+

1
2
‖z‖2 + g(x) +

1
2
‖x‖2

= (f + g)(x) +
1
2
‖z − x‖2. (3.12)

Moreover, if we set C = ∂ϕ and D = ∂ψ, it results from (3.10) that

(∀v ∈ H) Cv = ∂f∗(v + z) = A−1(v + z) and Dv = −∂g∗(−v) = B∼v. (3.13)

Hence, (2.17) and (2.18) yield

(∀v ∈ H) proxϕ v = v − proxf (v + z) and proxψ v = v + proxg(−v), (3.14)

which shows that (3.9) reduces to the iterative scheme (3.4) initialized with u0 = −z. On
the other hand, (3.10) yields

ϕ + env ψ = f∗(·+ z)− 1
2
‖z‖2 + env g∗∨. (3.15)

It therefore follows from (3.11) and Fenchel duality that

(3.5) ⇔ f + g ∈ Γ0(H)
⇒ proxf+g z exists

⇔ argmin f + g +
1
2
‖z − ·‖2 6= ∅

⇔ argmin f − 〈· | z〉+
1
2
‖z‖2 + g +

1
2
‖ · ‖2 6= ∅

⇔ argminϕ∗ + (env ψ)∗∨ 6= ∅
⇔ inf

(
ϕ + env ψ

)
(H) > −∞

⇔ (3.3). (3.16)
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We are now in a position to draw the following conclusions.
(i): It view of (3.12), the minimizer of ϕ∗+ψ∗∨+‖·‖2/2 is w = proxf+g z. Consequently,

Theorem 3.2(i) and (3.8) yield yn = vn−un → proxf+g z and xn+1 = vn−un+1 → proxf+g z.
(ii): It follows from (3.15) that argmin f∗(·+ z)+ env g∗∨ = ∅ ⇒ argminϕ+env ψ = ∅.

In turn, it results from Theorem 3.2(ii) and (3.7) that ‖pn+1‖ = ‖vn‖ → +∞ and ‖qn‖ =
‖un + z‖ ≥ ‖un‖ − ‖z‖ → +∞.

Remark 3.4. Theorem 3.3 is sharper than Theorem 2.4 applied to A = ∂f and B = ∂g.
Indeed, since ∂f + ∂g ⊂ ∂(f + g), we have, for every p ∈ H,

p = J∂f+∂gz ⇔ z − p ∈ ∂f(p) + ∂g(p) ⇒ z − p ∈ ∂(f + g)(p) ⇔ p = proxf+g z. (3.17)

As a result, via Theorem 2.4(i), we obtain

xn → proxf+g z and yn → proxf+g z (3.18)

provided that
z ∈ ran(Id+∂f + ∂g). (3.19)

A standard sufficient condition for this inclusion to hold for every z ∈ H is

0 ∈ sri(dom f − dom g), (3.20)

see [1] or [24, Theorem 2.8.7]. On the other hand, in Theorem 3.3(i), we obtain (3.18) for
every z ∈ H with merely (3.5), i.e.,

0 ∈ (dom f − dom g). (3.21)

Since (3.21) is less restrictive than (3.19), it is clear that Theorem 3.3 is sharper than
Theorem 2.4 in the present subdifferential operator setting.

Let us note that, under condition (3.20), an alternative method for computing p =
proxf+g z for an arbitrary z ∈ H is the Douglas-Rachford algorithm for computing a zero of
the sum of two maximal monotone operators [10, 17]. Indeed, it follows from (3.20) that p
is characterized by the inclusion 0 ∈ ∂(f + g)(p) = ∂f(p) + ∂g(p) + p− z = Cp + Dp, where
C = −z + ∂f and D = Id +∂g are maximal monotone.

Remark 3.5. Let f and g be the indicator functions of closed convex subsets U and V of
H, respectively. Then Theorem 3.3(i) reduces to Theorem 1.2. If we further assume that
U and V are closed vector subspaces, then we obtain Theorem 1.1 since in this case (1.2)
yields (∀n ∈ N) yn = PV (xn + pn) = PV xn + PV pn = PV xn and xn+1 = PU (yn + qn) =
PUyn + PUqn = PUyn.
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