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1 Introduction

We will denote by Rn
+, respectively Rn

++, the set of elements of Rn whose coordinates are
positive, respectively, strictly positive. For x and y in Rn we write x ≤ y if y − x ∈ Rn

+.
If x ≤ y then [x, y] is the set of elements z of Rn such that x ≤ z ≤ y. If x ≤ y the
sets [x, y]\{y}, respectively [x, y]\{x, y} or [x, y]\{x}, will be written [x, y[, respectively,
]x, y[ or ]x, y]. We recall that for n ≥ 1 z ∈ [x, y[ does not imply y − z ∈ Rn

++. Given
arbitrary vectors y1, y2, · · · ym ∈ Rn, we denote by

∨m
i=1 yi, or by y1 ∨ y2 ∨ · · · ∨ ym, the

vector (max1≤i≤m{yi,1}, · · · ,max1≤i≤m{yi,n}). Given a numbered family {B1, · · · , Bm} of
subsets of Rn and a numbered family of real numbers {t1, · · · , tm} we denote by

∨m
i=1 tiBi

the set {∨m
i=1 tixi : ∀i xi ∈ Bi}.

B-convexity made its first appearance in [2]. A subset B of Rn
+ is B-convex if for all

x1, x2, · · ·xm ∈ B and all (t1, t2, · · · , tm) ∈ [0, 1]m such that
max{t1, t2, · · · , tm} = 1 one has t1x1 ∨ t2x2 ∨ · · · ∨ tmxm ∈ B.

As one can easily see a subset B of Rn
+ is B-convex if and only if, for all x1, x2 ∈ B and

all t ∈ [0, 1] one has
tx1 ∨ x2 ∈ B.

Hence all B-convex sets are contractible upper semilattices∗. This property of B-convex
sets is important for matters related to fixed points and selection theorems, as shown for
example in [4] or [6].

The B-convex hulls of two or more points are depicted in the following two figures.
∗A topological space X is contractible if there exists a continuous map h : [0, 1] × X → X such that

h(0,−) : X → X is a constant map and h(1,−) : X → X is the identity map. A subset X of Rn
+ is a

semilattice, more exactly, a sup-semilattice, if X ∨X ⊂ X.
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x1 = (6, 4)

t1x1 = (6t1, 4t1)

x2 = (3/2, 2)

x

x′

Figure 1.1 Construction of the B-convex hull of two points.

Fix x1 = (6, 4) and x2 = ( 3
2 , 2) in R2

+ (see Figure 1.1). The B-convex hull of x1 and
x2 is B[{x1, x2}] =

{
t1x ∨ t2x2 : t1, t2 ≥ 0,max{t1, t2} = 1

}
. Clearly, if t1 = 1 then

t1x1 ∨ t2x2 = (6, 4) ∨ t2( 3
2 , 2) = (6, 4) = x1. Suppose that 0 ≤ t1 ≤ 1, we have:

t1x1 ∨ x2 =





(6, 2) if t1 = 1
(6t1, 4t1) if 1

2 ≤ t1 ≤ 1
(6t1, 2) if 1

4 ≤ t1 < 1
2

( 3
2 , 2) if 0 ≤ t1 ≤ 1
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Figure 1.2 B-convex hulls of 2 points.
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Figure 1.3 B-convex hull of 5 points.

Separation of B-convex sets and the study of Hahn-Banach like properties was initiated
in [3] where the emphasis was on gauges and B-halfspaces. By definition, a B-halfspace, or
simply a halfspace, is a B-convex subset of Rn

+ whose complement in Rn
+ is also B-convex.

The sets {0}, Rn
+ and their complements in Rn

+ are the trivial halfspaces.
It has been shown in [3] that a closed B-convex set is always the intersection of the

closed halfspaces in which it is contained and that separation of disjoint B-convex sets can
be achieved with a class a uniformly continuous maps which are to B-convexity what maps
which are simultaneously quasiconvex and quasiconcave are to the usual linear convexity.

In [3] the structure of halspaces has only been partially elucidated and the analytic
separation theorems presented there can not claim to be complete analogs of the Hahn-
Banach Theorem; gauges introduce infinities and separation is done with quasiaffine like
maps.
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We give a complete geometric description of closed and open halfspaces and we show
that all closed halfspaces H ⊂ Rn

+ containing 0 and having nonempty interior are of the
form

H =
{
x ∈ Rn

+ : ψ(x) ≤ 0
}

with ψ(x) = maxi∈I{aixi}−maxj∈J{aixi, s}, where I and J are disjoint subsets of {1, · · · , n},
(a1, · · · , an) ∈ Rn

+ and s ∈ R+, Theorem 5.2, 6.6 and 7.2.
If the interior of H is empty then there is a third subset K of {1, · · · , n} such that for

all k ∈ K, xk = 0.
We show that closed halfspaces with nonempty interior are equal to the closure of their

interior, which is not the case for arbitrary closed B-convex sets with nonempty interior.
Combining this with the description of closed halfspaces yields the analytic description of
open halfspaces which, with the separation theorem for nonproximate B-convex sets from
[3], results in a Hahn-Banach like theorem for B-convex sets, Theorem 8.1.

From a more general standpoint, which we will not pursued here, Rn
+ is a topological

partially ordered set endowed with a continuous multiplication by positive real numbers.
The topology in question in this paper is of course the induced topology. In R2

+ for example
the vector (0, 1) is in the interior of the set B = {(x1, x2) : x1 ≤ x2}.

Max-Plus convexity is a well known and important example of a nonlinear convexity.
Let Mn =

(
R

⋃{−∞})n and denote by 11n the vector of Rn whose coordinates are all
equal to 1. A subset C of Mn is Max-Plus convex if, for all x and y in C and all
t ∈ [−∞, 0],

(
x + t11n

) ∨ y ∈ C. Max-Plus and B-convexity are examples of Maslov semi-
modules. Idempotent analysis, or the study of Maslov semi-modules, has applications in
optimization, optimal control, and game theory.

In the last section we show how B-convexity and Max-Plus convexity are related to one
another and why all the results presented in the following pages can be interpreted either
in the framework of B-convexity, that is as they are given here, or in the framework of
Max-Plus convexity, after a simple translation.

2 Preliminary Material

We denote by [n] the set {1, · · · , n} and by ‖x‖ the l∞ norm of x ∈ Rn, that is ‖x‖ =
max{|x1|, · · · , |xn|}; the associated metric on Rn

+ is simply denoted by d. For x ∈ Rn
+ the

sets B[x, δ ] = {y ∈ Rn
+ : ‖x− y‖ ≤ δ} and B(x, δ) = {y ∈ Rn

+ : ‖x− y‖ < δ} are B-convex.

Lemma 2.1. For all vectors x, y, x′, y′ in Rn
+ and all µ, ρ in R+:

d(ρx′ ∨ µy′, ρx ∨ µy) ≤ max{ρd(x, x′), µd(y, y′)}
Proof. Since, for all t ≥ 0 and all x and x′ in Rn

+, d(tx, tx′) = td(x, x′) we can assume that
ρ = µ = 1. Also, for all a, b, c, d ∈ R+, |max{a, b} −max{c, d}| ≤ max{|a− c|, |b− d|}.

A map ϕ : Rn
+ → R+ is a B-convex map if, for all x, y ∈ Rn

+ and all ρ, µ ∈ [0, 1] such
that max{ρ, µ} = 1, ϕ(ρx ∨ µy) ≤ max{ρϕ(x), µϕ(y)}.

The following lemma says that the distance function to a closed set B ⊂ Rn
+ is a B-convex

map if and only if B is a B-convex set.

Lemma 2.2. If a non empty subset B of Rn
+ is B-convex then, for all x, y ∈ Rn

+ and for all
ρ, µ ∈ [0, 1] such that max{ρ, µ} = 1, the following inequality holds

(?) d(ρx ∨ µy, B) ≤ max{ρd(x,B), µd(y, B)}.
Furthermore, if (?) holds and if B is closed then it is B-convex.
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Proof. For ε > 0 choose xε and yε in B such that d(x,B) > d(x, xε) − ε and d(y, B) >
d(y, yε)− ε. If B is B-convex then ρxε ∨ µyε ∈ B therefore

d(ρx ∨ µy, B) ≤ d(ρx ∨ µy, ρxε ∨ µyε).

From Lemma 2.1 we have

(]) d(ρx ∨ µy, ρxε ∨ µyε) ≤ max{ρd(x, xε), µd(y, yε)}
≤ max{ρd(x,B) + ρε, µd(y, B) + µε}.

From (]) and taking into account that ε was arbitrary we obtain (?).
If inequality (?) holds and if the right hand side is zero then the left hand side is also

zero. This shows that B is B-convex if it closed and (?) holds.

Proposition 2.3. The interior and the closure of a B-convex set are B-convex sets, the
interior and the closure of a halfspace are halfspaces.

Proof. If B is a B-convex set then inequality (?) of Lemma 2.2 holds, the distance of a point
to a set is identical to the distance to the closure of the set. The second part of Lemma
2.2 implies that B is a B-convex set. One could have reached the same conclusion using the
continuity of the map (x, y) 7→ x ∨ y.

If x and y are in the interior of B we can choose δ > 0 such that B(x, δ) ⊂ B and
B(y, δ) ⊂ B. For a fixed, but arbitrary t ∈]0, 1] we have to show that tx ∨ y belongs to the
interior of B. We have tB(x, δ) ∨ B(y, δ) ⊂ B, since B is B-convex. We show that there
exists η > 0 such that B(tx ∨ y, η) ⊂ tB(x, δ) ∨B(y, δ). Let

I+ = {i ∈ [n] : txi < yi}
I− = {i ∈ [n] : txi > yi}
I0 = {i ∈ [n] : txi = yi}

Choose η > 0 such that:

η < tδ
∀i ∈ I+ yi − η > txi

∀i ∈ I− txi − η > yi

Given w ∈ B(tx ∨ y, η) define two elements u and v of Rn
+ as follows:

ui =
{

xi i ∈ I+

t−1wi i ∈ I− ∪ I0
vi =

{
yi i ∈ I−
wi i ∈ I+ ∪ I0

If i ∈ I+ then |ui − xi| = 0, if i ∈ I− ∪ I0 then max{txi, yi} = txi and, from w ∈
B(tx ∨ y, η), |ui − xi| < t−1η. This shows that u ∈ B(x, δ).

If i ∈ I− then |vi−yi| = 0, if i ∈ I+∪I0 then max{txi, yi} = yi and, from w ∈ B(tx∨y, η),
|vi − yi| < η. This shows that v ∈ B(y, δ).

To conclude this part of the proof let us see that w = tu ∨ v. We have

(tu ∨ v)i =





max{txi, wi} if i ∈ I+

max{yi, wi} if i ∈ I−
wi if i ∈ I0

For i ∈ I+ we have yi−η > txi and max{txi, yi} = yi. Furthermore, from w ∈ B(tx∨y, η),
wi > max{txi, yi} − η, and therefore, for i ∈ I+, max{txi, wi} = wi. Similarly, for i ∈ I−,
max{yi, wi} = wi.

If H ⊂ Rn
+ is a B-halfspace then H as well as int

(
Rn

+ \H
)

are B-convex. This proves that
H is a halfspace since int

(
Rn

+ \H
)

= Rn
+ \H. Similarly, intH and

(
Rn

+ \H
)

= Rn
+ \ intH

are B-convex.
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Proposition 2.3, or at least the results it contains, can also be found, with a somewhat
different proof in [2].

Lemma 2.4. A subset B of Rn
+ containing 0 is B-convex if and only if it is a semilattice

which is starshaped † at 0 .

Proof. If B is starshaped at 0 then, for all t ∈ [0, 1] and all x ∈ B, tx ∈ B; if B is also a
semillatice then one also has, for all y ∈ B, tx∨ y ∈ B. This shows that a semilattice which
is starshaped at 0 is B-convex.

Reciprocally, if B is B-convex and contains 0 then, for all t ∈ [0, 1] and all x ∈ B,
0 ∨ (tx) ∈ B; but 0 ∨ (tx) = tx. This shows that B is starshaped at zero. Furthermore,
taking t = 1 in the definition of a B-convex set we have, for all x and y in B, x ∨ y ∈ B.

We recall that an element x? of a set B ⊂ Rn
+ is a maximal element of B if for all

y ∈ B\{x?} it is false that x? ≤ y. An element x? of B is a largest element if, for all
y ∈ B, y ≤ x?. A set B has at most one largest element but it can have many maximal
elements.

Lemma 2.5. A nonempty compact B-convex subset of Rn
+ has a largest element.

Proof. Since B ⊂ Rn
+ is compact there is a point x? ∈ B such that

∑n
i=1 x?

i = max
{∑n

i=1 xi :

x ∈ B
}

. For all x ∈ B we have x?∨x ∈ B and therefore
∑n

i=1 x?
i ≥

∑n
i=1 max{x?

i , xi}. From

x?∨x ≥ x? we also have
∑n

i=1 max{x?
i , xi} ≥

∑n
i=1 x?

i and consequently
∑n

i=1 max{x?
i , xi} =∑n

i=1 x?
i . Since all the quantities involved are non negative we must have, for all i ∈ [n],

x?
i = max{x?

i , xi}.

6

-
0

c

{(x1, x2) : x2 −max{ax1, c} ≤ 0}

x1

x2

Figure 2.1 A functional Representation of a Halfspace.

Lemma 2.6. A halfspace B of Rn
+ has nonempty interior if and only if B ∩ Rn

++ 6= ∅.
Proof. One implication is obvious, since Rn

+\Rn
++ has empty interior. To prove the nontrivial

part, let u = (u1, · · · , un) ∈ B ∩ Rn
++. Firts we show that :

(?)
{

(1) either, for all t > 0, (u1 + t, u2, · · · , un) ∈ B or
(2) for all s ∈]0, u1[, (u1 − s, u2, · · · , un) ∈ B

If neither (1) nor (2) is the case then there exist t0 > 0 and s0 ∈]0, u1[ such that x =
(u1 + t0, u2, · · · , un) ∈ Rn

+ \B and y = (u1−s0, u2, · · · , un) ∈ Rn
+ \B. Let ρ = u1(u1 + t0)−1,

†B is starshaped at 0 if, for all x ∈ B and all t ∈ [0, 1], tx ∈ B.
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it belongs to [0, 1], and since Rn
+ \B is B-convex we must have ρx ∨ y ∈ Rn

+ \B. But
ρx ∨ y = (u1, u2, · · · , un) which is in B. This proves (?).

If (1) holds put v1 = 2u1, if (2) holds put v1 =
u1

2
and set δ1 =

u1

4
. Then, in either

case, and for all r ∈ [0, δ1], (v1 ± r, u2, · · · , un) ∈ B. We apply the same procedure to
(v1, u2, · · · , un), but with respect to the second coordinate, to find v2 > 0 and δ2 > 0 such
that, for all r ∈ [0, δ2], (v1, v2 + r, u3, · · · , un) ∈ B. Iterating this procedure we obtain
(v1, · · · , vn) ∈ B and δ > 0 such that, for all i ∈ [n] and for all r ∈ [0, δ], (v1, · · · , vi +
r, · · · , vn) ∈ B. From the B-convexity of B, if (r1, · · · , rn) ∈]0, δ[n then

∨n
i=1(v1, · · · , vi +

ri, · · · , vn) ∈ B. Let

U =
{

(v1 + r1, · · · , vi + ri, · · · , vn + rn) : (r1, · · · , rn) ∈]0, δ[n
}

.

We have shown that U is contained in B and U is clearly open.

Given a subset I = {i1 < · · · < ik} of [n] let I ′ = [n] \I, and R(n,I)
+ = {x ∈ Rn

+ : xj =
0 if j ∈ I ′}. We have R(n,∅)

+ = {0} and R(n,[n])
+ = Rn

+. With |I| equal to the cardinality

of I one can naturally identify R(n,I)
+ with R|I|+ and Rn

+ with R(n,I)
+ × R(n,I′)

+ . We will be
somewhat careless about the difference, unless there is a risk of confusion and since, in most
discussions, the dimension n will be fixed, we will use RI

+ instead of R(n,I)
+ ; RI

++ is {x ∈ RI
+ :

mini∈I xi > 0}. For all x ∈ Rn
+ we have a unique decomposition x = xI′ + xI , where xI is

the projection of x on RI
+ and xI′ is the projection of x on RI′

+ . Obviously, x = xI′ ∨xI and
‖x‖ = max{‖xI′‖, ‖xI‖}. For all J ⊂ [n] and for all w ∈ RJ

+ we have w = wJ , consequently,
whenever it might help in keeping track of the ongoing calculations, arbitrary elements of
RJ

+ will be, indifferently denoted by small case letters u, v, w, · · · without subscripts or with
small case letters with the appropriate subscripts uJ , vJ , wJ , · · · . For example, if n = 5
and I = {1, 3} then R(5,I)

+ = {(x1, x2, x3, x4, x5) ∈ R5
+ : (x2, x4, x5) = (0, 0, 0)}. And, for

arbitrary x = (x1, x2, x3, x4, x5) ∈ R5
+, xI = (x1, 0, x3, 0, 0) and xI′ = (0, x2, 0, x4, x5).

Proposition 2.7. If B ⊂ Rn
+ is a nonempty halfspace then there is a unique subset I ⊂ [n]

such that B ⊂ RI
+ and B is a halfspace in RI

+ with (relative) nonempty interior.

Proof. If B has nonempty interior then, by Lemma 2.6 B ∩ Rn
++ 6= ∅ and therefore I = [n].

If B has empty interior then, for all y ∈ B, the set I(y) = {i ∈ [n] : yi > 0} is not [n]. Let
I =

⋃
y∈B I(y). For all y ∈ B we have y ∈ RI(y)

+ and therefore B ⊂ RI
+. For all i ∈ I there

exists y(i) ∈ B such that y
(i)
i > 0, using the B-convexity of B we obtain

∨
i∈I y(i) ∈ B from

which it follows that B ∩ RI
++ 6= ∅ and, as a subset of RI

+, B is B-convex. To complete the
proof we have to see that RI

+ \B is a B-convex subset of RI
+, which is a consequence of the

B-convexity of RI
+ and of Rn

+ \B.

By definition, the cardinality of the set I from Proposition 2.7 is the dimension of the
halfspace.

The following proposition shows that the sets described in the introduction are indeed
halfspaces. Much of the remaining work will aim at showing that closed halfspaces containing
0 are of that form, this is the content of Theorems 7.2.

Proposition 2.8. Given u, v ∈ Rn
+, and r, s ∈ R+, let, for x ∈ Rn

+,

θ(x) = max
j∈[n]

{ujxj , r} −max
i∈[n]

{vixi, s} .

Then, for all positive real number λ the sets
{
x ∈ Rn

+ : θ(x) ≤ λ
}

and
{
x ∈ Rn

+ : θ(x) < λ
}

are, respectively, closed and open B-convex subsets of Rn
+. For λ = 0 they are halfspaces.
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Proof. That those sets are either closed or open follows from the continuity of θ.
Since an intersection B-convex sets is B-convex and each uj is either 0 or strictly positive

showing that sets of the form
{
x ∈ Rn

+ : xj ≤ maxi∈[n] {vixi, s} + λ
}

or
{
x ∈ Rn

+ : r ≤
maxi∈[n] {vixi, s}+ λ

}
are B-convex will prove that

{
x ∈ Rn

+ : θ(x) ≤ λ
}

is B-convex.
This can be done using three properties, namely, associativity of the max operation,

distributivity of multiplication by of positive scalar ρ over the max operation and max{a +
λ, b + λ} = max{a, b}+ λ. Details are left to the reader.

Similarly,
{
x ∈ Rn

+ : θ(x) < λ
}

is B-convex since sets of the form
{
x ∈ Rn

+ : xj <

maxi∈[n] {vixi, s}+ λ
}

or
{
x ∈ Rn

+ : r < maxi∈[n] {vixi, s}+ λ
}

are B-convex.

For λ > 0 the set
{
x ∈ Rn

+ : θ(x) ≤ λ} is generally not a halfspace. For example,{
(x1, x2) ∈ R2

+ : x2 − x1 ≤ 1} is B-convex but is not a halfspace, since
{
(x1, x2) ∈ R2

+ :
x2−x1 > 1} is not B-convex as one can see with x = (1, 3), x′ = (10, 12), for which we have
x2 − x1 > 1 but x ∨ (1/4)x′ = (5/2, 3) for which we have x2 − x1 = (1/2).

This does not mean that, for λ > 0, the set
{
x ∈ Rn

+ : θ(x) ≤ λ} is never a halfspace.
Indeed, as one can easily check,

{
(x1, x2) ∈ R2

+ : max{x1, x2} ≤ 1
}

is a halfspace.
If r = s = 0 then the sets

{
x ∈ Rn

+ : θ(x) ≤ 0
}

from Proposition 2.8 are cones ‡. The
set

{
(x1, x2) ∈ R2

+ : max{x1, x2} ≤ 1
}

is a two dimensional cube. As we will see, closed
halfspaces containing 0 can be decomposed in two parts, both halfspaces, one of which is a
cone the other one being either a cube or the cartesian product of a lower dimensional cube
with halflines.

3 Bounded Halfspaces

For x ∈ Rn
+ we denote by Rx the set {tx : t ≥ 1}; if x 6= 0 we call Rx the ray with vertex

x. A bounded set cannot contain a ray, but a set, even a B-convex set can be unbounded
and be without ray (consider in R2

+ the vertical line through the point (1, 0)). We will see
that a halfspace that does not contain a ray is bounded.

Lemma 3.1. (1) Suppose B ⊂ Rn
+ is B-convex and x ∈ Rn

+. Then x ∈ B if and only if
B

⋂Rx 6= ∅ and B
⋂

[0, x] 6= ∅.
(2) If A ⊂ Rn

+ has complement that is B-convex then, for all x ∈ A, either Rx ⊂ A or
[0, x] ⊂ A.

Proof. (1) One implication is trivial, if x ∈ B then x ∈ B
⋂Rx

⋂
[0, x]. Assume that

B
⋂Rx 6= ∅ and B

⋂
[0, x] 6= ∅. There exists t ≥ 1 such that tx ∈ B and y ≤ x with y ∈ B.

Therefore, x = x ∨ y = t−1(tx) ∨ y and t−1(tx) ∨ y ∈ B since B is B-convex.
(2) Let x ∈ A such that Rx is not contained in A. Since [Rn

+ \A]
⋂Rx 6= ∅ and Rn

+ \A is
B-convex we cannot have, from (1), [Rn

+ \A]
⋂

[0, x] 6= ∅.

Proposition 3.2. A halfspace B ⊂ Rn
+ is bounded if and only if it contains no ray.

Proof. We prove that a halfspace which contains no ray is bounded. First, a nonempty
halfspace which contains no ray contains 0. Indeed, if 0 ∈ Rn

+ \B take an arbitrary x in B
and a t > 1 such that tx ∈ Rn

+ \B; then x = 0 ∨ t−1(tx) would be in Rn
+ \B.

If B is a halfspace which contains no ray then, for all i ∈ [n], there exists βi ≥ 1 such
that βiei ∈ Rn

+ \B. Notice that if t ≥ βi then tei is also in Rn
+ \B, otherwise, from 0 ∈ B,

tei ∈ B and 0 < βit
−1 ≤ 1 we would have 0 ∨ (βit

−1)(tei) ∈ B. Let x? =
∨

i∈[n] βiei;

‡A set B ⊂ Rn
+ is a cone if tB ⊂ B for all t > 0.
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We have x? ∈ Rn
+ \B. Let us see that B ⊂ [0, x?]. If x 6∈ [0, x?] then, for at least one

index i0 ∈ [n], xi0 > βi0 and therefore xi0ei0 ∈ Rn
+ \B. If x were also in B, we would have

[0, x] ⊂ B, since Rx is not contained in B by hypothesis, and, from xi0ei0 ≤ x, we would
also have xi0ei0 ∈ B.

Proposition 3.3. B ⊂ Rn
+ is a closed nonempty bounded halfspace if and only if there exists

u? ∈ Rn
+ such that B = [0, u?]. Furthermore, intB 6= ∅ if and only if u? ∈ Rn

++

Proof. Since [0, u?] is a semilattice which is starshaped at 0 it is B-convex. If y ∈ Rn
+ \

[0, u?] then yk > u?
k for at least one index k ∈ [n]. Since, for all t ∈ [0, 1] and x ∈ Rn

+,
max{txk, yk} ≥ yk we conclude that Rn

+\[0, u?] is also B-convex.
Now, let B ⊂ Rn

+ be a closed and bounded halfspace. By (2) of Lemma 3.1 and by
Proposition 3.2 we have, 0 ∈ B and, for all x ∈ B, [0, x] ⊂ B. By Lemma 2.5 has a largest
element u?. We have seen that [0, u?] ⊂ B and we have B ⊂ [0, u?] from the definition of a
largest element. The last part is trivial.

4 Downward and Conical Halfspaces

A subset A of Rn
+ is downward if, for all x ∈ A, [0, x] ⊂ A. As we have seen in the proof

of Proposition 3.2, a halfspace containing no ray is downward. For an arbitrary subset A of
Rn

+ the set
⋃

a∈A[0, a] is the smallest downward set containing A, it is denoted by ↓A. From
the definition we have

↓A = {x ∈ Rn
+ : ∃a ∈ A s.t. x ≤ a} =

⋃

a∈A

↓{a}.

Lemma 4.1. The closure of a downward set of Rn
+ is a downward set.

Proof. Assume that A =↓A and let u be an element of the closure of A. Let I = {i ∈ [n] :
ui > 0} and I ′ = [n]\I. Let y be an arbitrary element of ↓{u}. We show that y ∈ A. Let
I1 = {i ∈ I : yi < ui} and I2 = {i ∈ I : yi = ui}. Notice that for i ∈ I ′ yi = ui = 0.

Let ε0 = min{yi : 0 < yi}. For all ε ∈]0, ε0[ there exists a[ε] ∈ A such that




0 ≤ a
[ε]
i < ε if i ∈ I ′

yi < a
[ε]
i − ε < ui < a

[ε]
i + ε if i ∈ I1

yi − ε < a
[ε]
i < yi + ε if i ∈ I2

If, for all ε ∈]0, ε0[, one defines y[ε]: as follows:
{

y
[ε]
i = 0 if i ∈ I ′

y
[ε]
i = yi − ε if i ∈ I

then y[ε] ∈↓{a[ε]}. From a[ε] ∈ A and ↓ A = A we have y[ε] ∈ A. This shows that y ∈ A.

A subset A of Rn
+ is radial if, for all a ∈ A, Ra ⊂ A; it is conical if, for all a ∈ A,

{ta : t ∈ R++} ⊂ A. Clearly, a set A which is starshaped at 0 is conical if and only if it is
radial and a closed conical set always contains 0. Also, if A is conical then its closure A in
Rn

+ and its complement Rn
+\A are conical. From Lemma 2.4, a B-convex set containing 0 is

conical if and only if it is radial.
Given a subset A of Rn

+, let

A∞ = {a ∈ A : Ra ⊂ A} and A0 = A \A∞.

The description of the closed halfspaces of Rn
+ containing 0 will start from the following

lemma, which gives a first and very crude description of their structure.
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Lemma 4.2. If B is a halfspace of Rn
+ containing 0 then B∞ is a conical halfspace con-

taining 0, which could be {0} or B itself; B0 is a B-convex subset of B and (↓B0) is a
halfspace contained in B. Furthermore, if B is closed then B∞ is also closed and, clearly,
B = (↓B0)

⋃
B∞.

Proof. Since B is a halfspace containing 0 we have B∞ = {x ∈ Rn
+ : R+x ⊂ B}. For

s ∈ [0, 1] and t ∈ R+, and arbitrary x and y, t(sx ∨ y) = s(tx) ∨ ty; this shows that B∞ is
B-convex. If x and y do not belong to B∞ then there exists t > 1 such that neither tx nor
ty belong to B (since 0 ∈ B and B is B-convex); Rn

+ \B is also B-convex, therefore, for all
s ∈ [0, 1], t(sx ∨ y) ∈ Rn

+ \B. This shows that Rn
+ \B∞ is B-convex. The B-convexity of B0

follows from its definition B0 = B
⋂

[Rn
+ \B∞] and this easily implies that (↓B0) is B-convex.

Also, Rn
+ \(↓B0) =

⋂
x∈B0

Rn
+ \ [0, x] and, since each [0, x] is a halfspace, Rn

+ \(↓B0) is an
intersection of B-convex sets, and is therefore B-convex.

6

-
0

x1

x2

B

B∞
B0

Figure 2.2 Asymptotic part.

6

-
0

Bdown =↓B0

x1

x2

B

Figure 2.3 Downward part.

To see that B∞ is closed if B is closed consider a converging sequence (xm)m∈N of points
of B∞ and let x̂ be its limit. From B∞ ⊂ B we have x̂ ∈ B. Let t > 0 be an arbitrary
positive real number. For all m ∈ N we have txm ∈ B and therefore tx̂ ∈ B. This shows
that x̂ ∈ B∞.

For a closed halfspace B containing 0 we call B∞ the asymptotic part of B and
Bdown = (↓B0) the downward part of B.

For example, if B = {(x1, x2) ∈ R2
+ : 0 ≤ x1 ≤ 1} then B∞ = {(0, t) : t ∈ R+} and

Bdown = B. If B = {(x1, x2) ∈ R2
+ : x1 ≤ x2 or x2 ≤ 1} then B∞ = {(x1, x2) ∈ R2

+ : x1 ≤
x2} and Bdown = [0, 1]× [0, 1] = {x ∈ R2

+ : x ≤ (1, 1)}.
A closed halfspace B containing 0 for which B = Bdown is a downward halfspace.
A (nonempty) halfspace B which is not reduced to {0} and for which B = B∞ is a

conical halfspace.
Given a subset B of Rn

+ let

Λ(B) = {i ∈ [n] : ei ∈ B} and Λ′(B) = [n]\Λ(B).

The canonical basis of RI
+, where I is a subset of [n], is the subset {ei : i ∈ I} of the

canonical basis of Rn
+ and for B ⊂ RI

+ the set Λ(B) can be interpreted either as a subset
of [n] or as a subset of I, but for Λ′(B) there is a potential ambiguity since [n]\Λ(B) and
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I\Λ(B) are different sets. Using the notation ΛI(B) and Λ′I(B) would avoid this ambiguity.
Since it should be clear from the context which sets we are working with we will use the
simpler notation, without subscript.

A non trivial halfspace§ for which the normality condition below holds is a normal
halfspace.

(Normality) ∀i ∈ Λ(B) ei ∈ int(B)

Lemma 4.3. If B ⊂ Rn
+ is a closed normal conical halfspace with non empty interior then

Rn
+ \B is also a closed normal conical halfspace with non empty interior. Furthermore,

Λ(B) = Λ′
(
Rn

+ \B
)

and Λ′(B) = Λ
(
Rn

+ \B
)
.

Proof. If B ⊂ Rn
+ is a conical halfspace then Rn

+ \B is also a conical halfspace, and so is its
closure. Il the interior of Rn

+ \B is empty then Rn
+ \B ∩ Rn

++ = ∅ and therefore Rn
++ ⊂ B,

and since B is closed, B = Rn
+.

If ei ∈ ∂
(
Rn

+ \B
)

then ei ∈ ∂B, since ∂
(
Rn

+ \B
)

= ∂B. This shows that
(
Rn

+ \B
)

is
normal if B is.

If ei ∈
(
Rn

+ \B
)

then ei 6∈ B, by the normality of B, and therefore Λ
(
Rn

+ \B
)
⊂ Λ′(B).

If ei ∈ Λ′(B) then ei ∈ Rn
+ \B ⊂ Rn

+ \B. We have shown that Λ
(
Rn

+ \B
)

= Λ′(B).

The next lemma tells us how to decompose a halfspace as a supremum of halfspaces of
smaller dimensions.

Given a nontrivial halfspace B ⊂ Rn
+ let, for all j ∈ Λ′(B) and x ∈ Rn

+,

x[j] =
∨

i∈Λ(B)

xiei ∨ xjej = xΛ(B) ∨ xjej and B[j] = {x[j] : x ∈ B}

Lemma 4.4 (Decomposition Lemma). If B ⊂ Rn
+ is a nontrivial halfspace then

(1) B[j] is a B-convex subset of B, B =
∨

j∈Λ′(B) B[j] and, consequently, for all x ∈ Rn
+,

x ∈ B if and only if, for all j ∈ Λ′(B), x[j] ∈ B[j].

(2) B[j] is a halfspace in RΛ(B)∪{j}
+ for which Λ(B[j]) = Λ(B) and Λ′(B[j]) = {j}.

(3) (a) If B is a closed conical halfspace in Rn
+ then, for all j ∈ Λ′(B), B[j] is a closed

conical halfspace in RΛ(B)∪{j}
+ ;

(b) an arbitrary point x ∈ Rn
+ is in the (relative) interior of B in Rn

+ if and only if,
for all j ∈ Λ′(B), x[j] is in the (relative) interior of B[j] in RΛ(B)∪{j}

+ .

(c) if B is a closed normal conical halfspace with nonempty interior in Rn
+ then, for

all j ∈ Λ′(B), B[j] a closed normal conical halfspace with nonempty interior in
RΛ(B)∪{j}

+ .

Proof. (1) The B-convexity of B[j] follows from (tx ∨ y)[j] = tx[j] ∨ y[j] and the B-convexity
of B. From x =

∨
j∈Λ′(B) x[j] we have B ⊂ ∨

j∈Λ′(B) B[j]. For all x ∈ Rn
+, xΛ′(B) ∈ Rn

+\B
(since Rn

+ \B is B-convex) , and x = x[j] ∨ xΛ′(B); therefore, if for a given x there exists
j ∈ Λ′(B) such that x[j] 6∈ B then x 6∈ B, since Rn

+ \B is B-convex set. This shows that, for
all j ∈ Λ′(B), B[j] ⊂ B. The inclusion

∨
j∈Λ′(B) B[j] ⊂ B follows from the B-convexity of B.

§We recall that the trivial halfspaces are Rn
+ and {0} and their complements in Rn

+.
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(2) If u and v belong to RΛ(B)∪{j}
+ \B[j] then, by (1), they belong to Rn

+ \B, which is B-
convex; consequently, for t ∈ [0, 1], we have tu∨v ∈ (Rn

+ \B) ∩ (RΛ(B)∪{j}
+ ), since RΛ(B)∪{j}

+

is B-convex in Rn
+. This shows that tu ∨ v ∈ RΛ(B)∪{j}

+ \B[j].

The last part of (2) trivially follows from B[j] ⊂ B and ej 6∈ B.

(3) The closedness of B[j], if B is closed, is a consequence of B[j] = B ∩ RΛ(B)∪{j}
+ .

If x is in the interior of B then for each i ∈ [n] we can find an interval [ai, bi] with
0 ≤ ai < bi such that ai = 0 if xi = 0, ai < xi < bi if xi > 0 and

∏
i∈[n][ai, bi] ⊂ B. For

i ∈ Λ(B) ∪ {j} let [ci, di] = [ai, bi] and, otherwise, let [ci, di] = {0}. Then
∏

i∈[n][ci, di]

has nonempty interior in RΛ(B)∪{j}
+ , x[j] ∈

∏
i∈[n][ci, di]. If y ∈ ∏

i∈[n][ci, di] then yi = 0 if
i 6∈ Λ(B) ∪ {j} therefore

∏
i∈[n][ci, di] ⊂ B[j].

Reciprocally, if, for all j ∈ Λ′(B), x[j] is in the relative interior in RΛ(B)∪{j}
+ of B[j] then

there exists for all i ∈ Λ(B) ∪ {j} real numbers 0 ≤ a
[j]
i < b

[j]
i , with a

[j]
i = 0 if xi = 0 and

a
[j]
i < xi < b

[j]
i if xi 6= 0, such that

x[j] ∈
∏

i∈Λ(B)∪{j}
[a[j]

i , b
[j]
i ] ⊂ B[j].

For i ∈ Λ(B) let ai = maxj∈Λ′(B) a
[j]
i and bi = minj∈Λ′(B) b

[j]
i and for j ∈ Λ′(B) let

aj = a
[j]
j and bj = b

[j]
j . Then, for all j ∈ Λ′(B),

x[j] ∈
∏

i∈Λ(B)∪{j}
[ai, bi] ⊂

∏

i∈Λ(B)∪{j}
[a[j]

i , b
[j]
i ] .

If y ∈ ∏
i∈[n][ai, bi] then, y[j] ∈

∏
i∈Λ(B)∪{j}[ai, bi] and therefore, from

∨
j∈Λ′(B) y[j] = y, we

obtain y ∈ B. This shows that
∏

i∈[n][ai, bi] ⊂ B and therefore that x is in the interior of
B.

Part (c) of (3) follows from (a) and (b). We only have to see that B[j] is a nontrivial
halfspace in RΛ(B)∪{j}

+ . From B[j] = B∩RΛ(B)∪{j}
+ and ej 6∈ B, but ej ∈ RΛ(B)∪{j}

+ , we have
B[j] 6= RΛ(B)∪{j}

+ .

In the following pages we will first give a complete description of closed downward and
conical halfspaces containing 0. We will then conclude with the description of general closed
halspaces containing 0.

5 Downward Halfspaces

For 0 ≤ ai ≤ ∞, let Bi = [0, ai] if ai < ∞ and Bi = R+ if ai = ∞. Then, B =
∏n

i=1 Bi

is a closed halfspace which, by definition, is a closed rectangular halfspace. If ai 6= ∞
for all i ∈ [n] then B is a bounded closed rectangular halfspace. A closed rectangular
halfspace has nonempty interior if and only if, for all i ∈ [n], ai > 0.

Proposition 5.1. The following assertions are equivalent:

(1) B ⊂ Rn
+ is a closed rectangular halfspace with nonempty interior;

(2) there exists u ∈ Rn
+ such that B = {x ∈ Rn

+ : maxi∈[n] uixi ≤ 1};
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Proof. If B is a closed rectangular halfspace with nonempty interior let ui = a−1
i if ai 6= ∞

and ui = 0 otherwise. Then x ∈ B =
∏n

i=1 Bi if and only if uixi ≤ 1 for all i ∈ [n].

Let B = {x ∈ Rn
+ : maxi∈[n] uixi ≤ 1} where u ∈ Rn

+. Let ai = u−1
i if ui > 0 and ai = ∞

otherwise. Then x ∈ B if and only if 0 ≤ xi ≤ ai if ai 6= ∞. This shows that (1) and (2)
are equivalent.

Theorem 5.2. If B ⊂ Rn
+ is a closed halfspace containing 0 then Bdown is a rectangular

halfspace.

Proof. If Bdown is bounded then, by Proposition 3.3, Bdown = [0, x?] for some x? in Rn
+.

Otherwise let, for all i ∈ [n], ai = sup{xi : x ∈ Bdown} and let I = {i ∈ [n] : 0 < ai < ∞}
and I ′ = {i ∈ [n] : ai = ∞}.
Let R = {x ∈ Rn

+ : ∀i ∈ I xi ≤ ai}; it is a rectangular space. We show that Bdown = R.

By Lemma 4.1 Bdown is a downward set therefore
⋃

x∈Bdown

[0, x] = Bdown.

For all x ∈ Bdown we have [0, x] ⊂ R and therefore Bdown ⊂ R.

To see that R ⊂ Bdown choose, for all ε > 0 and all i ∈ [n], a point z[ε,i] ∈ Bdown such
that:





ai − ε < z
[ε,i]
i ≤ ai if 0 < ai < ∞

z
[ε,i]
i = 0 if ai = 0

z
[ε,i]
i > ε−1 if ai = ∞

and let z[ε] =
∨

i∈[n] z
[ε,i]. The set Bdown is B-convex therefore z[ε] ∈ Bdown and since Bdown

is also downward we have
⋃
ε>0

[0, z[ε]] ⊂ Bdown.

To complete the proof recall that Bdown is closed and notice that




ai − ε < z
[ε]
i ≤ ai if 0 < ai < ∞

z
[ε]
i = 0 if ai = 0

z
[ε]
i > ε−1 if ai = ∞

from which one sees that the set
⋃
ε>0

[0, z[ε]] is dense in R.

From Proposition 2.7, Proposition 5.1 and Theorem 5.2 we obtain the analytic description
of closed downward halfspaces containing 0.

Corollary 5.3. A closed halfspace B ⊂ Rn
+ containing 0 is downward if and only if there

exist u ∈ Rn
+ \{0} and a subset K of [n], which is empty if the interior of B is nonempty,

such that
B = {x ∈ Rn

+ : max
i∈[n]

uixi ≤ 1 and max
k∈K

xk = 0}.
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Let B be a closed downward halfspace of Rn
+ which contains 0 and assume that its interior

is not empty. With the notation from Corollary 5.3 let J = {j ∈ [n] : uj > 0}, x?
j = u−1

j for
j ∈ J and x?

i = 0 for i ∈ [n]\J . Then, x? ∈ B and

B =

{
x ∈ Rn

+ : max
j∈J

(
xj

x?
j

)
≤ 1

}

from which one can see that

B∞ =
{
x ∈ Rn

+ : xJ = 0
}

and B0 = {x ∈ B : xJ 6= 0} .

6 On the Structure of Conical Halfspaces

As the title indicates we will give in this section a full description of conical halfspaces. We
will start with normal conical halfspaces for which we will proceed in two steps. First, we
will describe normal conical halfspaces of dimension two. Then we will give the description
of normal halfspaces for which Λ′ has cardinality one. From the Decomposition Lemma,
Lemma 4.4, we will obtain the general form of conical halfspaces.

I

x3

x1

3

6
B

0

x2

I

x3

x1

3

6

0

x2

B

Figure 6.1 Examples of conical halfspaces

6.1 Normal Conical Halfspaces

The following Lemma tells us how to push a strictly positive element of a conical halfspace
in the interior of that halfspace.

Lemma 6.1 (Push Lemma). Let B ⊂ Rn
+ be a conical halfspace with nonempty interior

and u = ∨i∈Λ(B)riei ∈ RΛ(B)
++ . Then, for all x ∈ B

⋂
Rn

++, x + u belongs to the interior of
B.

Proof. Obviously, we can assume that B is not Rn
+. The proof is done in two steps.

(A) We assume that Λ(B) = [n− 1], and therefore Λ′(B) = {n}. For each i ∈ [n− 1] define
two elements z

[i]
− and z

[i]
+ of Rn

+ as follows:

(z[i]
− )j =

{
xi + ri

2 if i = j
xj otherwise and (z[i]

+ )j =
{

xi + 3ri

2 if i = j
xj otherwise.

In other words, z
[i]
− = x ∨

(
xi +

ri

2

)
ei and z

[i]
+ = x ∨

(
xi +

3ri

2

)
ei.

From x ∈ B and ei ∈ B, and taking into account that B is conical, we have z
[i]
− ∈ B and
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z
[i]
+ ∈ B. Consequently, if si, ti, for i ∈ [n − 1], are arbitrary positive numbers we also

have (
∨

i∈[n−1] siz
[i]
− ) ∨ (

∨
i∈[n−1] tiz

[i]
+ ) ∈ B. Call this element of B, which depends on the

numbers si and ti, ω. As one can see the coordinates of ω are

ωk =





maxi∈[n−1]{sk(xk +
rk

2
), tk(xk +

3rk

2
), sixk, tixk} for k ∈ [n− 1]

maxi∈[n−1]{si, ti}xn for k = n.

Let Ω be the set of all the ω as si and ti takes all the possible values in R+. With

t?i =
xi + ri

xi + (3/2)ri
and s?

i = 1

one obtains ω = x + u.

To complete this part the proof we show that there is an open set U contained in Ω and
containing x + u. Let

δ = max
k∈[n−1]

{
xk + (5/4)rk

xk + (3/2)rk

}
and η = min

k∈[n−1]

{
xk + (3/4)rk

xk + (1/2)rk

}

and notice that 0 < δ < 1 < η. Let

U =
∏

i∈[n−1]

]
xi +

3ri

4
, xi +

5ri

4

[
× ]δxn, ηxn[

Let us see that U ⊂ Ω.

With yi ∈
]
xi +

3ri

4
, xi +

5ri

4

[
let ti =

yi

xi + (3/2)ri
and notice that

ti <
xi + (5/4)ri

xi + (3/2)ri
≤ δ.

If yn ∈]δxn, ηxn[ let, for all i ∈ [n − 1], si = (yn/xn). Then maxi∈[n−1]{si, ti} = (yn/xn)
and, for k ∈ [n− 1],

max
i∈[n−1]

{(yn/xn)(xk +
rk

2
), tk(xk +

3rk

2
), (yn/xn)xk, tixk}

= max
i∈[n−1]

{(yn/xn)(xk +
rk

2
), yk, (yn/xn)xk, tixk} = yk.

(B) If Λ(B) is of cardinality strictly smaller than n− 1 then, for each j ∈ Λ′(B), we apply
the first part of the proof to B[j], x[j] and u, which makes sense since Λ(B) = Λ(B[j]).
We conclude that x[j] + u is in the interior of B[j] (relative to RΛ(B)∪{j}

+ ). Notice that
(x + u)[j] = x[j] + u, therefore, by (3) of Lemma 4.4, x + u belongs to the interior of B.

Lemma 6.2. A closed conical halfspace with nonempty interior is the closure of its interior.

Proof. If B ⊂ Rn
+ is a halfspace with nonempty interior then, by Lemma 2.6 we can find

z ∈ B
⋂
Rn

++. If x is an arbitrary element of B then, for all t ∈]0, 1], x∨ tz ∈ B
⋂
Rn

++. By
Lemma 6.1 (x∨ tz)+ tzΛ(B) belongs to the interior of B. From x = limt→0[ (x∨ tz)+ tzΛ(B) ]
we have B ⊂ int B.

For a more general statement see Corollary 7.4.
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Lemma 6.3. If B is a closed normal conical halfspace of R2
+ for which Λ(B) = {j} and

Λ′(B) = {i} then there exists x? ∈ R2
++ such that

B =

{
x ∈ R2

+ :
(

xi

x?
i

)
−

(
xj

x?
j

)
≤ 0

}
.

And, obviously, we can choose x? such that either x?
i = 1 or x?

j = 1.

Proof. We can assume that Λ(B) = {1}, that is, (1, 0) ∈ B. The interior of B is not empty,
since B is normal. Let (x1, x2) be an arbitrary point in B ∩R2

++. Since B is conical we also
have (1, x−1

1 x2) ∈ B.
Let t? = sup{t ∈ R+ : (1, t) ∈ B}. From (1, x−1

1 x2) ∈ B we have t? > 0. Also, t? < ∞,
otherwise there would exists an increasing sequence of real numbers tn converging to ∞ such
that, for all n, (1, tn) ∈ B, and therefore also (t−1

n , 1) ∈ B. But B is closed, taking the limit
as n goes to ∞ would yield (0, 1) ∈ B, contrary to the hypothesis.

If (x1, x2) ∈ B and x1 = 0 then x2 = 0, since B is radial and (0, 1) 6∈ B. If x1 > 0 then
(1, x−1

1 x2) ∈ B and therefore x−1
1 x2 ≤ t?. This shows that B ⊂ {(x1, x2) ∈ R2

+ : x2 ≤ t?x1}.
Notice that for all t ∈ R+, (t, t?t) ∈ B; since B is conical and (1, t?) ∈ B, from the closedness
of B.

If (x1, x2) ∈ R2
+ is such that x2 ≤ t?x1 and x1 6= 0 then 0 < (t?x1)−1x2 ≤ 1 and

(x1, x2) = (t?x1)−1x2(x1, t
?x1) ∨ (x1, 0).

Both (x1, t
?x1) and (x1, 0) are in B which is B-convex. This shows that (x1, x2) ∈ B and

therefore that {(x1, x2) ∈ R2
+ : x2 ≤ t?x1} ⊂ B.

Lemma 6.4. Let B be a closed normal conical halfspace of Rn
+ for which Λ′(B) = {i}. Then

there exists x? ∈ Rn
++ such that

B =

{
x ∈ Rn

+ :
(

xi

x?
i

)
−max

j 6=i

(
xj

x?
j

)
≤ 0

}
.

Proof. Let A = Rn
+\B. It is a normal closed halfspace for which Λ(A) = {i} and Λ′(A) =

[n]\{i}, Lemma 4.3. For all j ∈ Λ′(A) the set A[j] is a closed normal conical halfspace in
R{i,j}+ such that Λ(A[j]) = {i} and Λ′(A[j]) = {j}. By Lemma 6.3, for all j 6= i, there exists
x

?(i,j)
j ∈ R++ such that

(]) A[j] =
{
x ∈ R{i,j}+ :

(
xj/x

?(i,j)
j

)− xi ≤ 0
}
.

By Lemma 4.4, for all x ∈ Rn
+, x ∈ A if and only if, for all j 6= i, x[j] ∈ A[j], where

x[j] = xjej ∨ xiei. From (]) we obtain

(]]) A =
{
x ∈ Rn

+ : ∀ j ∈ [n]\{i} (
xj/x

?(i,j)
j

)− xi ≤ 0
}
.

Define an element x? of Rn
++ as follows





x?
i = 1

x?
j = x

?(i,j)
j if j 6= i.

From the definition of A and from (]]) we obtain,



308 W. BRIEC AND C. HORVATH

intB =

{
x ∈ Rn

+ :
(

xi

x?
i

)
−max

j 6=i

(
xj

x?
j

)
< 0

}
.

By Lemma 6.2 B is the closure of its interior.

To complete the proof we have to see that

{
x ∈ Rn

+ :
(

xi

x?
i

)
−max

j 6=i

(
xj

x?
j

)
≤ 0

}
is a subset

of the closure of

{
x ∈ Rn

+ :
(

xi

x?
i

)
−max

j 6=i

(
xj

x?
j

)
< 0

}
.

In other words, assuming that the point x ∈ Rn
+ is such that

(
xi

x?
i

)
= max

j 6=i

(
xj

x?
j

)

we have to produce a sequence (x(m))m∈N in Rn
+ which converges to x and such that, for all

m ∈ N,
(x

(m)
i

x?
i

)
−max

j 6=i

(x
(m)
j

x?
j

)
< 0.

Let x(m) = x ∨ ( ∨
j 6=i(xj + 2−m)ej

)
and notice that, for all m ∈ N,

∨
j 6=i(xj + 2−m)ej ∈ B. From x ∈ B we have x(m) ∈ B.

The sequence (x(m))m∈N clearly converges to x furthermore x
(m)
i = xi and

max
j 6=i

(
x

(m)
j

x?
j

)
= max

j 6=i

(
xj + 2−m

x?
j

)
> max

j 6=i

(
xj

x?
j

)

The sequence (x(m))m∈N has all the required properties.

We can now state and prove the main result of this section.

Theorem 6.5. A nonempty subset B of Rn
+ is a closed normal conical halfspace if and only

if there exists x? ∈ Rn
++ such that

B =

{
x ∈ Rn

+ : max
i∈Λ′(B)

(
xi

x?
i

)
− max

j∈Λ(B)

(
xj

x?
j

)
≤ 0

}
.

Proof. Assume that B is a closed normal conical halfspace in Rn
+. By Lemma 4.4 and

Lemma 6.4 there exists for all i ∈ Λ′(B) an x?(i) ∈ RΛ(B)
++ such that

B[i] =

{
x ∈ RΛ(B)∪{i}

+ : xi − max
j∈Λ(B)

(
xj

x
?(i)
j

)
≤ 0

}
.

There is a halfline in RΛ(B)
++ on which all the x?(i), i ∈ Λ′(B), are situated. Indeed, if it were

not so then there would exist two indices i and k in Λ′(B), two indices j1 and j2 in Λ(B)
and a real number r > 0 such that

x
?(i)
j1

x
?(i)
j2

> r >
x

?(k)
j1

x
?(k)
j2

.



HALFSPACES IN B AND MAX-PLUS CONVEXITY 309

We define two elements x and y of Rn
+ as follows:

xi =
1

x
?(i)
j2

, xj1 = r and xl = 0 otherwise;

yk =
r

x
?(k)
j1

, yj2 = 1 and yl = 0 otherwise.

From xi − max
j∈Λ(B)

( xj

x
?(i)
j

)
=

1

x
?(i)
j2

− r

x
?(i)
j1

> 0 and

yk − max
j∈Λ(B)

( yj

x
?(k)
j

)
=

r

x
?(k)
j1

− 1

x
?(k)
j2

> 0 we have x[i] 6∈ B[i] and y[k] 6∈ B[k]

and therefore, x 6∈ B and y 6∈ B. Since B is a halfspace we also have x ∨ y 6∈ B. If
l ∈ Λ′(B)\{i, k} then max{xl, yl} = 0 and consequently (x ∨ y)[l] ∈ B[l]. We must therefore
have either (x ∨ y)[i] 6∈ B[i] or (x ∨ y)[k] 6∈ B[k].

If (x ∨ y)[i] 6∈ B[i] then max{xi, yi} > max
j∈Λ(B)

(max{xj , yj}
x

?(i)
j

)
> 0 that is

1

x
?(i)
j2

> max
{ r

x
?(i)
j1

,
1

x
?(i)
j2

}
; similarly, the condition (x ∨ y)[k] 6∈ B[k] leads to

r

x
?(k)
j1

> max
{ r

x
?(k)
j1

,
1

x
?(k)
j2

}
. We have reached a contradiction.

In conclusion, there exist x?
Λ(B) ∈ RΛ(B)

++ and, for all i ∈ Λ′(B), x?
i ∈ R++ such that

x?
Λ(B) = x?

i x
?(i). From this we have, for all i ∈ Λ′(B),

B[i] =

{
x ∈ RΛ(B)∪{i}

+ :
xi

x?
i

− max
j∈Λ(B)

(
xj

x?
j

)
≤ 0

}

and since, for all x ∈ Rn
+, x ∈ B if and only if, for all i ∈ Λ′(B), x[i] ∈ B[i] we have

B =

{
x ∈ Rn

+ : max
i∈Λ′(B)

(
xi

x?
i

)
− max

j∈Λ(B)

(
xj

x?
j

)
≤ 0

}
.

This completes this part of the proof.

The proof that a subset of Rn
+ of the form described above is a normal closed conical

halfspace is easy.

6.2 Characterization of General Conical Halfspaces

The characterization of arbitrary closed conical halfspaces is obtained from Proposition 2.7
and Theorem 6.5 .

Theorem 6.6. If B ⊂ Rn
+ is a closed conical halfspace with nonempty interior then there

exist two disjoint subsets I and J of [n] and an x? ∈ B with x?
l > 0 for all l ∈ I ∪ J such

that

B =

{
x ∈ Rn

+ : max
i∈I

(
xi

x?
i

)
−max

j∈J

(
xj

x?
j

)
≤ 0

}
.
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If the interior of B is empty then there is a third subset K ⊂ [n] such that

B =

{
x ∈ Rn

+ : max
i∈I

(
xi

x?
i

)
−max

j∈J

(
xj

x?
j

)
≤ 0 and max

k∈K
xk = 0

}
.

Proof. (A) Let us assume that B is a closed conical halfspace with nonempty interior. If
B = Rn

+ take I = ∅, J = [n] and x? an arbitrary element of Rn
++. We assume that B 6= Rn

+.

Let I = {i ∈ [n] : ei ∈ intB} and J = Λ′(B). If I were empty then ei would be in Rn
+ \B

for all i ∈ [n] and this would imply Rn
+ \B = Rn

+ and therefore intB = ∅. Also J 6= ∅, since
B 6= Rn

+, and I ∩ J = ∅ is obvious. Let

Λ∂(B) = {i ∈ Λ(B) : ei ∈ ∂B}
and, for all x ∈ Rn

+ let

x] =
∨

k∈I∪J

xkek and B] = {x] : x ∈ B}.

We show that B] is a closed conical and normal halfspace with nonempty (relative)
interior in RI∪J

+ .

(a) For all x ∈ Rn
+ we have x = x] ∨ xΛ∂(B). If, for a given x, x] 6∈ B then, from xΛ∂(B) ∈

∂B ⊂ Rn
+ \B, we have x ∈ Rn

+ \B. This shows that, for all x ∈ intB, x] ∈ B.

If x is an arbitrary element of B then, by Lemma 6.2, there exists a sequence (x(m))m∈N
of elements of intB which converges to x. The sequence (x(m)

] )m∈N converges to x]. We
have shown that, for all x ∈ B, x] ∈ B and therefore

(]1) B] = B ∩ RI∪J
+

and, from x = x] ∨ xΛ∂(B) and xΛ∂(B) ∈ ∂B ⊂ B,

(]2) B = {x ∈ Rn
+ : x] ∈ B]}.

From (]1) one can see that B] is B-convex, closed and conical.

(b) If u, v ∈ RI∪J
+ \B] then, by (]1), u and v are in Rn

+ \B, which is B-convex, and therefore,
for all t ∈ [0, 1], tu ∨ v ∈ [

Rn
+ \B

] ∩ RI∪J
+ . From (]1) we conclude that tu ∨ v ∈ RI∪J

+ \B].
This shows that B] is a halfspace in RI∪J

+ .

(c) If x is an arbitrary element of B ∩ Rn
++, which is not empty by Lemma 2.6, then

x] ∈ B] ∩ RI∪J
++ . This shows that the relative interior of B] in RI∪J

+ is not empty.

(d) To complete this part of the proof we have to see that the normality condition holds for
B], as a subset of RI∪J

+ . By construction, Λ(B]) = I (where, of course, Λ(B]) = {k ∈ I ∪J :
ek ∈ B]}). If i ∈ I then ei is in the interior of B in Rn

+ and therefore, by (]1), in the relative
interior of B] in RI∪J

+ .

In conclusion, we have verified that B] is a closed normal conical halfspace in RI∪J
+ .

By Theorem 6.5 there exists an element x? of RI∪J
++ such that

B] =

{
x ∈ RI∪J

+ : max
i∈I

(
xi

x?
i

)
−max

j∈J

(
xj

x?
j

)
≤ 0

}
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and, by (]2),

B =

{
x ∈ Rn

+ : max
i∈I

(
xi

x?
i

)
−max

j∈J

(
xj

x?
j

)
≤ 0

}
.

(B) If the interior of B is empty then the argument above and Proposition 2.7 conclude
the proof.

7 The General Case

First, we show that the caracterization of closed halfspaces with nonempty interior can be
reduced to the caracterization of conical halfspaces. The general caracterization then follows
from Theorem 6.6.

Given a subset B of Rn
+ let K(B) = {tx : t ∈ R+ and x ∈ B}. If B is a B-convex

subset of Rn
+ then K(B) and K(B) are B-convex and conical. We set B1 = B × {1}. If B

is a B-convex subset of Rn
+ then B1 is a B-convex subset of Rn+1

+ and therefore K(B1) is a
B-convex and conical subset of Rn+1

+ .

Lemma 7.1. If B is a closed halfspace of Rn
+ (with nonempty interior) then K(B1) is a

nonempty closed conical halfspace of Rn+1
+ (with nonempty interior).

Proof. If B is a closed halfspace of Rn
+ with nonempty interior then there is a strictly positive

element (x1, · · · , xn) in B and therefore (x1, · · · , xn, 1) is in K(B1). We only have to see
that Rn+1

+ \K(B1) is B-convex.

We have seen that K(B1) is conical. Therefore Rn+1
+ \K(B1) is also conical. To complete

the proof we have to show that Rn+1
+ \K(B1) is a semilattice, that is, x ∨ y ∈ Rn+1

+ \K(B1)
whenever x and y are in Rn+1

+ \K(B1).

Let us write B = Bdown ∪ B∞ where Bdown is the downward part of B and B∞ is its
asymptotic part, they are both closed halfspaces containing 0. From K(B1) = K(Bdown 1)∪
K(B∞ 1) we have

Rn+1
+ \K(B1) = Rn+1

+ \K(Bdown 1) ∩ Rn+1
+ \K(B∞ 1).

To show that Rn+1
+ \K(B1) is B-convex it is enough to show that

Rn+1
+ \K(Bdown 1) and Rn+1

+ \K(B∞ 1) are B-convex. We therefore split the proof of the
B-convexity of Rn+1

+ \K(B1) in two parts: in the first part we assume that B is downward,
in the second part we assume that B is conical.

(A) We assume that B is downward and that the interior of B is not empty. There exists
a ∈ Rn

+ such that

B = {x ∈ Rn
+ : max

i∈[n]
{aixi} ≤ 1}.

Then, (x1, · · · , xn+1) ∈ K(B1) if and only if either (x1, · · · , xn+1) = (0, · · · , 0) or xn+1 >
0 and (x1/xn+1, · · · , xn/xn+1) ∈ B and therefore

K(B1)\{0} = {(x[n], xn+1) ∈ Rn+1
+ : xn+1 > 0 and max

i∈[n]
{aixi} ≤ xn+1}.

From K(B1) = K(B1)\{0} we obtain
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K(B1) = {(x[n], xn+1) ∈ Rn+1
+ : max

i∈[n]
{aixi} ≤ xn+1}.

which is a halfspace.

If the interior of B is empty then there is a nonempty subset K of [n] for which we have
to add to the previous condition the constraints xk = 0 for all k ∈ K.

(B) We assume that B is conical with nonempty interior.
There is a vector a ∈ Rn

+ and two disjoint subsets I and J of [n] such that

B =
{
x ∈ Rn

+ : max
i∈I

{aixi} ≤ max
j∈I

{ajxj}
}

and therefore

K(B1)\{0} =
{
(x[n], xn+1) ∈ Rn+1

+ : xn+1 > 0 and max
i∈I

{aixi} ≤ max
j∈I

{ajxj}
}

and finally

K(B1) =
{
(x[n], xn+1) ∈ Rn+1

+ : and max
i∈I

{aixi} ≤ max
j∈I

{ajxj}
}

which is a halfspace in Rn+1
+ .

If the interior of B is empty we proceed as in (A).

Theorem 7.2. If B is closed halfspace of Rn
+ such that 0 ∈ B and intB 6= ∅, then there

exist a vector a ∈ Rn
+, a real number s ∈ R+ (which we can take to be either 0 or 1), and

two disjoint subsets I and J of [n] such that

B =
{

x ∈ Rn
+ : max

i∈I
{aixi} ≤ max

j∈J
{ajxj , s}

}
.

If the interior of B is empty then there is a third subset K of [n] such that,

B =
{

x ∈ Rn
+ : max

i∈I
{aixi} ≤ max

j∈J
{ajxj , s} and max

k∈K
{xk} = 0

}
.

Proof. K(B1) is a closed conical halfspace of Rn+1
+ . There are subsets U , V and W of

[n + 1], with W = ∅ if the interior of B is not empty, and a vector (a1, · · · , an+1) ∈ Rn+1
+

such that (x1, · · · , xn+1) ∈ K(B1) if and only if maxi∈U{aixi} ≤ maxj∈V {ajxj} and xk = 0
for k ∈ W .
Without loss of generality we can assume that ai = 0 if i 6∈ U ∪ V and ai > 0 if i ∈ U ∪ V .
Notice that n + 1 6∈ W , since B × {1} ⊂ K(B1); therefore W ⊂ [n]. Set K = W . From
(0, · · · , 0, 1) ∈ K(B1) we see that n + 1 6∈ U . Let I = U and J = V \{n + 1}.

Notice also that (x1, · · · , xn) ∈ B if and only if (x1, · · · , xn, 1) ∈ K(B1) (consider a
sequence in K(B1) converging to (x1, · · · , xn, 1) with the last term of each element of the
sequence strictly positive and recall that B is closed). Therefore, (x1, · · · , xn) ∈ B if and
only if, xk = 0 for all k ∈ K and maxi∈I{aixi} ≤ maxj∈J{ajxj , an+1}.

Proposition 7.3. Let I and J be nonempty and disjoint subsets of [n] and a ∈ RI∪J
++ . If

B =
{

x ∈ Rn
+ : maxi∈I{aixi} ≤ maxj∈J{ajxj , s}

}
, then the interior of B is

{
x ∈ Rn

+ :

maxi∈I{aixi} < maxj∈J{ajxj , s}
}

and the boundary of B is
{

x ∈ Rn
+ : maxi∈I{aixi} =

maxj∈J{ajxj , s}
}
.
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Proof. Since B =
⋂

i∈I

{
x ∈ Rn

+ : aixi ≤ maxj∈J{ajxj , s}
}

we have to see that the interior
of

{
x ∈ Rn

+ : aixi ≤ maxj∈J{ajxj , s}
}

is
{
x ∈ Rn

+ : aixi < maxj∈J{ajxj , s}
}

and we can
assume that s is either 0 or 1. The details are left to the reader. The second part follows
from the first since, B being closed, ∂B = B\intB.

If B is an open halfspace containing 0 then B is a closed halfspace with nonempty

interior containing 0. The formula intA = Rn
+ \

(
Rn

+ \A
)

holds for arbitrary subsets of
Rn

+ and Rn
+ \B is a closed halfspace which, by Lemma 6.2, is the closure of its interior;

taking into account that B is open, we have B = intB. From Proposition 7.3 we obtain
the analytic description of open halfspaces containing 0; the analytic description of closed
halfspaces whose complement contains 0 follows easily.

A closed B-convex set with nonempty interior does not have to be the closure of its
interior; an example can be found in [2]. For halfspaces the situation is somewhat better as
is shown by the result below which completes Lemma 6.2.

Corollary 7.4. A closed halfspace with nonempty interior is the closure of its interior.

Proof. By Theorem 7.2 and Proposition 7.3.

So far the description of halfspaces has been asymmetrical, the analytic representation
of a halfspace to which 0 belongs is somewhat different from the analytic representation of a
halfspace to which 0 does not belong. Using Theorem 7.2 one can see that a halfspace with
nonempty interior, whether it contains 0 or not, can be written

B =
{

x ∈ Rn
+ : max

i∈[n]
{uixi, r} ≤ max

i∈[n]
{vixi, s}

}

with u, v ∈ Rn
+, and r, s ∈ R+. It has been shown in Proposition 2.8 that such a set is

always a closed halfspace, possibly with empty interior, or even empty. Using Lemma 2.6,
necessary and sufficient conditions on the parameters (r, s, u, v) for the interior of B to be
nonempty are not hard to find.

8 Functional Separation of B-convex Sets

Two subsets A and B of a metric space (X, d), Rn
+ for example, are nonproximate if

inf(x,y)∈A×B d(x, y) > 0. If C1 and C2 are nonproximate B-convex subsets of Rn
+ then,

according to Theorem 7.2 in [3], there is a closed halfspace B such that C1 is contained in
the interior of B and C2 is contained in Rn

+\B. We can now use Theorem 7.2 and Proposition
7.3 to obtain a functional Hahn-Banach like separation Theorem in B-convexity.

Theorem 8.1. Let C1 and C2 be two nonproximate B-convex subsets of Rn
+ then, there exist

u, v ∈ Rn
+ and r, s ≥ 0 such that for all x ∈ C1 and all y ∈ C2

max
i∈[n]

{uixi, r} −max
i∈[i]

{vixi, s} < max
i∈[n]

{uiyi, r} −max
i∈[n]

{viyi, s}.

We have given Theorem 8.1 its symmetric form, but of course, we can assume that
{i : ui 6= 0} ∩ {i : vi 6= 0} = ∅ and that r and s are either 0 or 1.
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x1

x2

C1

C2

0

6

-

Figure 8 Separation in B-convexity.

9 Max-Plus Convexity

The basic algebraic structures of semi-rings and of Maslov semi-modules over a semi-ring are
presented in [9], applications can be found in [7] and[10] and also [5] for Max-Plus. We do
not want to go here in the full generality of Maslov’s semi-modules. We only wish to point to
the fact that Max-Plus convexity - in its continuous as opposed to its discrete version - and
B-convexity - in the finite dimensional version presented here - are isomorphic topological
Maslov’s semi-modules and, consequently, a proposition that is true in the framework of
B-convexity holds, with obvious lexical modifications, in Max-Plus convexity.

To be more precise, for x and y in Mn let dM+(x, y) =|| ex − ey ||∞ where ex =
(ex1 , · · · , exn), with the convention e−∞ = 0, and, for u ∈ Rn

+, || u ||= max1≤i≤n xi. The
map x 7→ ex is a homeomorphism from Mn with the metric dM+ to Rn

+ endowed with the
metric induced by the norm || · ||∞; its inverse is the map ln(x) = (ln(x1), · · · , ln(xn)) from
Rn

+ to Mn, with the convention ln(0) = −∞. One can easily show that a subset C of Mn

is Max-Plus convex if an only if, for all n ∈ N\{0}, for all (x1, · · · , xn) ∈ Cn and for all
(t1, · · · , tn) ∈ [−∞, 0]n such that max{t1, · · · , tn} = 0 one has

∨n
i=1

(
xi + ti11n

) ∈ C. The
Max-Plus convex hull of a subset of Mn is the smallest Max-Plus convex set which contains
it.

The following two assertions hold, and are equivalent:

(1) A subset C of Mn is Max-Plus convex if and only if the set {ex : x ∈ C} is a B-convex
subset of Rn

+.

(2) A subset C of Rn
+ is B-convex if and only if the set {ln(x) : x ∈ C} is a Max-Plus convex

subset of Mn. In other words, the map x 7→ ex is an order and distance preserving map,
therefore an homeomorphism, which sends Max-Plus convex sets to B-convex sets. Max-Plus
convexity and B-convexity are isomorphic and homeomorphic structures; to be more precise,
they are isometric topological Maslov semi-modules over isomorphic semi-rings, respectively
R

⋃{−∞} and R+. The translation of a statement from the language of B-convexity to that
of Max-Plus convexity is done with the following simple dictionary.
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B-convexity Max-Plus convexity
R+ R ∪ {−∞}
[0, 1] [−∞, 0]
0 −∞
1 0
max max
max{u1, · · · , un} = 1 max{v1, · · · , vn} = 0
u1.u2 v1 + v2

For example, in Max-Plus convexity halfspaces are described by Theorem 9.1, which
comes from Theorem 7.2. The Hahn-Banach Theorem in Max-Plus convexity is Theorem
9.2 below.

For x ∈ R ∪ {−∞} and S ⊂ R ∪ {−∞} let I∞(x) = {i ∈ [n] : xi = −∞}, I=(x) = [n]\
I∞(x), I∞(S) =

⋂
x∈S I∞(x) and I=(S) = [n]\I∞(S). The smallest element of (R∪{−∞})n,

that is (−∞, · · · ,−∞) is denoted by −∞n.

Theorem 9.1. A closed subset M of (R ∪ {−∞})n which contains −∞n is a halfspace if
and only if there exists a ∈ (R ∪ {−∞})n, s ∈ R ∪ {−∞} and two disjoint subsets I and J
of I=(M) such that

M =
{

x ∈ (R ∪ {−∞})n : ∀k ∈ I∞(M) xk = −∞

and max
i∈I

{xi + ai} ≤ max
j∈J

{xj + aj , s}
}

.

Furthermore, the interior of M is nonempty if and only if I∞(M) = ∅ and, in that case,

int(M) =
{

x ∈ (R ∪ {−∞})n : max
i∈I

{xi + ai} < max
j∈J

{xj + aj , s}
}

.

Also, the interior and the closure of a halfspace are halfspaces.

Theorem 9.2 (Analytic Hahn-Banach in Max-Plus). Let C1 and C2 be two nonprox-
imate Max-Plus convex sets. Then, there exists s, t ∈ R ∪ {−∞} and two disjoint subsets I
and J of [n] such

∀x ∈ C1 max
i∈I

{xi + ai, t} < max
j∈J

{xj + aj , s}
and

∀x ∈ C2 max
j∈J

{xj + aj , s} < max
i∈I

{xi + ai, t}.
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Figure 9 Separation in Max-Plus convexity.

The metric dM+ might seem artificial and ad hoc, defined with the obvious intention
to make our statements true. There are two things about the metric dM+ that one could
notice, beside that it serves our pourpose well. Firstly, the max operation (x, y) 7→ x ∨ y
from

(
R ∪ {−∞})n × (

R ∪ {−∞})n to
(
R ∪ {−∞})n is continuous and secondly, for all

x ∈ (
R ∪ {−∞})n, the set ↓{x}, that is {y ∈ (

R ∪ {−∞})n : y ≤ x}, is compact. Using a
hard and classical result of J.D. Lawson, [8], one could show that there is only one topology
on

(
R∪{−∞})n with the two properties above. It is therefore the topology associated with

the metric dM+ . One can also notice that the induced topology on Rn is the usual euclidean
topology.
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