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1 Introduction

Prompted by the needs of mathematical economics, some mathematicians have scrutinized
several notions of generalized convexity or concavity. While some of them, such as quasi-
convexity and pseudoconvexity are rather general, some others are rather peculiar. This
is the case for functions which are both pseudoconvex and pseudoconcave. Initially, these
functions have been called pseudomonotone (Martos [45]); nowadays these functions are
usually called pseudolinear, but we prefer to call them pseudoaffine since a function which
is both convex and concave is affine; moreover, this class includes affine functions which are
not linear. Albeit especial, this class of functions contains interesting, non trivial examples
and enjoys striking properties, as shown in [1], [2], [5], [7], [8], [13], [16], [18], [27], [31], [33],
[36], [51], [54], [59], [61] among others. In all the references dealing with this subject, pseu-
doaffine functions are defined through the use of a directional derivative function or a Dini
derivative. We also follow this line, taking a general bifunction h as a substitute for such a
derivative. The use of subdifferentials for dealing with this class will be made elsewhere.

It is our purpose here to study related classes of functions, to give characterizations and
to detect some relationships. In particular, we introduce and study properties which are
related to some quasiconvexity, pseudoconvexity and invexity properties. We also present
extensions to vector-valued maps and we study some composition properties (section 4).

Some relations between solutions of variational inequalities and optimization problems
were discussed in the papers quoted above. We also tackle this question in section 5; in
particular, we study necessary and sufficient optimality conditions in the form of a Karush-
Kuhn-Tucker condition when the data belong to the class of functions under study. We
provide examples allowing a comparison with previous results in [38], [41], [43] and [44].

∗The research of the first author was supported by a “Bourses d’ excellence Eiffel Doctorat”. She thanks
all Maths faculty members in University of Pau for their hospitality and support.
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2 Pseudoconvex, Quasiconvex and Protoconvex Functions

In the sequel, X, Y are normed vector spaces (n.v.s.), C is a nonempty subset of X and
f : C → R; it is convenient to extend f by +∞ outside C. We set R∞ := R ∪ {+∞}, R :=
R ∪ {−∞,+∞} and P :=]0,+∞[. For w, x ∈ X, we set [w, x] := {(1− t)w + tx : t ∈ [0, 1]},
[w, x[:= [w, x]\{x} and ]w, x[:= [w, x[\{w}. We define the visibility cone V (C, x) of C at
x ∈ C as the cone generated by C − x:

V (C, x) := P(C − x) := {r(c− x) : r ∈ P, c ∈ C}.
The visibility bundle of C is the set

V C := {(x, u) ∈ C ×X : ∃r ∈ P, w ∈ C, u = r(w − x)} =
⋃

x∈C

{x} × V (C, x).

It contains the radial tangent bundle of C which is the set

T rC := {(x, u) ∈ C ×X : ∃ (rn) → 0+, x + rnu ∈ C ∀n} =
⋃

x∈C

{x} × T r(C, x).

We also use the tangent bundle of C which is the set

TC := {(x, u) ∈ C ×X : ∃(rn) → 0+, (un) → u, x + rnun ∈ C ∀n} =
⋃

x∈C

{x} × T (C, x).

Here T r(C, x) := {u ∈ X : ∃ (rn) → 0+, x + rnu ∈ C ∀n} is the radial tangent cone to C at
x ∈ C and T (C, x) := {u ∈ X : ∃ (rn) → 0+, (un) → u, x + rnun ∈ C ∀n} is the tangent
cone to C at x. One has the obvious inclusions T r(C, x) ⊂ T (C, x), T r(C, x) ⊂ V (C, x).
When C is starshaped at x ∈ C, in the sense that [x,w] ⊂ C for every w ∈ C, one has
V (C, x) = T r(C, x). When C is a convex subset of X, as it will be frequently the case in
the sequel, T (C, x) is the closure of V (C, x) = T r(C, x).

A bifunction h : V C → R will stand for a generalized derivative of f . All the usual
generalized directional derivatives have the common feature that they are positively homo-
geneous functions of the direction u. Thus, we assume that for all x ∈ C, h(x, ·) is positively
homogeneous and h(x, 0) = 0. There are several possible choices for h. Among them are the
Dini derivatives of f . The upper and the lower radial derivatives (or upper and lower Dini
derivatives) of f at x ∈ C, in the direction u ∈ T r(C, x), are defined by

D+f(x, u) = lim sup
t→0+, x+tu∈C

1
t
[f(x + tu)− f(x)];

D+f(x, u) = lim inf
t→0+, x+tu∈C

1
t
[f(x + tu)− f(x)].

If for some (x, u) ∈ T rC the relation D+f(x, u) = D+f(x, u) holds, then the radial derivative
of f at x in the direction u is the common value of the preceding limits:

Df(x, u) = D+f(x, u) = D+f(x, u).

This derivative is often called the directional derivative of f at x in the direction u, but we
prefer to keep this term for the limit

f ′(x, u) = lim
(t,v)→(0+,u)

x+tv∈C

1
t
[f(x + tv)− f(x)] (x, u) ∈ TC,
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when it exists. Of course, when this directional derivative (also called the Hadamard deriva-
tive) exists for some (x, u) ∈ T rC, the radial derivative exists and has the same value. Note
that the limit in the definition of f ′(x, u) is +∞ if u does not belong to the tangent cone
T (C, x) to C at x which is the set of limits of sequences of the form (t−1

n (xn − x)) where
(tn) → 0+ and xn ∈ C for every n ∈ N. Similarly, D+f(x, u) is +∞ if u does not belong to
the T r(C, x).

Other generalized derivatives can be used. For instance, one can use the lower directional
derivative (or contingent derivative or lower Hadamard derivative) df given by

df(x, u) := lim inf
(t,v)→(0+,u)

x+tv∈C

1
t
[f(x + tv)− f(x)]

and its upper version, or some epiderivative. One can also use the Clarke-Rockafellar deriva-
tive f � of f ([10], [55]) or the moderate derivative f♦ of Michel-Penot ([46]).

Slightly modifying a notion introduced in [57], we say that a mapping s : X → R is
subodd on C ⊂ X if the following condition is satisfied

(S) w, x ∈ C =⇒ s(w − x) ≥ −s(x− w).

Clearly, if s is finitely valued and positively homogenous, s satisfies (S) if s is sublinear. We
say that s : C − C → R reverses signs on C ⊂ X if the following condition is satisfied

(R) w, x, y ∈ C, x ∈]w, y[=⇒ s(w − x)s(y − x) ≤ 0.

Conditions (R) and (S) are independent, as the following simple examples show.
Example 1. Let s1 : R→ R be given by s1(u) = |u|; then s1 is subodd, but s1(u)s1(−u) > 0
for all u ∈ R\{0}.
Example 2. Let s2 : R → R be given by s2(u) = 0 if u ≥ 0 and s2(u) = u if u < 0; then
s2(u)s2(−u) ≤ 0 for all u ∈ R but s2(1) � −s2(−1).

Both conditions (R) and (S) imply the following condition:

(T ) w, x, y ∈ C, x ∈]w, y[, s(w − x) < 0 =⇒ s(y − x) ≥ 0.

Note that s satisfies condition (R) if, and only if s and −s satisfy condition (T). On the
other hand, s and −s satisfy condition (S) if, and only if, s is odd on C − C.

A function f : C → R is said to be is quasiconvex at x ∈ C if for all w ∈ C and
xt := tx + (1− t)w ∈ C for t ∈ [0, 1] then f(xt) ≤ max{f(x), f(w)}.

Let us recall the following definitions (see [24], [30], [32], [36] and [57]).

Definition 2.1. Given a bifunction h : V C → R, a function f : C → R is said to be
(a) h-pseudoconvex at x ∈ C, if

w ∈ C, h(x,w − x) ≥ 0 ⇒ f(w) ≥ f(x).

(b) h-quasiconvex at x ∈ C, if

w ∈ C, h(x,w − x) > 0 ⇒ f(w) ≥ f(x).

(c) h-protoconvex at x ∈ C, if

w ∈ C, h(x,w − x) > 0 ⇒ f(w) > f(x).

(d) h-pseudoconcave at x ∈ C, if −f is −h-pseudoconvex at x ∈ C.
(e) h-quasiconcave at x ∈ C, if −f is −h-quasiconvex at x ∈ C.
(f) h-protoconcave at x ∈ C, if −f is −h-protoconvex at x ∈ C.



356 N.T. HONG LINH AND J.-P. PENOT

We say that f is h-pseudoconvex on C or, in short, h-pseudoconvex (resp. h-quasiconvex,
h-protoconvex, h-pseudoconcave, h-quasiconcave, h-protoconcave) if f is h-pseudoconvex
(resp. h-quasiconvex, h-protoconvex, h-pseudoconcave, h-quasiconcave, h-protoconcave) at
every x ∈ C.

Clearly, f is h-pseudoconcave (resp. h-quasiconcave, h-protoconcave) if, and only if, for
any w, x ∈ C,

f(x) < f(w) ⇒ h(x,w − x) > 0
(resp. f(x) < f(w) ⇒ h(x,w − x) ≥ 0,

(resp. f(x) ≤ f(w) ⇒ h(x,w − x) ≥ 0.)

Also,

f is h-pseudoconvex ⇒ f is h-quasiconvex,
f is h-protoconvex ⇒ f is h-quasiconvex.

Let us observe that h-pseudoconvexity at x and h-protoconvexity at x are independent
properties. Both properties are consequences of the following condition:

w ∈ C\{x}, f(w) ≤ f(x) ⇒ h(x,w − x) < 0.

This rather stringent condition will not be considered here.
These definitions are closely related. Let us note that here the terminology slightly differs

from the one in [30], [37] and [57]. Such a change will allow a better concordance with the
classical terminology for the case a subdifferential is used (see [2], [23], [39], [52]). Here, we
do not need any assumption on the bifunction h, but in some cases, we will require some
comparisons with lower and upper Dini derivatives.

Proposition 2.2. If f has no local minimizer on f−1(f(x)) and if h(x, ·) is lower semicon-
tinuous (l.s.c.) then h-quasiconvexity at x coincides with h-protoconvexity at x.

Proof. Let w ∈ C be such that f(w) = f(x). Since f has no local minimizer on f−1(f(x)),
there exists (wn) → w such that f(wn) < f(w) = f(x). Since f is h-quasiconvex at x, one
has h(x,wn − x) ≤ 0 hence, h(x,w − x) ≤ 0 by lower semicontinuity of h(x, ·). Thus, f is
h-protoconvex at x.

Links with usual quasiconvexity are given in the next proposition. It shows that, under
mild assumptions, quasiconvexity, h-quasiconvexity and h-protoconvexity coincide. We will
use the following complement to the Three Points Lemma of [33]; as there, we say that f
satisfies the nonconstancy property, in short, the NC-property, if there is no line segment
[a, b] in C on which f is constant.

Lemma 2.3. (Three Points Lemma) Let C be convex. Let f : C → R be either radially
continuous or radially lower semicontinuous and satisfy the NC-property. Let w, z ∈ C with
w 6= z and let y = z + t(w − z), with t ∈]0, 1[ be such that f(y) > f(w) ≥ f(z). Then there
exist some x, x′ ∈ [w, z] such that f(x′) < f(x) and D+f(x, x′ − x) > 0.

Proof. If f is radially l.s.c. and satisfies the NC-property, the result is given in [33, Lemma
10.1]. If f is radially continuous, by the intermediate value theorem, there exists some
p ∈]0, t[ such that f(w) < f(u) < f(y) for u := z + p(w− z). Taking p close enough to t, we
may assume that f(w) < f(v) for all v ∈ [u, y].
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Let s := sup{r ∈ [p, t] : f(z + r(w − z)) ≤ f(u)} and let v := z + s(w − z). Since f is
radially l.s.c., one has f(v) ≤ f(u) < f(y). By the mean value theorem [15], there exists
some x ∈ [v, y[ such that D+f(x, y − v) ≥ f(y) − f(v) > 0. Then D+f(x,w − x) > 0 and
f(w) < f(x) since f(z + t′(w − z)) > f(w) for all t′ ∈ [p, t]. Setting x′ := w, one has the
conclusion.

Proposition 2.4. Let C be convex.

(a) If f is quasiconvex and if h ≤ D+f, then f is h-protoconvex, hence h-quasiconvex.

(b) Conversely, if f is h-quasiconvex, if h ≥ D+f , and if f is either radially continu-
ous or radially lower semicontinuous on C and satisfies the NC-property, then f is
quasiconvex.

(c) If f is radially differentiable and if h := Df, then f is quasiconvex, if, and only if, it
is h-quasiconvex, if, and only if, it is h-protoconvex..

Proof. (a) Suppose f is quasiconvex and f(w) ≤ f(x) for some w, x ∈ C. Then for t ∈]0, 1[
we have f(x + t(w − x)) ≤ f(x), hence D+f(x,w − x) ≤ 0. Thus h(x,w − x) ≤ 0 if
h(x, ·) ≤ D+f(x, ·).

(b) Suppose that f is not quasiconvex. Then, there exist w, y, z such that f(y) > f(w) ≤
f(z), where y = z + t(w − z), t ∈]0, 1[. By the preceding lemma, there exist x, x′ ∈ [w, z]
such that h(x, x′ − x) ≥ D+f(x, x′ − x) > 0 and f(x′) < f(x) : a contradition with the
h-quasiconvexity of f.

(c) In view of the fact that a radially differentiable function is radially continuous, the
assertion follows from (a) and (b).

A comparison between h-pseudoconvexity and quasiconvexity is given in the next propo-
sition. Note that its assertion (b) does not involve Dini derivatives; it has been proved in
[57, Theorem 5.1] when for all x ∈ C, if h(x, ·) is subodd. Its last assertion is well known.

Proposition 2.5. Suppose f is h-pseudoconvex on a convex set C. If one of the following
two conditions is satisfied, then f is quasiconvex:

(a) f is radially lower semicontinuous on C and h ≥ D+f .

(b) for all x ∈ C, h(x, ·) satisfies (T).

In particular, if f is radially differentiable and f is h-pseudoconvex with h := Df (in
short, f is pseudoconvex), then f is quasiconvex.

Proof. (a) It is proved in [33, Theorem 10.5].
(b) Suppose h(x, ·) satisfies (T) for all x ∈ C and f is h-pseudoconvex. To prove that

f is quasiconvex, it suffices to show that if there exist w, x, y ∈ C with x ∈]w, y[ such that
f(x) > f(w) and f(x) > f(y), one is led to a contradiction. By h-pseudoconvexity of f, one
gets h(x,w− x) < 0 and h(x, y− x) < 0. Since h(x, ·) satisfies (T), one obtains the required
contradiction.

When f is both h-pseudoconvex and h-protoconvex, we get a special form of invexity.
Here, in the relation

∀w, x ∈ C f(w) ≥ f(x) + h(x, v(w, x))

which characterizes h-invexity of f on C, the vector v(w, x) is of the form λ(w, x)(w − x),
with λ(w, x) ∈ P, i.e. v(w, x) is positively colinear to the vector w − x. This fact explains



358 N.T. HONG LINH AND J.-P. PENOT

the terminology chosen in the next statement. This terminology may also have an interest
in the case one needs to avoid a possible confusion with the notion of semiconvexity used in
[60], where semiconvexity is equivalent to quasiconvexity plus invexity or a confusion with
the notion used for the study of Hamilton-Jacobi equations as in [9].

Proposition 2.6. For any function f : C → R and any bifunction h : V C → R, the
following assertions are equivalent:

(a) f is h-semiconvex (i.e. f is h-pseudoconvex and h-protoconvex).

(b) f is h-colinvex: there exists λ : C × C → P such that for all w, x ∈ C,

f(w) ≥ f(x) + λ(w, x)h(x,w − x).

Proof. (b)⇒(a) is obvious.
(a)⇒(b) Let f be h-pseudoconvex and h-protoconvex. Let w, x ∈ C.
If h(x,w−x) = 0 then one has f(w) ≥ f(x) by h-pseudoconvexity of f and one can take

λ(w, x) = 1 or any element in P.
If h(x,w − x) > 0 then f(w) > f(x) by h-protoconvexity of f . Then one can take

λ(w, x) = [f(w)− f(x)]/h(x,w − x).

If h(x,w − x) < 0 then one can take

λ(w, x) := max{[f(w)− f(x)]/h(x,w − x), 0}+ 1,

and then f(w) ≥ f(x) + λ(w, x)h(x,w − x).

Remark 2.7. When f is convex and if h is the radial derivative of f, then (b) is satisfied with
λ(w, x) = 1. As mentioned above, the specific choice of the function v given by v(w, x) :=
λ(w, x)(w−x) as a vector colinear with w−x pin points this class of functions among invex
functions.

3 Pseudoaffine, Protoaffine and Colinfine Functions

In the present section we study classes of functions which are still more restrictive. Their
interests lie in their striking properties. In particular, they enjoy nice composition properties
with the classes studied in the preceding section. Their behaviors will be presented in
Proposition 3.4 and their mutual relationships will be examined in Proposition 3.8 below.

The first concept of the following definition has been introduced by Chew and Chow
[13] in the differentiable case and has been used in [1], [7], [8], [31], [36], [59], [61]. The
terminology we adopt in this definition is new. For the notions in (a)-(c), it stems from
the fact that a function which is both convex and concave is affine. For the notion in (d),
as above, it is motivated by the special invexity condition (3.1) in which the vector field is
colinear to w − x.

Definition 3.1. Given a bifunction h : V C → R, a function f : C → R is said to be
(a) h-pseudoaffine at x ∈ C if f is h-pseudoconvex and h-pseudoconcave at x ∈ C.
(b) h-protoaffine at x ∈ C if f is h-protoconvex and h-protoconcave at x ∈ C.
(c) h-semiaffine at x ∈ C if f is h-semiconvex and h-semiconcave at x ∈ C.
(d) h-colinfine at x ∈ C if the following implications hold for all w ∈ C:

h(x,w − x) = 0 =⇒ f(w) = f(x),
h(x,w − x) > 0 =⇒ f(w) > f(x),
h(x,w − x) < 0 =⇒ f(w) < f(x).
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These implications can be summarized by saying that f(w)− f(x) must have the same
sign as h(x,w − x) (with the convention that the sign of 0 is 0).

We say that f is h-pseudoaffine on C (in short, h-pseudoaffine) (resp. h-protoaffine, h-
semiaffine, h-colinfine) if f is h-pseudoaffine (resp. h-protoaffine, h-semiaffine, h-colinfine)
at every x ∈ C. In the case h is the radial derivative of f , we simply say that f is pseu-
doaffine (resp. protoaffine, semiaffine, colinfine) if f is h-pseudoaffine (resp. h-protoaffine
h-semiaffine, h-colinfine) on C. Observe that a radially differentiable function f is pseu-
doaffine (resp. protoaffine) if, and only if, f and −f are pseudoconvex (resp. protoconvex).

It is easy to show that f is h-colinfine if, and only if, f is h-colinvex and −f is −h-
colinvex. Also, it is easy to see that f is h-colinfine at x if and only if there exists some
function λ : C × C → P such that

∀w ∈ C f(w)− f(x) = h(x, λ(w, x)(w − x)). (3.1)

Such an observation justifies the terminology. If the implications of Definition 3.1 (d) hold
true then one can introduce λ satisfying Definition 3.1 (d) by setting λ(w, x) = [f(w) −
f(x)]/h(x,w − x) when h(x,w − x) 6= 0 and λ(w, x) ∈ P arbitrary if h(x,w − x) = 0.

The following observation is immediate. We will prove a related property in Proposition
3.8.

Proposition 3.2. Given h : V C → R, a function f : C → R is h-colinfine if, and only if,
it is h-semiaffine.

Proof. Suppose that f is h-colinfine. Then there exists some function λ : C × C → P such
that

∀w, x ∈ C f(w)− f(x) = λ(w, x)h(x,w − x).

Hence, f is h-colinvex and −f is −h-colinvex. By Proposition 2.6, one has that f is h-
semiconvex and −f is −h-semiconvex. Thus, f is h-semiaffine.

Conversely, suppose that f is h-semiaffine. Using the definition of a h-semiaffine function,
we see that the above implications are satisfied, so that f is h-colinfine by the construction
of λ we have pointed out.

Now, let us give an answer to the question: when is a colinfine function a convex function?

Proposition 3.3. Let f be h-colinfine on a convex set C and let λ : C × C → P be such
that

f(w)− f(x) = λ(w, x)h(x,w − x).

Assume that for all w, x ∈ C, t ∈ [0, 1] one has λ(xt, x) ≤ λ(w, x) whenever f(x) ≤ f(w),
where xt := x + t(w − x). Then f is convex on C.

Proof. Let w, x ∈ C, xt := x + t(w − x) for t ∈ [0, 1]. Without loss of generality, we may
suppose f(x) ≤ f(w). Then h(x,w − x) ≥ 0. Since f is h-colinfine, we have

f(xt)− f(x) = λ(xt, x)h(x, xt − x) = tλ(xt, x)h(x,w − x),
t[f(w)− f(x)] = tλ(w, x)h(x,w − x).

By assumption, we have λ(xt, x) ≤ λ(w, x), hence f(xt) − f(x) ≤ t(f(w) − f(x)). Thus, f
is convex.

Even for a smooth bifunction h, an h-colinfine function maybe nonsmooth, and not even
continuous.
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Example 3. Let f : R→ R be defined by f(x) = x + 1 for x > 0, f(x) = −x2 for x ≤ 0,
and let h : R× R→ R be given by h(x, u) = u for all x, u ∈ R. Then f is h-colinfine. Note
that h is neither the radial derivative nor one of the Dini derivatives of f. The function f is
not continuous at 0 and f is neither convex nor concave.
Example 4. If h is as in the preceding example, the function f : R→ R given by f(x) := x3

is not pseudoaffine but f is h-colinfine.
The preceding example shows that a function may be h1-colinfine for some bifunction h1 :

(x, u) → u but not h2-colinfine (and not even h2-pseudoconvex) for some other bifunction
h2 := Df, even when f, h1 and h2 are smooth.

The next statement shows that h-colinfine functions have a very special behavior. Here,
we do not need any continuity of f.

Proposition 3.4. Let f : C → R. There exists h : V C → R such that f is h-colinfine on
C if and only if for all w, x ∈ C, the function t 7→ f(x + t(w − x)) is either increasing or
decreasing or constant on the interval on which it is defined.

Proof. Let f be h-colinfine on C. Let w, x ∈ C. If f(w) = f(x) then f(x + t(w− x)) = f(x)
for all t ∈ R such that xt := x + t(w− x) ∈ C since we have h(x, xt− x) = th(x,w− x) = 0.

If f(w) > f(x) then h(x,w − x) > 0. For all t > 0 such that xt := x + t(w − x) ∈ C,
one has h(x, xt − x) > 0 by homogeneity. Thus f(x + t(w − x)) > f(x). Also, given
u := x + r(w − x) ∈ C and v := x + s(w − x) ∈ C with s > r, one has f(v) > f(u).
Otherwise, one would have either f(v) = f(u) and then f(w) = f(x) by what precedes or
f(v) < f(u) and then h(v, u − v) > 0, h(v, x − v) < 0 (as f(x) < f(v)), a contradiction
since x − v = q(u − v) for some q > 0. A similar proof shows that for every t > 0 we have
f(w + t(x−w)) < f(w) and for s > r, f(w + s(x−w)) < f(w + r(x−w)) when the involved
points are in C.

If f(x) > f(w), then we also have the conclusion by interchanging the role of w and x
in what precedes.

Conversely, a possible choice for h is as follow. Given (x, u) ∈ V C with ‖u‖ = 1, we can
find some t ∈ P such that w := x + tu ∈ C. If f(w) = f(x), for r ∈ P we take h(x, ru) = 0
and λ(x + ru, x) := 1. If f(w) 6= f(x), then for r ∈ P, we set

h(x, ru) := rt−1(f(w)− f(x)), λ(x + ru, x) :=
t(f(x + ru)− f(x))
r(f(x + tu)− f(x))

.

Then h is clearly positively homogeneous in its second variable, λ(x + ru, x) ∈ P by our
assumption, and if (x + ru, x) ∈ C ×C we have f(x + ru)− f(x) = λ(x + ru, x)h(x, ru), as
required.

From Proposition 3.4, we see that the set of all minimizers and the set of all maximizers
of a non constant h-colinfine function are contained in the boundary of its domain.

Corollary 3.5. Let f be h-colinfine and let w, x ∈ C. Then for any t ∈ R\{0, 1} such that
xt := x + t(w − x) ∈ C, the following statements are equivalent:

(a) f(x) = f(w).

(b) h(x,w − x) = 0.

(c) h(w, x− w) = 0.

(d) f(xt) = f(x).
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(e) h(xt, w − x) = 0.

(f) f(xt) = f(w).

Proof. One has (a)⇔(b)⇔(c) by the definition of a h-colinfine function and (a)⇔(d)⇔(f)
by the preceding proposition. If t > 0 then xt − x = t(w − x), hence (d)⇔(e); otherwise if
t < 0 then w − xt = (1− t)(w − x), hence (f)⇔(e).

Although the preceding definitions are quite restrictive, they are satisfied in some cases
of significant interest.
Example 5. Let f : R→ R be increasing and let h : R×R→ R be positively homogeneous
in its second variable and such that h(x, 1) > 0, h(x,−1) < 0. Then f is h-colinfine. Note
that we do not require h is the directional derivative nor some Dini derivative of f.
Example 6. Let X be a n.v.s., let a, b ∈ X∗, α, β ∈ R. For C := {x ∈ X : bx + β > 0}, let
f : C → R be given by

∀x ∈ C f(x) = (ax + α)/(bx + β).

Since
f ′(x,w − x) = (awbx− axbw + (βa− αb)(w − x))/(bx + β)2,

one has

f(w)− f(x) =
awbx− axbw + (βa− αb)(w − x)

(bw + β)(bx + β)
=

bx + β

bw + β
f ′(x,w − x)

and f is colinfine on C with λ(w, x) := (bx + β)(bw + β)−1. But when a and b are linearly
independent and α = 0, β = 0, f is not convex since one can find x such that ax = 0, bx = 1
and then f ′′(x)(u, u) = −2aubu whose sign may be negative for some choices of u.
Example 7. Let g : X → R be colinfine. For C := {x ∈ X : g(x) > 0}, let f(x) =

√
g(x).

Since g is colinfine, we have g(w)− g(x) = λg(w, x)g′(x,w − x) with λg(w, x) > 0. Since

f ′(x,w − x) =
1

2
√

g(x)
g′(x,w − x),

one has

f(w)− f(x) = (g(w)− g(x))/(
√

g(w) +
√

g(x)) = λg(w, x)g′(x,w − x)/(
√

g(w) +
√

g(x)).

Thus f is colinfine with λf (w, x) := 2λg(w, x)
√

g(x)/(
√

g(w) +
√

g(x)).
Example 8. More generally, let X be a n.v.s., g : X → R be colinfine on C := {x ∈ X :
g(x) > 0}. Then, for any p ∈ N, f(·) := gp(·) := (g(·))p is colinfine on C. In fact, since g is
colinfine on C, for all w, x ∈ C we have g(w)−g(x) = λg(w, x)g′(x,w−x) with λg(w, x) > 0.
Since f ′(x,w − x) = p(g(x))p−1g′(x,w − x), we get

f(w)− f(x) = gp(w)− gp(x) = (g(w)− g(x))(
p−1∑

k=0

gk(w)gp−k−1(x))

= λg(w, x)g′(x,w − x)(
p−1∑

k=0

gk(w)gp−k−1(x)).

Thus f is colinfine with λf (w, x) := λg(w, x)p−1g1−p(x)(
p−1∑
k=0

gk(w)gp−k−1(x)). ¤
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Composition properties which will be established in the next section will enlarge the field
of colinfine functions. For the moment, we delineate some properties and characterizations.
For the rest of this section, we assume that C is convex. In the sequel, given a bifunction
h viewed as a generalized derivative of f , we say that f satisfies (H+), (H−), (H+

0 ), (H−0 ) if
the following assertions are satisfied:

(H+) If h(x,w − x) > 0 for some w, x ∈ C, then there exists z ∈]w, x[ such that f(z) >
f(x).

(H−) If h(x,w − x) < 0 for some w, x ∈ C, then there exists z ∈]w, x[ such that f(z) <
f(x).

(H+
0 ) If h(x,w− x) > 0, f(w) = f(x) for some w, x ∈ C, then there exists z ∈]w, x[ such

that f(z) > f(x).
(H−0 ) If h(x,w− x) < 0, f(w) = f(x) for some w, x ∈ C, then there exists z ∈]w, x[ such

that f(z) < f(x).

Remark 3.6. (a) Clearly (H+) implies (H+
0 ) and (H−) implies (H−0 ).

(b) These assumptions are rather mild. Hypothesis (H+) (resp. (H−)) is weaker than
h-protoconvexity (resp. h-protoconcavity) of f. They are automatically satisfied if h
is the radial derivative of f. More generally, we can make a precise comparison with
the Dini derivatives of f.

Lemma 3.7. (a) If, for all x ∈ C, h(x, ·) ≤ D+f(x, ·) (resp. h(x, ·) ≥ D+f(x, ·)) then
assumption (H+) (resp. (H−)) is satisfied. In fact, if for all w, x ∈ C,

h(x,w − x) > 0 =⇒ D+f(x,w − x) > 0 (3.2)
(resp. h(x,w − x) < 0 =⇒ D+f(x,w − x) < 0), (3.3)

then f satisfies (H+) (resp. (H−)).

(b) Conversely, if condition (H+) (resp. (H−)) is satisfied, then for all w, x ∈ C one has

h(x,w − x) > 0 =⇒ D+f(x,w − x) ≥ 0
(resp. h(x,w − x) < 0 =⇒ D+f(x,w − x) ≤ 0).

Proof. (a) Suppose (3.2) holds. Given w, x ∈ C such that h(x,w − x) > 0, one has
D+f(x,w− x) > 0, so that there exists a sequence (tn) → 0+ satisfying f(x + tn(w− x)) >
f(x) for all n. Taking n large enough, we get some z := x + tn(w − x) ∈ (w, x) such that
f(z) > f(x). Similarly, if (3.3) holds, then f satisfies (H−).

(b) Conversely, when f satisfies (H+) and w, x ∈ C are such that h(x,w − x) > 0, for
every (εn) → 0+ one also has h(x, εn(w − x)) > 0, so that there exists tn ∈]0, εn[ such that
f(x + tn(w − x)) > f(x). Thus D+f(x,w − x) ≥ 0. The case of (H−) is similar.

Let us deal with a characterization which has been obtained in [1], [7], [13], [31], [36],
[37], [59], [61] under additional assumptions (lower semicontinuity of f or the assumption
that h is equal to the radial derivative of f or to one of the Dini derivatives of f). In the
following statement, given functions f, h, we say that f satisfies (R) if for every w, x, y ∈ C,
x ∈]w, y[ the function s := h(x, ·) satisfies (R).

Proposition 3.8. (a) A function f : C → R is h-pseudoaffine and satisfies (R), (H+
0 ),

(H−0 ) if and only if f is h-colinfine.

(b) If f is h-pseudoaffine, if D+f ≤ h ≤ D+f and if either f satisfies (R) or is radially
continuous, then f is h-colinfine.
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Proof. (a) Let f be h-pseudoaffine satisfying (R), (H+
0 ), (H−0 ). Given w, x ∈ C, let us find

some λ(w, x) ∈ P such that f(w) − f(x) = λ(w, x)h(x,w − x). If f(w) < f(x) then, by
h-pseudoconvexity we have h(x,w − x) < 0 and we can take

λ(w, x) = [f(w)− f(x)]/h(x,w − x).

If f(w) > f(x) then, by h-pseudoconcavity, we have h(x,w − x) > 0 and we can take

λ(w, x) = [f(w)− f(x)]/h(x,w − x).

In the case f(w) = f(x), we will prove h(x,w− x) = 0, so that we take λ(w, x) = 1. We
may suppose x 6= w. If h(x,w− x) > 0, by hypothesis (H+

0 ), there exists z ∈]w, x[ such that
f(z) > f(x) = f(w). Thus, h(z, x − z) < 0 and h(z, w − z) < 0, a contradiction with (R).
Similarly, if h(x,w − x) < 0, hypothesis (H−0 ) yields a contradiction with (R).

Conversely, suppose f is h-colinfine. Then f is h-semiaffine by Proposition 3.2. Let us
first check that f satisfies condition (R), or, equivalently, that, for all x ∈ C, h(x, ·) and
−h(x, ·) satisfy condition (T). Let w, y ∈ C be such that x ∈]w, y[ and h(x,w − x) < 0;
we have to show that h(x, y − x) ≥ 0. Suppose h(x, y − x) < 0. Since f is h-colinfine, we
have f(y) < f(x). By Proposition 3.4 we obtain f(x) < f(w), hence h(x,w − x) > 0, a
contradiction. Thus, (T) is satisfied; since −f is −h-colinfine, −h satisfies (T). Now let
us prove that (H+) is satisfied. Let w, x ∈ C be such that h(x,w − x) > 0. Then for all
z ∈]x,w[, one has h(x, z − x) > 0 by homogeneity, hence f(z) > f(x) for all z ∈]x,w[. Thus
(H+) is satisfied. Similarly, (H−) is satisfied. By Remark 3.6 (a), (H+

0 ), (H−0 ) are satisfied
too.

(b) When f is h-pseudoaffine and satisfies (R) and when D+f ≤ h ≤ D+f, conditions
(H+

0 ), (H−0 ) are fulfilled by Remark 3.6 and Lemma 3.7; then the conclusion follows from (a).
In the case f is h-pseudoaffine, radially continuous and D+f ≤ h ≤ D+f, one has that f and
−f are quasiconvex by Proposition 2.5(a) and then f and −f are h-protoconvex and −h-
protoconvex respectively by Proposition 2.4(a). Thus f is h-protoaffine and h-pseudoaffine
by assumption, so that f is h-semiaffine. By Proposition 3.2, f is h-colinfine.

Let us consider the property:

(E0) ∀x,w ∈ C, h(x,w − x) = 0 ⇒ f(x) = f(w).

Remark 3.9. (a) This property is satisfied if f is h-pseudoaffine or if h(x, u) 6= 0 for all
x ∈ C, u ∈ X\{0}.

(b) If f is h-protoaffine the reverse implication f(x) = f(w) ⇒ h(x,w − x) = 0 holds.

(c) Condition (E0) implies that if there exist w, x ∈ C such that h(x,w− x) = 0, then for
all t > 0, f(x + t(w − x)) = f(x).

A related property is presented in the following corollary.

Corollary 3.10. Let f satisfy properties (R), (H+), (H−). If f is h-pseudoaffine on C then
the following condition is satisfied:

(E) ∀x,w ∈ C, h(x,w − x) = 0 ⇔ f(x) = f(w).

The converse is true if f is radially continuous on C. In fact, if f is radially continuous
on C and satisfies conditions (E) and (H+) (resp. (H−)) then f is h-pseudoconvex (resp.
h-pseudoconcave).
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Proof. The first assertion follows from Proposition 3.8(a) by definition of a h-colinfine
function.

To prove the converse assertion, changing f and h into −f and −h respectively, it suffices
to show that if f(w) < f(x), then one has h(x,w − x) < 0. Since f satisfies condition (E0),
it is enough to prove that assuming h(x,w− x) > 0 leads to a contradiction. By hypothesis
(H+), there exists z ∈]w, x[ such that f(z) > f(x). By continuity of f on [w, z], since
f(x) ∈]f(w), f(z)[, there exists u ∈ [w, z] such that f(u) = f(x). Then u 6= x and there
exists r ∈ P such that w − x = r(u− x). By condition (E), 0 = h(x, u− x) = h(x,w − x), a
contradiction with our assumption h(x,w − x) > 0.

Corollary 3.11. If h ≤ D+f and if f is radially continuous on C and satisfies condition
(E) then f is h-pseudoconvex.

If h ≥ D+f and if f is radially continuous on C and satisfies condition (E) then f is
h-pseudoconcave.

The second assertion of the next corollary slightly extends assertion ii) of Theorem 4.13
in [8]; see also [13], [31], [34].

Corollary 3.12. If D+f and D+f are finite, if D+f ≤ h ≤ D+f and if f satisfies condition
(E) then f is h-pseudoaffine. In particular, if f is radially differentiable on C and such that
for every x ∈ C the derivative Df(x, ·) is sublinear, then f is pseudoaffine on C if, and only
if f satisfies condition (E).

Let us prepare our main result by the observations contained in the next proposition.

Proposition 3.13. Let C be an open convex subset of X, let h : C × X → R and let
f : C → R be a h-colinfine function on C. Then

(a) For every w ∈ C the set Kw := {u ∈ X : h(w, u) = 0} is a linear subspace.

(b) If f(w) = f(x) for some w, x ∈ C, then Kw = Kx.

(c) Moreover, if f is radially continuous and h : V C → R is linear and continuous in its
second variable, with `(x) := h(x, ·) for all x ∈ C, then the linear forms `(w) and `(x)
are positively colinear:

w, x ∈ C : f(w) = f(x) ⇒ ∃r ∈ P, `(w) = r`(x). (3.4)

Proof. (a) Let u, v ∈ Kw and let f : C → R be a h-colinfine function. Since C is open,
T r(C, w) = {w}×X and for t ∈ R+ with t small enough one has w+tu ∈ C and f(w+tu) =
f(w) + λ(w + tu, w)th(w, u) = f(w). Thus, by Proposition 3.4, f(w + ru) = f(w) for all
r ∈ R such that w + ru ∈ C. It follows that h(w,−tu) = 0 for t > 0 small enough and
−u ∈ Kw. Now for t > 0 small enough, we also have w + tv ∈ C and w + t(u+ v) ∈ C. Since
f(w + tv) = f(w) = f(w + tu), by Proposition 3.4 again, we obtain

f(w + t
u + v

2
) = f(

w + tu

2
+

w + tv

2
) = f(w).

Thus u + v ∈ Kw. It follows that Kw is a linear subspace.
(b) Now let w, x ∈ C be such that f(w) = f(x) and let u ∈ Kw. Since f is h-colinfine, we

have x−w ∈ Kw, hence x−w + tu ∈ Kw for all t ∈ R since Kw is a linear subspace. Thus,
for |t| small enough, we have x+ tu ∈ C and f(x+ tu) = f(w) = f(x). Therefore h(x, u) = 0
and u ∈ Kx. So, Kw ⊂ Kx. The symmetry of the roles of w and x yields Kw = Kx.
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(c) Since Kw = ker l(w), Kx = ker l(x) and Kw = Kx either `(w) and `(x) are both 0
and (3.4) is satisfied with r = 1 or both of them are non zero and there exits r ∈ R\{0}
such that `(w) = r`(x). Let us prove that r is positive. Suppose that r < 0. Pick u ∈ X
such that 〈`(x), u〉 = 1 and set z1 = w + tu and z2 = x + tu, with t > 0 small enough to
ensure that z1, z2 ∈ C. Then, since f is h-colinfine, one has f(z1) < f(w) = f(x) < f(z2)
and 〈`(x), w − x〉 = h(x,w − x) = 0. Since f is radially continuous, there exists z ∈]z1, z2[
such that f(z) = f(x). Thus, there exists some s ∈]0, 1[ such that z := sz1 +(1−s)z2, hence
z − x = sw − sx + tu and

0 = h(x, z − x) = `(x)(z − x) = `(x)(sw − sx + tu) = t > 0,

a contradiction. Hence, the case r < 0 is excluded and (c) is established.

The following illuminating theorem has been given in [8, Theorems 4.13, 4.14], [31], [34]
in the case the function f is differentiable and h := f ′. Here f is nonsmooth. It also
gives a converse of Proposition 3.13. We start with a preparatory lemma dealing with the
one-dimensional case.

Lemma 3.14. Let C be an open interval of R and let ϕ : C → R be continuous, satisfy (H+)
and (H−) with respect to hϕ, where hϕ : C × R→ R is given for some function `ϕ : R→ R
by hϕ(t, r) := `ϕ(t)r for all (t, r) ∈ C ×R. Then ϕ is hϕ-colinfine if, and only if, either the
sign of `ϕ is constant on the level sets of ϕ or (E0) is satisfied and there exists some t ∈ C
such that `ϕ(t) = 0.

Proof. Suppose that ϕ is hϕ-colinfine. Then there exists λ : C × C → P such that for all
s 6= t in C

ϕ(s)− ϕ(t)
s− t

= λ(s, t)`ϕ(t). (3.5)

In addition, by Proposition 3.4, ϕ is constant or increasing or decreasing. By relation (3.5),
if ϕ is constant then `ϕ = 0 and (E0) is satisfied; otherwise the sign of `ϕ is constant.

For the converse, let us first suppose (E0) is satisfied and `ϕ(t) = 0 for some t ∈ C.
Then, for any s ∈ C, `ϕ(t)(s − t) = 0, so that, by (E0), ϕ(s) = ϕ(t). Hence, ϕ is constant
and, in view of conditions (H+) and (H−), we must have `ϕ(r) = 0 for all r ∈ C: then ϕ is
hϕ-colinfine.

Now suppose that the sign of `ϕ is constant on the level sets of ϕ. Given r ∈ C such that
`ϕ(r) > 0, we will prove that ϕ(t) > ϕ(r) for all t > r. Let us first prove that we cannot have
ϕ(t) < ϕ(r). If ϕ(t) < ϕ(r), let s := sup{p ∈ [r, t] : ϕ(p) = ϕ(r)}. Since ϕ is continuous, we
have s < t and ϕ(s) = ϕ(r). Then our assumption yields `ϕ(s) > 0, so that, by condition
(H+) there exists some p ∈]s, t[ with ϕ(p) > ϕ(s) and the intermediate value theorem yields
some q ∈ [p, t] with ϕ(q) = ϕ(s) = ϕ(r), a contradiction with the definition of s.

Now let us suppose that ϕ(t) = ϕ(r). Then `ϕ(t) > 0 by our assumption, so that
hϕ(t, r − t) = `ϕ(t)(r − t) < 0. Then condition (H−) yields some t′ ∈]r, t[ such that ϕ(t′) <
ϕ(t) = ϕ(r). Replacing t by t′, the first part of the proof yields the expected contradiction.

A similar proof shows that ϕ(q) < ϕ(r) for all q < r. Changing ϕ and `ϕ into their
opposites, we see that when `ϕ(r) < 0, the function ϕ is decreasing on C. Thus, ϕ is hϕ-
colinfine.

Theorem 3.15. Let C be an open, convex subset in X, let f : C → R be radially continuous
and h : V C → R be linear and continuous in its second variable, with `(x) := h(x, ·) for all
x ∈ C.
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(a) Suppose that f and h satisfy (E0), (H+) and (H−), (in particular, D+f ≤ h ≤ D+f)

and `(x) 6= 0 for all x ∈ C. If x 7→ `(x)
||`(x)|| is constant on the level sets of f, then f is

h-colinfine.

(b) Assume that C = X, f satisfies (E0), (H+) and (H−) and `(x) 6= 0 for all x ∈ C.

Then f is h-colinfine if, and only if, x 7→ `(x)
||`(x)|| is constant on X.

Proof. (a) Let w, x ∈ C and for t ∈ R, xt := (1 − t)x + tw. Set Cw,x := {t ∈ R : xt ∈ C},
ϕ(t) := f(xt). For t ∈ Cw,x, let `ϕ(t) := `(xt)(w−x) and hϕ(t, r) := `ϕ(t)r for r ∈ R. Let us
show that ϕ satisfies (H+), (H−) and (E0) with respect to hϕ. Suppose that hϕ(t, s− t) > 0
for s, t ∈ Cw,x, with s 6= t. Then h(xt, xs − xt) = (s − t)`(xt)(w − x) = hϕ(t, s − t) > 0.
Since f satisfies (H+), there exists q ∈ (t, s) such that ϕ(q) := f(xq) > f(xt) := ϕ(t).
Thus, ϕ satisfies (H+). With a similar proof, we see that ϕ satisfies (H−). Suppose that
hϕ(t, s − t) = 0 for s, t ∈ Cw,x, with s 6= t. Then h(xt, xs − xt) = hϕ(t, s − t) = 0. Since f
satisfies (E0), we get ϕ(s) := f(xs) = f(xt) := ϕ(t), so that ϕ satisfies (E0).

Suppose that `ϕ(t) 6= 0 for all t ∈ Cw,x. We shall prove that the sign of `ϕ is constant on
the level sets of ϕ. Let r, s ∈ Cw,x be such that ϕ(r) = ϕ(s). Since f(xr) = ϕ(r) = ϕ(s) =

f(xs), we have hϕ(r, 1) = `(xr)(w−x) > 0 and hϕ(s, 1) = `(xs)(w−x) =
||`(xs)||
||`(xr)||`(xr)(w−

x) =
||`(xs)||
||`(xr)||hϕ(r, 1). Thus, either there exists some t ∈ C such that `ϕ(t) = 0 or the sign

of `ϕ is constant on level sets of ϕ and then ϕ is hϕ-colinfine, by the preceding lemma.
Since for any w, x ∈ C, ϕ is hϕ-colinfine and hϕ(0, 1) = `ϕ(0) = `(x)(w−x) = h(x,w−x),

f(w)− f(x) = ϕ(1)− ϕ(0) = λϕ(1, 0)hϕ(0, 1) = λ(w, x)h(x,w − x)

for λ(w, x) := λϕ(1, 0) > 0; thus f is a h-colinfine function.

(b) If C = X and the mapping x 7→ `(x)
||`(x)|| is constant on X, then f is h-colinfine by

(a). Conversely, suppose that f is h-colinfine and there exist w, x ∈ C such that
`(w)
||`(w)|| 6=

`(x)
||`(x)|| . From Proposition 3.13 (b), we have f(w) 6= f(x). Let Kw := ker `(w) and Kx :=

ker `(x). Since
`(w)
||`(w)|| 6=

`(x)
||`(x)|| , there exists z ∈ (w+Kw)∩(x+Kx). One has z−w ∈ Kw,

z − x ∈ Kx, hence `(w)(z − w) = 0 and `(x)(z − x) = 0. Since f is h-colinfine, we have
f(x) = f(z) = f(w) : a contradiction.

The following example illustrates the preceding theorem; note that since f is not differ-
entiable, [8, Theorems 4.13, 4.14], [31], [34] cannot be applied.
Example 9. Let f : R2→ R be defined by f(x1, x2) = x2 for x2 ≤ 0, f(x1, x2) = x2

2

for x2 > 0, and let h : R2×R2→ R be given by h((x1, x2), (u1, u2)) = u2 for x2 ≤ 0,
u := (u1, u2) ∈ R2, and h((x1, x2), (u1, u2)) = x2u2 for x2 > 0, u ∈ R2. Then, as easily seen,

f satisfies (E0), (H+) and (H−), and x 7→ `(x)
||`(x)|| is constant with l(x) := h(x, ·). Thus, f

is h-colinfine.
The next proposition is related to the preceding results; however, the assumptions are

different.
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Proposition 3.16. Let C be open, let f be radially continuous and `(x) := h(x, ·) ∈ X∗\{0}
for x ∈ C.

If f is h-quasiconvex then f is h-pseudoconvex.
If f is h-protoaffine then f is h-colinfine and condition (E) is satisfied.

Proof. Let w, x ∈ C be such that f(w) < f(x). Then `(x)(w−x) ≤ 0 by h-quasiconvexity of
f. Suppose that `(x)(w − x) = 0. Since `(x) 6= 0, we can find u ∈ X such that `(x)(u) = 1.
By the radial continuity of f, there exists ε > 0 such that y := w + εu ∈ C and f(y) < f(x).
By h-quasiconvexity of f, 0 ≥ `(x)(y − x) = ε`(x)(u) = ε > 0, a contradiction. Hence
`(x)(w − x) < 0. Thus f is h-pseudoconvex.

Since h-protoconvexity implies h-quasiconvexity, if f is h-protoconvex and `(x) 6= 0,
then, by what precedes, f is h-pseudoconvex. Similarly, if f is h-protoaffine then f is
h-pseudoaffine, hence h-semiaffine and h-colinfine by Proposition 3.2. The last assertion
follows from Remark 3.9.

We deduce from [42] a characterization of continuous h-colinfine functions; see also [51].
We suppose that X is finite dimensional.

Proposition 3.17. A continuous (resp. lower semicontinuous), nonconstant function f :
X → R is h-colinfine for some h : X×X → R if, and only if, there exist a continuous linear
form ` on X, ` 6= 0 and a continuous (resp. lower semicontinuous) increasing function
g : R→ R such that f = g ◦ `.

Proof. The condition is clearly sufficient: setting, for u,w, x ∈ X, h(x, u) := `(u) and

λ(w, x) :=
g(`(w))− g(`(x))

`(w)− `(x)
for `(w) 6= `(x), λ(w, x) := 1 for `(w) = `(x)

one has f(w)− f(x) = λ(w, x)h(x,w − x).
Conversely, let f : X → R be l.s.c. (resp. continuous) and h-colinfine, hence quasiaffine.

According to [42], [51], there exist a continuous linear form ` on X and a l.s.c. (resp.
continuous) nondecreasing function g : R → R such that f = g ◦ `. Since f is nonconstant,
` 6= 0. Let us prove that g is increasing. Suppose that there exist r1 < r2 in R such that for
all r ∈ [r1, r2], g(r) = g(r1) = g(r2). Since f is nonconstant, g is nonconstant and then for
t > 1 large enough, g(r1 + t(r2 − r1)) > g(r2) or g(r2 + t(r1 − r2)) < g(r1). Without loss of
generality, we can assume that g(r1 + t(r2− r1)) > g(r2) for t large enough. Since ` is linear
and continuous with ` 6= 0, there exist w, x ∈ X such that `(w) = r1 < `(x) = r2. Taking t
large enough `(w + t(x−w)) > `(x) = r2 and then f(w + t(x−w)) = g(`(w + t(x−w))) =
g(r1 + t(r2− r1)) > g(r1) = f(w) = f(x). By Proposition 3.4, f is not h-colinfine. Therefore
g is increasing.

Note that if f is constant, then one can take g constant and ` = 0. Conversely, if g is
constant or if ` = 0 then g ◦ l is constant.

4 Vector-valued Maps and Preservation Properties

Extensions of the preceding concepts to vector-valued maps can be given. The cases of
quasiconvex and pseudoconvex maps have been studied in detail by several authors ([8],
[17], [40]...). The cases of colinfine and semiaffine maps seem to be new. Our purpose here is
limited. We just intend to use vector-valued concepts in order to get composition properties,
and thus some more means for constructing examples. In the sequel, Y is another n.v.s.,
with dual space Y ∗.
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Definition 4.1. Given a map H : V C → Y which is positively homogeneous in its second
variable, a map F : C → Y is said to be H-colinfine at x ∈ C if there exists some function
λ : C × C → P such that for all w ∈ C

F (w)− F (x) = H(x, λ(w, x)(w − x)).

It is H-colinfine on C if it is H-colinfine at every x ∈ C.

An immediate composition result can be stated.

Proposition 4.2. Let X, Y, Z be n.v.s., let C (resp. D) be a convex subset of X (resp.
Y ) and let H : V C → Y , K : V D → Z. If F : C → Y and G : D → Z are H-colinfine on
C and K-colinfine on D respectively and if F (C) ⊂ D, then G ◦ F is L-colinfine on C, for
L : V C → Z given by L(x, u) := K(F (x),H(x, u)) for (x, u) ∈ V C.

To get an extension of the concepts of h-pseudoconvexity and h-colinvexity, one needs
an order structure on Y . Thus we assume that Y is ordered by a closed convex cone Y+.
We denote by Y ∗

+ the dual cone of Y+: Y ∗
+ := {y∗ ∈ Y ∗ : ∀y ∈ Y+ 〈y∗, y〉 ≥ 0}.

Definition 4.3. Given a map F : C → Y .
(a) F is said to be H-pseudoconvex at x ∈ C if

w ∈ C, H(x,w − x) ≥ 0 =⇒ F (w) ≥ F (x).

It is H-pseudoconvex on C if it is H-pseudoconvex at every x ∈ C.

(b) F is said to be H-protoconvex at x ∈ C if

w ∈ C, F (w) ≤ F (x) =⇒ H(x,w − x) ≤ 0.

It is H-protoconvex on C if it is H-protoconvex at every x ∈ C.

(c) F is said to be H-semiconvex at x ∈ C if it is both H-pseudoconvex and H-
protoconvex at x. It is said to be H-protoaffine (resp. H-pseudoaffine) at x if it is H-
protoconvex (resp. H-pseudoconvex) at x and if −F is −H-protoconvex (resp. −H-
pseudoconvex) at x.

(d) F is said to be H-colinvex on C if there exists some function λ : C × C → P such
that for all w, x ∈ C

F (w)− F (x) ≥ H(x, λ(w, x)(w − x)).

If Y+ := {0}, F is H-colinfine on C if, and only if, F is H-colinvex on C. If F is H-colinvex
on C then F is clearly H-pseudoconvex on C.

Let us give another means to extend the previous notions to the vectorial case.

Definition 4.4. A map F : C → Y is said to be scalarly H-pseudoconvex (resp. scalarly
H-protoconvex, scalarly H-semiconvex, scalarly H-pseudoaffine, scalarly H-semiaffine) on
C if, for all y∗ ∈ Y ∗

+, the function y∗ ◦ F is y∗ ◦H-pseudoconvex (resp. y∗ ◦H-protoconvex,
y∗ ◦H-semiconvex, y∗ ◦H-pseudoaffine, y∗ ◦H-semiaffine).

Proposition 4.5. A map F : C → Y is H-pseudoconvex (resp. H-protoconvex, H-
semiconvex, H-pseudoaffine, H-semiaffine) if, and only if, it is scalarly H-pseudoconvex
(resp. scalarly H-protoconvex, scalarly H-semiconvex, scalarly H-pseudoaffine, scalarly H-
semiaffine).
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Proof. Let us prove that if F is scalarly H-pseudoconvex then it is H-pseudoconvex; the
converse is obvious. Let w, x ∈ C be such that H(x,w − x) ≥ 0. Then, for all y∗ ∈ Y ∗

+ we
have (y∗ ◦H) (x,w − x) ≥ 0, hence (y∗ ◦ F ) (w) ≥ (y∗ ◦ F ) (x). Then, the bipolar theorem
ensures that F (w) ≥ F (x). The proofs of the other cases are similar.

Given some n.v.s. X, Y, a subset C of X, we say that a map F : C → Y is directionally
differentiable (resp. radially differentiable) at x ∈ C if for any u ∈ T (C, x) (resp. u ∈
T r(C, x)) the quotient (1/t)(F (x + tv)− F (x)) (resp. (1/t)(F (x + tu)− F (x))) has a limit
as (t, v) → (0+, u) with x + tv ∈ C (resp. t → 0+). The preceding limit is then called the
directional derivative (resp. the radial derivative) of F at x in the direction u and is denoted
by F ′(x, u) (resp. DF (x, u)). Such a concept is a natural extension of the notion described
above for real-valued functions.

If F : C → Y has a radial or a directional derivative, we say that F is colinfine if H is the
radial derivative and F is H-colinfine. We use a similar convention for the other concepts
introduced above.
Example 10. Given n.v.s. X, Y, A ∈ L(X, Y ), y ∈ Y, b ∈ X∗, β ∈ R, C := {x ∈ X :
b(x) + β > 0}, the map F : C → Y given by

F (x) := (A(x) + y)/(b(x) + β)

is a colinfine map on C, as a computation similar to the one of Example 6 shows.
Example 11. Given X = R, Y = R2, Y+ := R2

+, let F : X → Y be given by

F (x) := (x, x3).

Then F is quasiconvex but it is not scalarly pseudoconvex as y∗ ◦ F is not pseudoconvex
when y∗ is the second projection. Note that F is of class C∞ and its derivative is never 0.

Remark 4.6. Here, the concepts of H-colinfine map and H-scalarly semiaffine map are
different from the one of vector pseudolinear in [61], where the components of the map are
supposed to be colinfine. Also, our definition of a pseudoaffine map differs from the one in
[8, Definition 4.13], even when one takes for H the derivative of F .

Let us give some preservation properties. The first one is immediate.

Proposition 4.7. Given H : V C → Y and H-colinfine (resp. H-scalarly semiaffine) maps
F : C → Y , G : C → Y and r ∈ R, the map F + G is H-colinfine (resp. H-scalarly
semiaffine) and rF is rH-colinfine (resp. rH-scalarly semiaffine).

Now let us consider composition properties.

Proposition 4.8. Let X, Y, Z be n.v.s., Y and Z being ordered by closed convex cones Y+

and Z+ respectively. Let C (resp. D) be a convex subset of X (resp. Y ) and let F : C → Y ,
G : D → Z, H : V C → Y , K : V D → Z. Assume that F (C) + Y+ ⊂ D, F is H-colinvex
on C and that for every (y, y′) ∈ V D, y′′ ∈ Y+ one has K(y, y′ + y′′) ≥ K(y, y′). Let
L : V C → Z be given by L(x, u) := K(F (x),H(x, u)) for (x, u) ∈ V C.

(a) If G is K-pseudoconvex on D, then G ◦ F is L-pseudoconvex on C.

(b) If G is K-protoconvex on D, then G ◦ F is L-protoconvex on C.

(c) If G is K-colinvex on D, then G ◦ F is L-colinvex on C.
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Proof. (a) Since F is H-colinvex on C, given w, x ∈ C one can find λ(w, x) ∈ P such that
F (w) − F (x) = λ(w, x)H(x,w − x) + y′′ with y′′ ∈ Y+. Since G is K-pseudoconvex on D,
one has

L(x,w − x) ≥ 0 ⇒ K(F (x),H(x,w − x)) ≥ 0 ⇒ K(F (x), λ(w, x)H(x,w − x) + y′′) ≥ 0
⇒ K(F (x), F (w)− F (x)) ≥ 0 ⇒ G(F (w)) ≥ G(F (x)).

so that G ◦ F is L-pseudoconvex on C.
(b) Given w, x ∈ C such that G(F (w)) ≤ G(F (x)) one has K(F (x), F (w) − F (x)) ≤ 0

by K-protoconvexity of G, hence K(F (x),H(x,w − x)) ≤ 0 since F is H-colinvex and
K(F (x), ·) is nondecreasing.

(c) Let y := F (w), y′ := F (x). Then, by K-colinvexity of G, there exists some µ(y, y′) ∈ P
such that G(y)−G(y′) ≥ µ(y, y′)K(y, y − y′) ≥ µ(y, y′)K(y, λ(w, x)H(x,w − x)).

Remark 4.9. Note that assertion (c) yields Proposition 4.2 by taking Y+ := {0}, Z+ := {0}.
Taking Z := R, the preceding proposition yields a means to generate more examples of

generalized convex functions. Observing that affine mappings being colinfine, the same can
be said for precompositions with affine maps.

Now let us give a chain rule in which the first map is not supposed to be colinvex.

Proposition 4.10. Let f : C → R, g : R → R and let h : V C → R, k : R2 → R be
positively homogeneous in their second variables and let ` : V C → R be given by `(x, u) :=
k(f(x), h(x, u)).

(a) If f is h-pseudoconvex, if g is nondecreasing and if k(r,−1) < 0 for all r ∈ f(C), then
g ◦ f is `-pseudoconvex.

(b) If f is h-protoconvex, if g is increasing and if D+g ≥ k, then g ◦ f is `-protoconvex;

(c) If f is h-semiconvex, if g is increasing and if k(r,−1) < 0 for all r ∈ f(C), then g ◦ f
is `-semiconvex.

Note that when f and g have radial derivatives and h = Df, k = Dg, then ` is the radial
derivative of g ◦ f (observe that the radial derivative of g is also the directional derivative
of g).
Proof. (a) Let w, x ∈ C be such that `(x,w − x) = k(f(x), h(x,w − x)) ≥ 0. Since
k(f(x),−1) < 0, we have h(x,w − x) ≥ 0. Since f is h-pseudoconvex we have f(w) ≥ f(x)
and since g is nondecreasing, we get (g ◦ f)(w) ≥ (g ◦ f)(x). Thus g ◦ f is `-pseudoconvex.

(b) Let w, x ∈ C be such that `(x,w − x) = k(f(x), h(x,w − x)) > 0. Since g is
nondecreasing and k ≤ D+g, we have k(f(x),−1) ≤ D+g(f(x),−1) ≤ 0; thus, we must
have h(x,w − x) > 0 (recall that k(f(x), 0) = 0). Since f is h-protoconvex, we have
f(w) > f(x) and since g is increasing, we get (g ◦ f)(w) > (g ◦ f)(x).

(c) We already know that g◦f is `-pseudoconvex. Let us prove that g◦f is `-protoconvex
by slightly modifying (b). Let w, x ∈ C be such that `(x,w− x) = k(f(x), h(x,w− x)) > 0.
Since k(f(x),−1) < 0, we have h(x,w−x) > 0; thus, as above, we get (g◦f)(w) > (g◦f)(x).

5 Characterizations of Solution Sets

In the present section, we apply the previous concepts to the constrained minimization
problem

(C) minimize f(x) subject to x ∈ C,
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where C is a subset of X and f : C → R. We denote by S the solution of the constrained
problem (C). Let h : V C → R be a generalized directional derivative of f which is positively
homogeneous in the second variable and such that h(·, 0) = 0.

We say that f satisfies (H−) at a ∈ C (relatively to h) if h(a, x− a) < 0 for some x ∈ C,
then there exists z ∈]a, x[ such that f(z) < f(a). Thus, f satisfies (H−) if, and only if, f
satisfies (H−) at every a ∈ C.

Proposition 5.1. Let f be h-pseudoconvex. If a ∈ C is such that h(a, x − a) ≥ 0 for all
x ∈ C, then a ∈ S.

Conversely, if a ∈ S, if C is starshaped at a, and if f satisfies (H−) at a (in particular,
if h(a, ·) ≥ D+f(a, ·)), then h(a, x− a) ≥ 0 for all x ∈ C.

Proof. The first assertion follows from the definition of h-pseudoconvexity of f at a.
Conversely, let us suppose f satisfies (H−) at a ∈ S. We must prove h(a, x − a) ≥ 0,

for all x ∈ C. If there exists some x ∈ C such that h(a, x − a) < 0, then by (H−) and
starshapedness of C, there exists z ∈]a, x[⊂ C such that f(z) < f(a): this is a contradiction
with the assumption that a is a solution to (C).

The following variant is a direct consequence of the definition of an h-semiaffine function
(or of the fact that f is h-colinfine).

Proposition 5.2. Suppose that f is h-semiaffine on C and C is starshaped at a. Then

(a) a ∈ S if and only if h(a, x− a) ≥ 0 for all x ∈ C and if and only if h(x, a− x) ≤ 0 for
all x ∈ C;

(b) If a, b are in S, then (a + R(b− a)) ∩ C is included in S;

(c) If a is a solution to (C) then the set S of solutions to (C) is given by S = Sh, where
Sh := {x ∈ C : h(a, x− a) = 0};

(d) If the feasible set C is convex, then a local minimizer to (C) is a global minimizer to
(C).

Let us consider now the case in which the constraint set C is defined by a finite family
of inequalities, so that problem (C) turns into the mathematical programming problem

(M) minimize f(x) subject to x ∈ C := {x ∈ W : g1(x) ≤ 0, ..., gm(x) ≤ 0},
where f : W → R, gi : W → R and W is an open convex subset of X.

We assume that h : W ×X → R, hi : W ×X → R (i ∈ Nm := {1, ..., m}) are generalized
directional derivatives of f and gi, respectively, which are positively homogeneous in their
second variables and such that h(·, 0) = hi(·, 0) = 0. Given a ∈ C, let I(a) := {i ∈ Nm :
gi(a) = 0} and let P (a) stand for a set of i ∈ I(a) such that gi is hi-pseudoconcave at a,
while N(a) := I(a)\P (a).

Each continuous linear functional x∗ on X satisfying 〈x∗, ·〉 ≤ h(x, ·) is said to be a
subderivative of f with respect to h at x. The set ∂hf(x) of all subderivatives at x is called
the h-subdifferential of f at x; it is a weak∗ closed convex subset of X∗. Obviously, for
a ∈ X,

h(a, u) ≥ 0, ∀u ∈ X ⇔ 0 ∈ ∂hf(a).

The subdifferential of a convex function k : X → R∞ at x ∈ dom k := k−1(R) is the set

∂k(x) := {x∗ : k(w)− k(x) ≥ 〈x∗, w − x〉, ∀w ∈ X}.
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The sufficient optimality criteria which follows is an easy consequence of the preceding
proposition. If f and gi (i ∈ Nm) are differentiable, then the sufficient optimality condition
is the same as the classical result in [41] and [8, Thm. 4.5].

Proposition 5.3. Let f be h-pseudoconvex at a ∈ W and let gi be hi-protoconvex at a
for i = 1, ..., m. If a is such that the following conditions are satisfied for some yi ∈ R+,
i = 1, ..., m, then a is a solution to problem (M) :

h(a, x− a) +
m∑

i=1

yihi(a, x− a) ≥ 0, ∀x ∈ C, (5.1)

g1(a) ≤ 0, ..., gm(a) ≤ 0, y1g1(a) = 0, ..., ymgm(a) = 0. (5.2)

Proof. Suppose on the contrary that there exists some x ∈ C such that f(x) < f(a). By
h-pseudoconvexity of f at a, we have h(a, x− a) < 0.

Then, for i ∈ I(a), by hi-protoconvexity of gi at a, we have hi(a, x−a) ≤ 0. Consequently,
we have

h(a, x− a) < 0,

hi(a, x− a) ≤ 0, ∀i ∈ I(a).

Multiplying each side of the last inequalities by yi and adding the obtained sides to the
ones of the preceding relation, since yi = 0 for i /∈ I(a), we get

0 ≤ h(a, x− a) +
m∑

i=1

yihi(a, x− a) < 0,

a contradiction.

Corollary 5.4. Let f be h-pseudoconvex at a ∈ X and let gi be hi-protoconvex at a for
i = 1, ..., m. If a is such that the following conditions are satisfied for some yi ∈ R+,
i = 1, ..., m, then a is a solution to problem (M) :

0 ∈ ∂hf(a) + y1∂
h1g1(a) + ... + ym∂hmgm(a),

g1(a) ≤ 0, ..., gm(a) ≤ 0, y1g1(a) = 0, ..., ymgm(a) = 0.

Proof. Let a∗ ∈ ∂hf(a), a∗i ∈ ∂higi(a) for i = 1, ..., m be such that

a∗ + y1a
∗
1 + ... + yma∗m = 0.

Since for every x ∈ C and i ∈ Nm we have

〈a∗, x− a〉 ≤ h(a, x− a),
〈a∗i , x− a〉 ≤ hi(a, x− a),

multiplying each side of the last inequalities by yi and adding the obtained sides to the ones
of the preceding relation, since yi = 0 for i /∈ I(a), we get

0 = 〈a∗, x− a〉+
m∑

i=1

yi〈a∗i , x− a〉 ≤ h(a, x− a) +
m∑

i=1

yihi(a, x− a)

and the preceding proposition applies.

Now let us give a necessary optimality condition in a limiting form. We assume now that
X is a Banach space.
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Proposition 5.5. Let a ∈ S. Assume that h, hi (i ∈ I(a)) are finite, sublinear and l.s.c.
in their second variables. Assume that f satisfies condition (H−) at a (relatively to h), gi

are u.s.c. at a for i /∈ I(a). Suppose that for i ∈ N(a), gi satisfies condition (H−) at a

(relatively to hi) and gi is quasiconvex at a. Then there exists (y0, (yn)) ∈ R+×RN(a)
+ , with

(y0, (yn)) 6= 0 such that

0 ∈ cl{y0∂
hf(a) +

∑

n∈N(a)

yn∂hngn(a) +
∑

p∈P (a)

yp∂
hpgp(a) : (yp) ∈ RP (a)

+ }. (5.3)

In particular, if ∂higi(a) 6= ∅ for i ∈ Nm\I(a) then

0 ∈ cl{y0∂
hf(a) +

m∑

i=1

yi∂
higi(a) : yi ∈ R+, yigi(a) = 0, y0 +

∑

n∈N(a)

yn = 1}.

Proof. Let a ∈ S. In a first step, we prove that the system



h(a, x− a) < 0
hi(a, x− a) < 0 ∀i ∈ N(a)
hi(a, x− a) ≤ 0 ∀i ∈ P (a)




has no solution x in X.

Let us suppose, on the contrary, that x satisfy these inequalities. Then, since W is open,
there exists δ > 0 such that xt := a + t(x − a) ∈ W for t ∈ [0, δ]. Thus, for i ∈ P (a)
one has hi(a, xt − a) ≤ 0, so that gi(xt) ≤ gi(a) for t ∈]0, δ] by hi-pseudoconcavity of
gi at a. For i ∈ N(a), and t ∈]0, δ], since hi(a, xt − a) < 0, by condition (H−) there
exists zt := xs ∈]xt, a[∩W such that gi(zt) < gi(a). In addition, as gi is quasiconvex, one
has gi(xr) ≤ gi(a) for all r ∈ [0, s]. Moreover, since for i /∈ I(a), gi(a) < 0 and gi is u.s.c, we
can take s small so that gi(xr) < 0 for r ∈ [0, s]. Since h(a, xs − a) < 0, by condition (H−)
we get f(xr) < f(a) for some r ∈ [0, s], a contradiction with a ∈ S. Our claim is proved.

In a second step, we prove that relation (5.3) is satisfied. According to the first step, the
system 


−h(a, x− a) > 0
−hn(a, x− a) > 0 ∀n ∈ N(a)
−hp(a, x− a) ≥ 0 ∀p ∈ P (a)




has no solution x in X. Since h(a, ·) and hi(a, ·) are sublinear and l.s.c., using the generalized
Farkas lemma [21, Theorem 3], there exists 0 6= (y0, (yn)) ∈ R+ × RN(a)

+ such that

0 ∈ cl{∂

y0h(a, ·) +

∑

n∈N(a)

ynhn(a, ·)

 (0) + ∂


 ∑

p∈P (a)

yphp(a, ·)

 (0) : (yp) ∈ RP (a)

+ }.

Since the Attouch-Brézis qualification condition for a sum of convex functions is fulfilled,
this condition can be rewritten as in (5.3), taking into account the notation ∂hf(a) =
∂h(a, ·)(0) and ∂higi(a) = ∂hi(a, ·)(0) for i ∈ I(a). The last assertion is obtained by taking
yi = 0 for i ∈ Nm\I(a) and by using a normalization, replacing (y0, (yi)) by (t−1y0, (t−1yi)),
where t := y0 +

∑
n∈N(a) yn.

In the case we can take for P (a) the empty set, we get the following consequence.
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Corollary 5.6. Let a ∈ S. Assume that h, hi (i ∈ I(a)) be finite, sublinear and l.s.c. in their
second variables. Assume that f satisfies condition (H−) at a (relatively to h), gi are u.s.c.
at a for i /∈ I(a). Suppose that for i ∈ I(a), gi satisfy condition (H−) at a (relatively to hi)
and gi is quasiconvex at a. Then there exists (y0, (yi)) ∈ R+ ×RI(a)

+ such that (y0, (yi)) 6= 0
and

0 ∈ cl{y0∂
hf(a) +

∑

i∈I(a)

yi∂
higi(a)}.

Moreover, if the qualification condition

0 /∈ clco(
⋃

i∈I(a)

∂higi(a)) (5.4)

holds, then there exists (yi) ∈ RI(a)
+ such that

0 ∈ ∂hf(a) +
∑

i∈I(a)

yi∂
higi(a).

Proof. The first assertion is a direct consequence of the preceding proposition, with N(a) =
I(a), P (a) = ∅. The second assertion stems from the fact that if y0 = 0, replacing (yi)
by (t−1yi) with t :=

∑
i∈I(a) yi we get 0 ∈ cl(

∑
i∈I(a) yi∂

higi(a)) ⊂ clco(
⋃

i∈I(a)

∂higi(a)), a

contradiction with (5.4).

The case P (a) = I(a), N(a) = ∅ is considered in the following statement; then we have
y0 6= 0, or, equivalently, y0 = 1 after normalization.

Corollary 5.7. Let a ∈ S. Assume that h, hi (i ∈ I(a)) are sublinear and l.s.c. in their
second variables. Assume that f satisfies condition (H−) at a (relatively to h), gi are hi-
pseudoconcave at a for i ∈ I(a) and gi is u.s.c at a for i /∈ I(a). Then

0 ∈ cl({∂hf(a) + y1∂
h1g1(a) + ... + ym∂hmgm(a) : yi ≥ 0, yigi(a) = 0}). (5.5)

Let us gather a necessary condition deduced from the preceding statement with the
sufficient condition of Corollary 5.4.

Corollary 5.8. Let a ∈ W. Assume that f is h-pseudoconvex at a and gi is hi-colinfine at
a for some bifunctions h : W × X → R, hi : W × X → R (i ∈ {1, ..., m}) which are such
that h(a, ·) and hi(a, ·) are positively homogeneous and h(a, ·) ≥ D+f(a, ·). Assume that gi

is u.s.c for i /∈ I(a). Then a ∈ C is a solution to (M) if there exists y := (y1, ..., ym) ∈ Rm
+

such that yigi(a) = 0 for i = 1, ..., m and

0 ∈ ∂hf(a) + y1∂
h1g1(a) + ... + ym∂hmgm(a). (5.6)

If h(a, ·) and hi(a, ·) (i ∈ I(a)) are sublinear and continuous and if the following qualification
condition holds, then condition (5.6) is necessary for a to be in S :

0 /∈ co(
⋃

i∈I(a)

∂higi(a)). (5.7)

Proof. The sufficient condition is obvious from Corollary 5.4. For the necessary condition,
since h(a, ·) ≥ D+f(a, ·), f satisfies condition (H−) at a. Given a sequence (εn) in P+ with
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limit 0, relation (5.5) yields for each i ∈ I(a) some sequences (yi,n) in R+, (y∗n), (z∗i,n) in
X∗ such that y∗n ∈ ∂hf(a), z∗i,n ∈ ∂higi(a) for all n ∈ N and

∥∥∥∥∥∥
y∗n +

∑

i∈I(a)

yi,nz∗i,n

∥∥∥∥∥∥
≤ εn. (5.8)

Let us show that the sequences (yi,n) are bounded. If one of them is unbounded, taking
a subsequence if necessary, we may assume that (‖yn‖) → +∞, where yn = (yi,n)i∈I(a) ∈
RI(a)

+ , the space RI(a) being endowed with the norm given by ‖y‖ :=
∑

i∈I(a) |yi| . Since
for i ∈ I(a) the functions hi(a, ·) are sublinear and continuous, the sets ∂higi(a) are weak∗

compact; ∂hf(a) is also weak∗ compact. It follows that we can find a limit point (u, z∗) of
the sequence (un, z∗n), where un := yn/ ‖yn‖ ∈ RI(a)

+ . Dividing by ‖yn‖ both sides of relation
(5.8) and taking limits we get ∥∥∥∥∥∥

∑

i∈I(a)

uiz
∗
i

∥∥∥∥∥∥
= 0.

Since z∗i ∈ ∂higi(a) and u := (ui)i∈I(a) is in the canonical simplex of RI(a), we get a
contradiction with (5.7).

Since the sequence (yn) is bounded, and since (y∗n), (z∗i,n) are also bounded in X∗, we

can take weak∗ limit points y, y∗, z∗i and pass to the limit in (5.8). Thus, we get y ∈ RI(a)
+ ,

y∗ ∈ ∂hf(a), z∗i ∈ ∂higi(a) such that

y∗ +
∑

i∈I(a)

yiz
∗
i = 0.

Hence condition (5.6) is satisfied.

The next example illustrates the corollary; note that since f is not differentiable at a = 0,
[41, page 153] cannot be applied. Since f is not a Plastria function at a, [38, Theorem 10]
cannot be applied either. Moreover, in Example 13 f is not locally Lipschitz at a; thus
[43, Prop. 6.1] and [44, Prop. 6.3] cannot be applied. Finally, let us note the usefulness of
admitting that the bifunction h may differ from the Dini derivatives of f .
Example 12. Let f : R→ R be defined by f(x) = x for x > 0, f(x) = −x2 for x ≤ 0 and
let g1 : R→ R be given by g1(x) = −x. Let h : R× R→ R be given by h(0, u) = |u| for
u ∈ R and let h1 := g′1. Then f is h-pseudoconvex and h(a, ·) ≥ D+f(a, ·) at a = 0 and g1

is colinfine. We can take y1 = 1 as a multiplier since ∂hf(a) = [−1, 1], ∂g1(a) = {−1}.
Example 13. One may take for f a continuous function, for instance f given by f(x) = x
for x > 0, f(x) = −√−x for x ≤ 0, with g1 and h : R× R→ R as in the preceding example.

In convex mathematical programming, the multipliers are the same for all solutions. A
related result has been given in [16] in the case the function f is pseudoaffine, differentiable,
h := f ′ and the functions gi (i ∈ {1, ..., m}) are linear. Here f and gi are nonlinear and even
nonsmooth.

Proposition 5.9. Let a ∈ S be such that there exists y = (yi) ∈ Rm
+ satisfying the optimality

conditions (5.1) and (5.2).

(a) If f is h-colinvex at a and gi is hi-protoconvex at a, then yihi(a, b − a) = 0 for all
i ∈ I(a) and every b ∈ S.



376 N.T. HONG LINH AND J.-P. PENOT

(b) Let f be h-colinvex at a and gi be hi-colinvex at a. Let L be the Lagrangian given by
L(x, z) := f(x) + zg(x) for (x, z) ∈ C ×Rm and let b ∈ C. Then, b ∈ S if, and only if,
yg(b) = 0 and L(a, y) = L(b, y).

Proof. (a) Let b ∈ S. Since f is h-colinvex at a, there exists λ(b, a) ∈ P such that 0 =
f(b)− f(a) ≥ λ(b, a)h(a, b− a). By condition (5.1), one has

∑

i∈I(a)

yihi(a, b− a) ≥ −h(a, b− a) ≥ 0.

On the other hand, since gi is hi-protoconvex at a and for all i ∈ I(a), gi(b) ≤ gi(a) = 0,
one has hi(a, b − a) ≤ 0 for all i ∈ I(a). Hence

∑
i∈I(a) yihi(a, b − a) = 0 and since each

term of the sum is non positive, one has yihi(a, b− a) = 0 for all i ∈ I(a).
(b) Let b ∈ S. Since gi is hi-colinvex at a then there exists µi(b, a) ∈ P such that for any

i ∈ I(a),
gi(b) = gi(b)− gi(a) ≥ µi(b, a)hi(a, b− a).

By (a), y ∈ Rm
+ and b ∈ C, 0 ≥ yg(b) ≥ ∑

i∈I(a) µi(b, a)yihi(a, b− a) = 0 and thus yg(b) = 0
and L(a, y) := f(a) + yg(a) = f(a) = f(b) = f(b) + yg(b) =: L(b, y).

Conversely, let b ∈ C be such that yg(b) = 0 and L(a, y) = L(b, y). Then f(a) =
L(a, y) = L(b, y) = f(b) + yg(b) = f(b), hence b ∈ S.
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(eds.), Springer, New York, , 2005, pp. 195–236.

[41] O.L. Mangasarian, Nonlinear Programming, McGraw-Hill, New York, 1969.



GENERALIZED AFFINE MAPS AND GENERALIZED CONVEX FUNCTIONS 379

[42] J.E. Mart́ınez-Legaz, Quasiconvex duality theory by generalized conjugation methods,
Optimization 19 (1988) 603–652.

[43] J.E. Mart́ınez-Legaz, On lower subdifferentiable functions, in Trends in Mathematical
Optimization, K.H. Hoffmanm at al. (eds), Int. Series Numer. Math. 84, Birkhäuser,
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