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Abstract: Today, many practical smooth nonlinear programming problems are routinely solved by sequen-
tial quadratic programming (SQP) methods stabilized by a monotone line search procedure subject to a
suitable merit function. In case of computational errors as for example caused by inaccurate function or
gradient evaluations, however, the approach is unstable and often terminates with an error message. To re-
duce the number of false terminations, a non-monotone line search is proposed which allows the acceptance
of a step length even with an increased merit function value. Thus, the subsequent step may become larger
than in case of a monotone line search and the whole iteration process is stabilized. Convergence of the new
SQP algorithm is proved assuming exact arithmetic, and numerical results are included. As expected, no
significant improvements are observed if function values are computed within machine accuracy. To model
more realistic and more difficult situations, we add randomly generated errors to function values and show
that a drastic improvement of the performance is achieved compared to monotone line search. This situation
is very typical for complex simulation programs producing inaccurate function values and where, even worse,
derivatives are nevertheless computed by forward differences.
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1 Introduction

We consider the smooth constrained optimization problem to minimize an objective function
f under nonlinear equality and inequality constraints,

minimize f(x)
x ∈ IRn : gj(x) = 0 , j = 1, . . . , me,

gj(x) ≥ 0 , j = me + 1, . . . , m,
(1.1)

where x is an n-dimensional parameter vector. It is assumed that all problem functions
f(x) and gj(x), j = 1, . . . , m, are continuously differentiable on the IRn. Without loss of
generality, bound constraints of the form xl ≤ x ≤ xu are dropped to simplify the notation.

Sequential quadratic programming became a highly popular general purpose method
to solve smooth nonlinear optimization problems during the last 25 years, at least if the
nonlinear program does not possess any special mathematical structure, for example a least
squares objective function, large number of variables with sparsity patterns in derivatives,
etc.
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However, SQP methods are quite sensitive subject to round-off or approximation errors
in function and especially gradient values. If objective or constraint functions cannot be
computed within machine accuracy or if the accuracy by which gradients are approximated
is above the termination tolerance, an SQP code often breaks down with an error message.
In this situation, the line search cannot be terminated within a given number of iterations
and the algorithm stops.

Our proposal makes use of non-monotone line search. The basic idea is to replace the
reference value φk(0) of a line search termination criterion

φk(αk) ≤ φk(0) + µαkφ′k(0) ,

where φk(α) is a suitable merit function with φ′k(0) < 0 at the k-th iterate and µ > 0
a tolerance, by max{φj(0) : j = max(0, k − L), . . . , k}. Thus, we accept larger stepsizes
and are able to overcome situations where the quadratic programming subproblem yields
insufficient search directions because of inaccurate gradients. If, however, the queue length
L is set to 0, we get back the original SQP method with monotone line search.

The proposal is not new and for example described in Dai [5], where a general conver-
gence proof for the unconstrained case is presented. The general idea goes back to Grippo,
Lampariello, and Lucidi [11], and was extended to constrained optimization and trust region
methods in a series of subsequent papers, see Bonnans et al. [2], Deng et al. [6], Grippo et
al. [12, 13], Ke and Han [16], Ke et al. [17], Panier and Tits [19], Raydan [23] and Toint [33].
But there is a basic difference in the methodology: Our numerical results indicate that it
is preferable to allow monotone line searches as long as they terminate successfully, and to
apply a non-monotone one only in an error situation.

To illustrate the usefulness of the non-monotone line search in an error situation, we give
a one-dimensional example here

f(x) =
1
2
x2, x ∈ R1.

In the exact arithmetic situation, Newton’s method will reach the unique minimizer x∗ = 0
in one iteration. Now we assume that the calculations of the second derivative is exact and
there is a relative noise in the caculations of each gradient component. More exactly, we
assume that f ′′(xk) ≡ 1 and f ′(xk) = xk(1 + εk), where εk has the independent normal
distribution N(0, σ2) with σ < 1. In this case, Newton’s method (with the unique step
length) defines the iterates {xk} by

xk+1 = xk − xk(1 + εk) = −εkxk = · · · = (−1)kx1

k∏

i=1

εi.

Since the distribution of
∏k

i=1 εi is N(0, σ2k), we know by this and σ < 1 that xk tends to the
solution x∗ = 0 with probability one. If a non-montone line search is used, the new iterate
xk+1 will be accepted at a large probability which depends on the line search parameter L.
On the contrary, since Newton’s direction is not a descent direction providing that εk ≤ −1,
a satisfactory point cannot be found by a monotone line search.

It is also important to note that there exists an alternative technique to stabilize an
SQP-based nonlinear programming algorithm and to establish global convergence results,
the trust region method. The basic idea is to compute a new iterate xk+1 by a second order
model or any close approximation, where the step size is restricted by a trust region radius.
Subsequently, the ratio of the actual and the predicted improvement subject to a merit
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function is computed. The trust region radius is either enlarged or decreased depending on
the deviation from the ideal value one. A comprehensive review on trust region methods
is given by Conn, Gould, and Toint [4]. Fletcher [9] introduced a second order correction,
for which superlinear convergence can be shown, see also Yuan [34]. Numerical comparisons
of Exler and Schittkowski [8] show that the efficiency in terms of number of function and
gradient evaluations is comparable to an SQP method with line search.

It is not assumed that information about statistical properties of possible noise is avail-
able. Thus, we proceed from the standard version of an SQP algorithm and consider only
the question, what happens if we apply this one to inaccurate function and gradient evalua-
tions. On the other hand, there are proposals to exploit existing information and to modify
an SQP method accordingly, see e.g. Hintermüller [15].

Numerical results are included to test different line search variants. However, there are
nearly no differences of the overall performance in case of providing function and especially
gradient values within machine accuracy. The main reason is that the step length one
satisfies the termination criterion of a line search algorithm in most steps, especially when
approaching a solution, see Schittkowski [26] for a theoretical justification.

Thus, the purpose of the theoretical and numerical investigations of this paper is to show
that non-monotone line search is more robust under side conditions which are often satisfied
in practical situations. If function values are inaccurate and if in addition derivatives are
approximated by a difference formula, standard monotone line search leads to an irregular
termination in many situations, where a non-monotone one terminates successfully because
of accepting larger steps.

In Section 2, we outline an SQP algorithm, especially the quadratic programming sub-
problem, and the used merit function. The non-monotone line search and the new SQP
algorithm are discussed and some convergence results are given following the analysis of
Schittkowski [26] for the monotone case. Section 3 contains some numerical results obtained
for a set of 306 standard test problems of the collections published in Hock and Schit-
tkowski [14] and in Schittkowski [27]. They show the stability of the new algorithm with
respect to the influence of noise in function evaluations. Conclusions and some discussions
about monotone and non-monotone are made at the last section.

2 Analysis of an SQP Algorithm with Non-Monotone Line Search

Sequential quadratic programming or SQP methods belong to the most powerful nonlinear
programming algorithms we know today for solving differentiable nonlinear programming
problems of the form (1.1). The theoretical background is described e.g. in Stoer [32] in
form of a review or in Spellucci [31] in form of an extensive text book. From the more
practical point of view, SQP methods are also introduced in the books of Papalambros,
Wilde [20] and Edgar, Himmelblau [7]. Their excellent numerical performance was tested
and compared with other methods in Schittkowski [25], and since many years they belong
to the most frequently used algorithms to solve practical optimization problems.

The basic idea is to formulate and solve a quadratic programming subproblem in each
iteration which is obtained by linearizing the constraints and approximating the Lagrangian
function

L(x, u) .= f(x)− uT g(x) (2.1)

quadratically, where x ∈ IRn is the primal variable, u ∈ IRm the dual variable, i.e., the
multiplier vector, and where g(x) = (g1(x), . . . , gm(x))T . Assume that xk ∈ IRn is an
actual approximation of the solution, vk ∈ IRm an approximation of the multipliers, and
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Bk ∈ IRn×n an approximation of the Hessian of the Lagrangian function all identified by an
iteration index k. Then a quadratic programming subproblem of the form

minimize 1
2dT Bkd +∇f(xk)T d

d ∈ IRn : ∇gj(xk)T d + gj(xk) = 0 , j ∈ E,

∇gj(xk)T d + gj(xk) ≥ 0 , j ∈ I

(2.2)

is formulated and must be solved in each iteration. Here we introduce index sets E
.=

{1, . . . , me} and I
.= {me + 1, . . . , m}. Let dk be the optimal solution, uk the corresponding

multiplier of this subproblem, and denote by

zk
.=

(
xk

vk

)
, pk

.=
(

dk

uk − vk

)
(2.3)

the composed iterate zk and search direction pk. A new iterate is obtained by

zk+1
.= zk + αkpk , (2.4)

where αk ∈ (0, 1] is a suitable step length parameter.
However, the linear constraints in (2.2) can become inconsistent even if the original

problem (1.1) is solvable. As in Powell [21], we add an additional variable δ to (2.2) and
solve an (n + 1)-dimensional subproblem with consistent constraints.

Another numerical drawback of (2.2) is that gradients of all constraints must be reeval-
uated in each iteration step. But if xk is close to the solution, the calculation of gradients
of inactive nonlinear constraints is redundant. Given a constant ε > 0, we define the sets

I
(k)

1 = {j ∈ I : gj(xk) ≤ ε or v
(j)
k > 0} , I

(k)

2 = I \ I
(k)

1 , (2.5)

vk = (v(1)
k , . . . , v

(m)
k )T , and solve the following subproblem in each step,

minimize 1
2dT Bkd +∇f(xk)T d + 1

2%kδ2

d ∈ IRn, δ ∈ [0, 1] : ∇gj(xk)T d + (1− δ)gj(xk) = 0 , j ∈ E,

∇gj(xk)T d + (1− δ)gj(xk) ≥ 0 , j ∈ I
(k)

1 ,

∇gj(xκ(k,j))T d + gj(xk) ≥ 0 , j ∈ I
(k)

2 .

(2.6)

The indices κ(k, j) ≤ k denote previous iterates where the corresponding gradient has been
evaluated the last time. We start with I

(0)

1
.= I and I

(0)

2
.= ∅ and reevaluate constraint

gradients in subsequent iterations only if the constraint belongs to the active set I
(k)

1 . The
remaining rows of the Jacobian matrix remain filled with previously computed gradients.

We denote by (dk, uk) the solution of (2.6), where uk is the multiplier vector, and by
δk the additional variable to prevent inconsistent linear constraints. Under a standard
regularity assumption, i.e., the linear independency constraint qualification, it is easy to
see that δk < 1. Bk is a positive-definite approximation of the Hessian of the Lagrange
function. For the global convergence analysis presented in this paper, any choice of Bk is
appropriate as long as the eigenvalues are bounded away from zero. However, to guarantee
a superlinear convergence rate, we update Bk by the BFGS quasi-Newton method together
with a stabilization to guarantee positive definite matrices, see Powell [21]. The penalty
parameter %k is required to reduce the perturbation of the search direction by the additional
variable δ as much as possible. A suitable choice is given in [26].
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To enforce global convergence of the SQP method, we have to select a suitable step
length αk, see (2.4), subject to a merit function φk(α). We use the differentiable augmented
Lagrange function of Rockafellar [24],

Φr(x, v) .= f(x)−
∑

j∈E∪I1

(vjgj(x)− 1
2
rjgj(x)2)− 1

2

∑

j∈I2

v2
j /rj , (2.7)

with v = (v1, . . . , vm)T , r = (r1, . . . , rm)T , I1(x, v, r) .= {j ∈ I : gj(x) ≤ vj/rj} and
I2(x, v, r) .= I \I1(x, v, r), cf. Schittkowski [26]. If there is no confusion, we will just denote
I1(x, v, r) and I2(x, v, r) by I1 and I2, respectively. In addition, to simplify the notation, we
mean vj and rj by the j-th coefficients of the vectors v and r, respectively, as one can easily
tell. The merit function is then defined by

φk(α) .= Φrk+1(zk + αpk) , (2.8)

see also (2.3). To ensure that pk is a descent direction of Φrk+1(zk), i.e., that

φ′k(0) = ∇Φrk+1(zk)T pk < 0 , (2.9)

the new penalty parameter rk+1 must be selected carefully. Each coefficient r
(j)
k of rk is

updated by

r
(j)
k+1

.= max

(
σ

(j)
k r

(j)
k ,

2m(u(j)
k − v

(j)
k )

(1− δk)dT
k Bkdk

)
(2.10)

with uk = (u(1)
k , . . . , u

(m)
k )T , vk = (v(1)

k , . . . , v
(m)
k )T and j = 1, . . ., m. The sequence {σ(j)

k } is
introduced to allow decreasing penalty parameters at least in the beginning of the algorithm
by assuming that σ

(j)
k ≤ 1. A sufficient condition to guarantee convergence of {r(j)

k } is that
there exists a positive constant ζ with

∞∑

k=0

[
1− (σ(j)

k )ζ
]

< ∞ (2.11)

for j = 1, . . . , m. The above condition is somewhat weaker than the one in [26] obtained for
ζ = 1.

Typically, the step length αk is chosen to satisfy the Armijo [1] condition

φk(αk) ≤ φk(0) + µαkφ′k(0) , (2.12)

see for example Ortega and Rheinboldt [18], or any other related stopping rule. Since pk

is a descent direction, i.e., φ′k(0) < 0, we achieve at least a sufficient decrease of the merit
function at the next iterate. The test parameter µ must be chosen between 0 and 0.5.

However, practical experience shows that monotonicity requirement (2.12) is often too
restrictive especially in case of very small values of φ′r(0), which are caused by numerical in-
stabilities during the solution of the quadratic programming subproblem or, more frequently,
by inaccurate gradients. To avoid interruption of the whole iteration process, the idea is to
conduct a line search with a more relaxed stopping criterion. Instead of testing (2.12), we
accept a stepsize αk as soon as the inequality

φk(αk) ≤ max
k−l(k)≤j≤k

φj(0) + µαkφ′k(0) (2.13)
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is satisfied, where l(k) is a predetermined parameter with l(k) ∈ {0, . . . ,min(k, L)}, L a
given tolerance. Thus, we allow an increase of the reference value φrjk

(0), i.e. an increase
of the merit function value. For L = 0, we get back the original criterion (2.12).

To implement the non-monotone line search, we need a queue consisting of merit function
values at previous iterates. We allow a variable queue length l(k) which can be adapted by
the algorithm, for example, if we want to apply a standard monotone line search as long as
it terminates successfully within a given number of steps and to switch to the non-monotone
one otherwise.

To summarize, we obtain the following non-monotone line search algorithm based on
quadratic interpolation and an Armijo-type bisection rule which can be applied in the k-th
iteration step of an SQP algorithm.

Algorithm 2.1. Let β, µ with 0 < β < 1 and 0 < µ < 0.5 be given, and let l(k) ≥ 0 be an
integer.

Start: αk,0
.= 1 .

For i = 0, 1, 2, . . . do:
1) If

φk(αk,i) ≤ max
k−l(k)≤j≤k

φj(0) + µ αk,i φ′k(0) , (2.14)

let ik
.= i, αk

.= αk,ik
and stop.

2) Compute ᾱk,i
.=

0.5 α2
k,i φ′r(0)

αk,iφ′r(0)− φr(αk,i) + φr(0)
.

3) Let αk,i+1
.= max(β αk,i, ᾱk,i) .

Corresponding convergence results for the monotone case, i.e., L = 0, are found in
Schittkowski [26]. ᾱk,i is the minimizer of the quadratic interpolation and we use a relaxed
Armijo-type descent property for checking termination. Step 3) is required to prevent too
small step sizes, see above. The line search algorithm must be implemented together with
additional safeguards, for example to prevent violation of bounds and to limit the number
of iterations.

To prove the global convergence of the SQP algorithm, i.e., the approximation of a
Karush-Kuhn-Tucker (KKT) point of (1.1) starting from an arbitrary x0 ∈ IRn, we closely
follow the analysis of Schittkowski [26] for a monotone line search. We assume throughout
this section that the linear independency constraint qualification is satisfied at all Karush-
Kuhn-Tucker points of the nonlinear program (1.1), and at all iterates of the SQP algo-
rithm. This is a standard assumption for proving global and local convergence theorems
and serves to guarantee that the multipliers of the quadratic subproblems are unique and
remain bounded.

An important general assumption is that the feasible domain of the nonlinear program
(1.1) is bounded. However, we dropped additional bounds of the form

xl ≤ x ≤ xu

from (1.1) only to simplify the notation. They can be added to all practical optimization
problems without loss of generality, and are also included in corresponding implementations
of SQP methods. Since bounds are transformed directly to bounds of the quadratic pro-
gramming subproblem (2.6), subsequent iterates will also satisfy them and, moreover, the
subproblem is always uniquely solvable.
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The subsequent theorem will be fundamental for the convergence analysis, which is taken
from [26] and which does not depend on the new line search procedure. It shows that the
search direction computed from (2.6) is a descent direction of the merit function φk(α), i.e.
that φ′k(0) < 0, and that therefore the line search is well-defined. Moreover, it is possible to
show that there is a sufficiently large decrease of the merit function from which the global
convergence can be derived.

Theorem 2.2. Let xk, vk, dk, δk, uk, Bk, rk, %k, and Ī
(k)
1 be given iterates of the SQP

algorithm under consideration, k ≥ 0, and assume that there are positive constants γ and δ̄
with

(i) dT
k Bkdk ≥ γ‖dk‖2 for some γ ∈ (0, 1] and all k,

(ii) δk ≤ δ̄ < 1 for all k,

(iii) %k ≥ 1
γ(1− δ̄)2

‖∑
j∈Ī

(k)
1

v
(j)
k ∇gj(xk)‖2 for all k.

Then

φ′k(0) = ∇Φrk+1(xk, vk)T

(
dk

uk − vk

)
≤ −1

4
γ‖dk‖2 . (2.15)

Any properties of a quasi-Newton update formula for Bk are not exploited to get the
sufficient decrease property. The only requirement for the choice of Bk is that the eigenvalues
of this positive definite matrix remain bounded away from zero. In the extreme case, Bk = I
and γ = 1 satisfy (i).

It is shown in Lemma 4.4 of [26] that

αk,i+1 ≤ max
(

β,
1

2(1− µ)

)
αk,i (2.16)

for φ′k(0) < 0 and an iteration sequence {αk,i} of the line search algorithm, whenever (2.14)
is not valid for an i ≥ 0. Since αk,i → 0 for i → ∞ and φ′k(0) < 0 is impossible without
violating (2.14), we get also the finite termination of the line search procedure 2.1.

Next, the convergence of the penalty parameters rk is shown, see also [26].

Lemma 2.3. Assume that {r(j)
k }k∈N is bounded and σ

(j)
k ≤ 1 for all k. If (2.11) holds for

a ζ > 0, there is a r
(j)
∗ ≥ 0, j = 1, . . ., m, with

lim
k→∞

r
(j)
k = r

(j)
∗ .

Proof. Let R be an upper bound of the penalty parameters. Assume that there are two
different accumulation points r

(j)
∗ and r

(j)
∗∗ of {r(j)

k } with r
(j)
∗ < r

(j)
∗∗ . Then for ε = 1

3 [(r(j)
∗∗ )ζ−

(r(j)
∗ )ζ ] > 0 there exist infinitely many indices k and k + qk with

|(r(j)
k+qk

)ζ − (r(j)
∗ )ζ | ≤ ε, |(r(j)

k )ζ − (r(j)
∗∗ )ζ | ≤ ε .

It follows that

0 < ε = (r(j)
∗∗ )ζ − (r(j)

∗ )ζ − 2ε ≤ −[(r(j)
k+qk

)ζ − (r(j)
k )ζ ] ≤ R

qk−1∑

i=0

[1− (σ(j)
k+i)

ζ ] .
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Since the above inequality is valid for infinitely many k and the right-hand side tends to
zero, we get a contradiction.

The subsequent lemma shows a certain continuity property of the merit function subject
to the penalty parameters.

Lemma 2.4. Assume that Ω ∈ IRm+n is a compact subset and rj ≥ c for a positive constant
c and j ∈ E ∪ I. For any ε > 0, there exists a ξ > 0 such that if |rj − r̃j | < ξ for j ∈ E ∪ I,
then

|Φr(x, v)− Φr̃(x, v)| ≤ ε for all (x, v) ∈ Ω. (2.17)

Proof. Let m > me without loss of generality. Since Ω is a compact subset and all gj(x) is
continuous differentiable, there exists M > 0 such that

|gj(x)| ≤ M, |vj | ≤ M, for all j ∈ E ∪ I and (x, v) ∈ Ω. (2.18)

Denote I1 = I1(x, v, r), I2 = I2(x, v, r), Ĩ1 = I1(x, v, r̃) and Ĩ2 = I2(x, v, r̃). For any ε, we
know from (2.18) and the assumption that there exists ξ > 0 such that if |rj − r̃j | < ξ for
j ∈ E ∪ I. Then

∆1
.=

∣∣∣∣ Φr(x, v)−
[
f(x)−

∑

j∈E∪I1

(vjgj(x)− 1
2
r̃jgj(x)2)− 1

2

∑

j∈I2

v2
j /r̃j

] ∣∣∣∣ ≤
1
2

ε (2.19)

and ∣∣∣∣
1
rj
− r̃j

2 r2
j

− 1
2 r̃j

∣∣∣∣ ≤
ε

2(m−me)R2
. (2.20)

By noting that I1\Ĩ1 = Ĩ2\I2 and Ĩ1\I1 = I2\Ĩ2, we get

∆2
.=

∣∣∣∣ Φr̃(x, v)−
[
f(x)−

∑

j∈E∪I1

(vjgj(x)− 1
2
r̃jgj(x)2)− 1

2

∑

j∈I2

v2
j /r̃j

] ∣∣∣∣

=
[ ∑

j∈I1\Ĩ1

+
∑

j∈Ĩ1\I1

]∣∣∣∣vjgj(x)− 1
2
r̃jgj(x)2 − 1

2
v2

j

r̃j

∣∣∣∣

≤
[ ∑

j∈I1\Ĩ1

+
∑

j∈Ĩ1\I1

]
v2

j

∣∣∣∣
1
rj
− r̃j

2 r2
j

− 1
2 r̃j

∣∣∣∣

≤ (m−me)R2

∣∣∣∣
1
rj
− r̃j

2 r2
j

− 1
2 r̃j

∣∣∣∣

≤ 1
2

ε . (2.21)

The first inequality (2.21) uses the fact that
∣∣vjgj(x)− 1

2 r̃jgj(x)2− 1
2

v2
j

r̃j

∣∣ achieves its maximum

at gj(x) = vj/rj for any j ∈ (I1\Ĩ1) ∪ (Ĩ1\I1). Combining (2.19) and (2.21), we obtain

|Φr(x, v)− Φr̃(x, v)| ≤ ∆1 + ∆2 ≤ ε , (2.22)

which completes our proof.

The non-monotone line search makes use of a bounded length of the queue of known
merit function values. Basically, the situation can be illustrated by the subsequent lemma
from which a contradiction is later derived.
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Lemma 2.5. For any constant ε > 0 and a positive integer L, consider a sequence {sk :
k = 0, 1, 2, . . .} of real numbers satisfying

sk+1 ≤ max
k−L≤i≤k

si − ε , for all k ≥ L. (2.23)

Then sk tends to −∞ as k →∞.

Proof. We show by induction that

sk+j ≤ max
k−L≤i≤k

si − ε (2.24)

for all k ≥ L holds, j ≥ 0. (2.23) implies that (2.24) holds with j = 0. Assume that
(2.24) is true for j = 1, . . . , j0. Then by (2.23) with k replaced by k + j0 and the induction
assumption, we get

sk+j0+1 ≤ max
k+j0−L≤i≤k+j0

si − ε

≤ max
{

max
k≤i≤k+j0

si, max
k−L≤i≤k

si

}
− ε

≤ max
k−L≤i≤k

si − ε . (2.25)

Thus, (2.24) is true with j = j0 + 1. By induction, we know that (2.24) holds for all j ≥ 0.
Let ψ(j) .= max{si : jL ≤ i ≤ (j + 1)L} for all j ≥ 0. By (2.24) and the definition of ψ(j),
we conclude that

ψ(j + 1) ≤ ψ(j)− ε (2.26)

holds and that
ψ(j) ≤ ψ(0)− j ε for all j ≥ 1, (2.27)

which implies that ψ(j) and hence sk tend to −∞.

Now we prove the following main convergence result, a generalization of Theorem 4.6 in
[26].

Theorem 2.6. Let xk, vk, dk, δk, uk, Bk, rk, %k, and Ī
(k)
1 be given iterates of the SQP

algorithm, k ≥ 0. Assume that there are positive constants γ and δ̄ with

(i) dT
k Bkdk ≥ γ‖dk‖2 for all k,

(ii) δk ≤ δ̄ < 1 for all k,

(iii) %k ≥ 1
γ(1− δ̄)2

‖∑
j∈Ī

(k)
1

v
(j)
k ∇gj(xk)‖2 for all k,

(iv) {xk}, {dk}, {uk}, and {Bk} are bounded.

Then for any small ε > 0 there exists a k ≥ 0 with

a) ‖dk‖ ≤ ε,

b) ‖R−1/2
k+1 (uk − vk)‖ ≤ ε.
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The assumptions are not restrictive at all. Since upper and lower bounds can be added
without loss of generality, all iterates xk remain bounded, thus also all dk, and, because
of the constraint qualification, also all multipliers uk. This condition also guarantees that
the additional variables δk introduced to avoid inconsistent linearized constraints, remain
bounded away from one. Assumption (iii) is satisfied by choosing a sufficiently large penalty
factor %k.

Proof. First note that the boundedness of {uk} implies the boundedness of {vk}, since
αk ≤ 1 for all k. To show a), let us assume that there is an ε > 0 with

‖dk‖ ≥ ε (2.28)

for all k. From the definition of rk+1, k > 0, we obtain either r
(j)
k+1 ≤ σ

(j)
0 r

(j)
0 or

r
(j)
k+1 ≤

2m(u(j)
k∗ − v

(j)
k∗ )2

(1− δk∗)dT
k∗Bk∗dk∗

≤ 2m(u(j)
k∗ − v

(j)
k∗ )2

(1− δ) γ ε2

for some k∗ ≤ k, j = 1, ..., m. Since uk and therefore also vk are bounded, we conclude that
{rk} remains bounded and Lemma 2.3 implies that there is some r > 0 with

lim
k→∞

rk = r . (2.29)

Now consider an iteration index k and introduce again the compound vectors zk for the
iterates and pk for the search direction, see (2.3). Then by Theorem 2.2,

Φrk+1(zk+1) ≤ max
k−l(k)≤i≤k

Φri+1(zi) + µαk∇Φrk+1(zk)T pk

≤ max
k−l(k)≤i≤k

Φri+1(zi)− 1
4
µαkγ‖dk‖2

< max
k−l(k)≤i≤k

Φri+1(zi)− 1
4
µγε2αk . (2.30)

Next we have to prove that αk cannot tend to zero. Since all functions defining Φr are
continuously differentiable, rk+1 is bounded, and zk, pk remain in a compact subset of
IRn+m, we can find an ᾱ > 0 with

|∇Φrk+1(zk + αpk)T pk −∇Φrk+1(zk)T pk| ≤ ‖∇Φrk+1(zk + αpk)−∇Φrk+1(zk)‖‖pk‖
≤ 1

4 (1− µ) γ ε2

(2.31)
for all α ≤ ᾱ and for all k. Using the mean value theorem, (2.31), Theorem 2.2 and (2.28),
we obtain for all α ≤ ᾱ and k ≥ 0

Φrk+1(zk + αpk)−maxk−l(k)≤i≤k Φri+1(zi)− µα∇Φrk+1(zk)T pk

≤ Φrk+1(zk + αpk)− Φrk+1(zk)− µα∇Φrk+1(zk)T pk

= α∇Φrk+1(zk + ξkαpk)T pk − µα∇Φrk+1(zk)T pk

≤ α∇Φrk+1(zk)T pk + 1
4 α (1− µ) γ ε2 − µα∇Φrk+1(zk)T pk

≤ − 1
4 α(1− µ) γ ‖dk‖2 + 1

4 α (1− µ) γ ε2

≤ 0 .

(2.32)
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In the above equation, ξk ∈ [0, 1) depends on k. The line search algorithm guarantees that

αk,ik−1 ≥ ᾱ ,

since otherwise αk,ik−1 would have satisfied the stopping condition (2.13). Furthermore

αk = αk,ik
≥ βαk,ik−1 > βᾱ .

It follows from (2.30) that

Φrk+1(zk+1) ≤ max
k−l(k)≤i≤k

Φri+1(zi)− 2 ε̄ (2.33)

for ε
.= 1

8µγε2βᾱ. Now we consider the difference Φrk+2(zk+1)−Φrk+1(zk+1). Since rk+1 →
r∗ > 0 as k → ∞, gj(xk) and vk are bounded, we know by Lemma 2.4 that there exists
some integer k0 such that

Φrk+2(zk+1)− Φrk+1(zk+1) ≤ ε̄ for all k ≥ k0. (2.34)

By (2.33), (2.34) and l(k) ≤ L, we obtain

Φrk+2(zk+1) ≤ max
k−L≤i≤k

Φri+1(zi)− ε̄ (2.35)

for all sufficiently large k. Thus, we conclude from Lemma 2.5 that Φrk+1(zk) tends to −∞.
This is a contradiction to the fact that {Φrk+1(zk)} is bounded below and proves statement
a). Statement b) follows from the corresponding proof for the monotone case, see [26].

A direct conclusion is under the assumptions of Theorem 2.6 there exists an accumulation
point (x∗, u∗) of {(xk, uk)} satisfying the Karush-Kuhn-Tucker conditions for problem (1.1).

3 Numerical Results

We add now lower and upper bounds to the nonlinear program (1.1) as was implicitly
assumed in the previous section for getting bounded iterates,

minimize f(x)
x ∈ IRn : gj(x) = 0 , j = 1, . . . , me,

gj(x) ≥ 0 , j = me + 1, . . . , m,
xl ≤ x ≤ xu .

(3.1)

Our numerical tests use the 306 academic and real-life test problems published in Hock and
Schittkowski [14] and in Schittkowski [27]. Part of them are also available in the CUTE
library, see Bongartz et al [3], and their usage is described in Schittkowski [28]. The test
problems represent many possible difficulties observed in practice, ill-conditioning, badly
scaled variables and functions, violated constraint qualification, numerical noise, non-smooth
functions, or multiple local minima. All examples are provided with exact solutions, either
known from analytical solutions or from the best numerical data found so far. However,
since most problems are non-convex, we only know of the existence of one local minimizer.
Thus, the SQP code might terminate at a better local minimizer without knowing whether
this is a global one or not.

The goal is to test different line search variants of the SQP algorithm under an evaluation
scheme which is as close to practical situations as possible. Thus, we approximate deriva-
tives numerically by simple forward differences, although analytical derivatives for most test
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problems are available. Real-life applications often lead to very noisy or inaccurate function
values, which even deteriorate the accuracy by which gradients are computed. Gradients
are approximated by forward differences

∂

∂xi
f(x) ≈ 1

ηi

(
f(x + ηiei)− f(x)

)
. (3.2)

Here ηi = η max(10−5, |xi|) and ei is the i-th unit vector, i = 1, . . . , n. The tolerance η is set
to η = ηm

1/2, where ηm is a guess for the accuracy by which function values are computed,
i.e., either machine accuracy or an estimate of the noise in function computations. In a
similar way, derivatives of constraints are computed.

The Fortran implementation of the SQP method introduced in the previous section, is
called NLPQLP, see Schittkowski [30]. Functions and gradients must be provided by reverse
communication and the quadratic programming subproblems are solved by the primal-dual
method of Goldfarb and Idnani [10] based on numerically stable orthogonal decompositions,
see also Powell [22] and Schittkowksi [29]. NLPQLP is executed with termination accuracy
10−7 and the maximum number of iterations is 500. The number of line search steps is
limited by 15 and the stopping condition (2.12) uses µ = 0.1.

The Fortran codes are compiled by the Intel Visual Fortran Compiler, Version 9.0, under
Windows XP64 and are executed on an AMD Opteron 64 bit with 4 MB memory. Total
calculation time for solving all test problems is about 1 sec.

First we need a criterion to decide, whether the result of a test run is considered as a
successful return or not. Let ε > 0 be a tolerance for defining the relative accuracy, xk

the final iterate of a test run, and x? a known local solution. Then we call the output
a successful return, if the relative error in the objective function is less than ε and if the
maximum constraint violation is less than ε2, i.e. if

f(xk)− f(x?) < ε|f(x?)| , if f(x?) <> 0

or
f(xk) < ε , if f(x?) = 0

and
r(xk) .= max(‖g(xk)+‖∞) < ε2 ,

where ‖ . . . ‖∞ denotes the maximum norm and gj(xk)+ .= −min(0, gj(xk)) for j > me and
gj(xk)+ .= gj(xk) otherwise.

We take into account that a code returns a solution with a better function value than the
known one within the error tolerance of the allowed constraint violation. However, there is
still the possibility that an algorithm terminates at a local solution different from the given
one. Thus, we call a test run a successful one, if the internal termination conditions are
satisfied subject to a reasonably small termination tolerance, and if in addition

f(xk)− f(x?) ≥ ε|f(x?)| , if f(x?) <> 0

or
f(xk) ≥ ε , if f(x?) = 0

and
r(xk) < ε2 .

For our numerical tests, we use ε = 0.01, i.e., we require a final accuracy of one per cent.
In the subsequent tables, we use the notation
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nsucc : number of successful test runs (according to above definition)
nfunc : average number of function evaluations for successful test runs
ngrad : average number of gradient evaluations for successful test runs

One gradient computation corresponds to one iteration of the SQP method. The average
numbers of function and gradient evaluations are computed only for the successful test runs.
To test the stability of these formulae, we add some randomly generated noise to function
values in the following way. A uniformly distributed random number r ∈ (0, 1) and a given
error level εerr are used to perturb function values by the factor 1 + εerr(1 − 2r). Non-
monotone line search is applied with a queue size of L = 30, but two different strategies,
and the line search calculations of Algorithm 2.1 are required. We test the following three
situations:

(i) We let l(k) = 0 for all iterations, i.e. for all k. This corresponds to the standard
monotone line search.

(ii) We define l(k) = L for all iterations and get a non-monotone line search with fixed
queue length.

(iii) We let l(k) = 0 for all iterations as long as the monotone line search terminates
successfully. In case of an error, we apply the non-monotone line search with fixed
queue length l(k) = L.

version η = ηm
1/2 η = 10−7

εerr nsucc nfunc ngrad nsucc nfunc ngrad

(i) 0 301 31 20 301 31 20
10−12 298 37 21 300 40 22
10−10 296 41 21 281 52 22
10−8 279 47 20 205 56 20
10−6 253 52 18 45 58 9
10−4 208 54 15 15 52 6
10−2 97 52 12 18 49 5

(ii) 0 300 29 23 301 29 23
10−12 296 31 25 300 40 33
10−10 299 42 32 295 105 90
10−8 296 57 48 253 151 128
10−6 296 107 75 118 234 156
10−4 284 137 103 96 314 113
10−2 252 154 116 71 212 61

(iii) 0 303 33 20 303 69 22
10−12 301 60 23 302 53 26
10−10 300 63 24 295 94 32
10−8 300 80 26 274 136 28
10−6 293 110 28 151 222 17
10−4 280 138 27 132 324 17
10−2 237 167 23 108 360 18

Table 1: Test Results

Table 1 shows the corresponding results for the increasing random perturbations defined
by εerr. The tolerance for approximating gradients, ηm, is set to the machine accuracy in
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case of εerr = 0, and to the random noise otherwise. The last three columns show numerical
results obtained for a fixed tolerance η = 10−7 for the forward difference formula (3.2).

The results are quite surprising and depend heavily on the new non-monotone line search
strategy. First we observe that even in case of accurate function values, the non-monotone
line search with a fixed l(k) = L requires a larger number of iterations. With increasing
noise, the stability is increased by cost of an higher number of iterations. On the other
hand, the flexible strategy to use non-monotone line search only in case of false termination
of the monotone one, is as efficient and reliable as the pure monotone line search in case
of accurate function values, but much more problems can successfully be solved in case of
random noise. We are able to solve 77 % of the test examples even in case of extremely
noisy function values with at most two correct digits, where only one digit of the gradient
values is correct.

The choice of a fixed tolerance η for gradient approximations, i.e., η = 10−7, is an unlikely
worst-case scenario and should only happen in a situation, where a black-box derivative
calculation is used and where a user is not aware of the accuracy by which derivatives
are approximated. Whereas nearly all test runs break down with error messages for the
monotone line search and large random perturbations, the non-monotone line search is still
able to terminate in about 35 % of all test runs, see Table 1.

In case of an increasing number of false terminations, we observe a reduction of the
average number of iterations because of the fact that only the ’simple’ problems could
successfully be solved. When comparing the number of function calls to the number of
iterations, we see that more and more line search steps are needed.

4 Conclusions and Discussions

We present a modification of an SQP algorithm to increase its stability in case of noisy
function values. Numerical tests favor a version where traditional monotone line search is
applied as long as possible, and to switch to a non-monotone one only in case of false termi-
nation. Efficiency and robustness is evaluated over a set of 306 standard test problems. To
represent typical practical environments, gradients are approximated by forward differences.
With the new non-monotone line search, we are able to solve about 80 % of the test examples
in case of extremely noisy function values with at most two correct digits in function and
one correct digit in gradient values.

The non-monotone technique is often used to design optimization algorithms. For descent
methods, the introduction of the non-monotone technique significantly improves the original
monotone algorithm even for highly nonlinear functions, see e.g. Grippo, Lampariello and
Lucidi [11, 12, 13] and Toint [33]. A careful implementation of the non-monotone line search
is indispensable in these situations. For some optimization methods like the Barzilai-Borwein
gradient method and the SQP algorithm based on the L1 merit function, a descent direction
is not guaranteed in each iteration, and usage of a non-monotone line search is mandatory,
see Raydan [23] and Panier and Tits [19]).

In this paper, we found another motivation to investigate non-monotone line search, the
minimization of noisy functions. If the monotone line search fails, the algorithm is often
able to continue and to find an acceptable solution. However, when trying to apply the
non-monotone line search from the beginning, reliability and efficiency become worse.

Our theoretical convergence results assume that there is no noise and they are deducted
from existing ones based on sufficient decrease of a merit function. It is an open question
whether we could get the same convergence results by taking random perturbations into
account for the theoretical analysis.
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