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1 Introduction

We are concerned with a bilevel nonlinear programming problem relating to a two-player
game in which a leader plays against a follower. For an announced strategy x by the leader,
the follower reacts by playing optimally, and the aim of the two players is to minimize
their own objective functions. Furthermore, it is assumed that the leader disposes of full
information about the follower. More precisely, let

F : IRn × IRm → IR, G = (G1, ..., Gp) : IRn → IRp,

be respectively the objective and the constraint functions of the leader, and

f : IRn × IRm → IR, g = (g1, ..., gq) : IRn × IRm → IRq,

be respectively the objective and the constraint functions of the follower, with F , G, f
and g being convex. As it is well known, in the optimistic case, the leader’s problem (called
the upper-level problem) is formulated as follows:

(S) Min
x∈IRn

G(x)≤0

inf
y∈M(x)

F (x, y),

where M(x) is the solution set of the follower’s problem (called the lower-level problem)

P (x) Min
y∈IRm

g(x,y)≤0

f(x, y).

∗Corresponding author
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The problem (S) is termed a strong Stackelberg problem [3,4,11,13,15,16]. Notice that many
concrete problems can be formulated as (S), for example problems dealing with engineering
and economic context (several interesting applications are given in [5]). However, when the
solution set of the follower’s problem is not always a singleton, the problem (S) presents
difficulties for a numerical resolution (also for theoretical results) and note that the major
numerical results in the literature are given in the case where the lower level has a unique
solution. In order to open other ways for a possible resolution via other global optimization
problems, we first give an approach of (S) by a sequence of reverse convex programs (Ŝk).
Then, by using some results on reverse convex programs which were established in [19],
we give a second approach which reduces the problem (S) to a min-max problem. More
precisely, we select a sequence of feasible points of the approximating problems (Ŝk) that
satisfy a condition involving a min-max problem. Then, under additional assumptions, we
show that a certain projection of any accumulation point of such a sequence solves the
problem (S). When the functions f and g are respectively polyhedral and linear, the second
approach can be improved. In fact, the problem (S) is reduced to a maximization problem
of a polyhedral convex function over a compact convex set. Note that in this case, similar
results are given in [5].

The content of the paper is as follows. In Section 2, we introduce some notations and
recall a basic result concerning the subdifferential of the lower-level’s marginal function.
In Section 3, after establishing some preliminary results, we give the first approach of the
original problem (S) by the problems (Ŝk). In Section 4, in the beginning we recall some
definitions and results from [8,19] about a concept of stability of optimization problems and
a duality between two optimization problems, which will be used for establishing our main
results. Then, we establish some stability results and optimality conditions, and finally we
give the second approach. In Section 5, we give the third approach when the functions f
and g are respectively polyhedral and linear.

2 Preliminaries

Let us first introduce the following notations. Denote by

X =
{
x ∈ IRn/G(x) ≤ 0

}
,

the leader’s constraint set, and by

Y (x) =
{
y ∈ IRm/ g(x, y) ≤ 0

}
,

the follower’s constraint set for an announced strategy x by the leader. Set

G =
{
(x, y, t) ∈ IRn × IRm × IR/G(x) ≤ 0, g(x, y) ≤ 0, f(x, y) ≤ t

}
,

v(x) = inf
y∈Y (x)

f(x, y), F̂ (x, y, t) = F (x, y).

We will make the following assumptions.

(2.1) There exists a convex compact set Z of IRm, such that Y (x) ⊂ Z, for any x ∈ X,

(2.2) The Slater condition: for any x ∈ X, there exists y ∈ IRm, such that g(x, y) < 0.

Recall that the marginal function v is convex since the functions f and g are convex (see
for example [18]). We begin by the following lemma.
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Lemma 2.1 ([1]). Let x ∈ X. Suppose that assumptions (2.1) and (2.2) are satisfied.
Then, there exists y ∈ IRm, verifying g(x, y) ≤ 0, and v(x) = f(x, y), such that

∂v(x) ⊂ ∂xf(x, y) +
q∑

j=1

⋃
λj≥0

λj∂xgj(x, y),

where ∂v(x) and ∂xf(x, y) are respectively the subdifferentials of v and f(., y) at x.

Consider the following bilevel programming problem

(Ŝ) Min
x∈X,y∈M(x)

F (x, y),

and for ε > 0, consider the reverse convex program

(Ŝε) Min
(x,y,t)∈Gε
v(x)−t≥0

F̂ (x, y, t),

where

Gε =
{
(x, y, t) ∈ IRn × IRm × IR/G(x) ≤ 0, g(x, y) ≤ 0, f(x, y) ≤ t + ε

}
.

Remark 2.2. i) The problem (Ŝ) has the same value as (S), and if (x, y) solves (Ŝ), then
x solves (S).

ii) If (x, y, t) is a feasible point of (Ŝε), then y is an ε-approximate solution of the problem
P (x).

3 The First Approach

In this section, we give an approach of (S) by a sequence of the reverse convex programs
(Ŝεk

), εk ↘ 0+, k ∈ IN. We begin by the following proposition which establishes the existence
of solutions to the problem (Ŝε), ε > 0.

Proposition 3.1. Let ε > 0. Assume that assumption (2.1) and the following assumption
are satisfied

(3.1) The set X is bounded.
Then, the problem (Ŝε) has at least one solution.

Proof. First, notice that the multifunction Y (.) : X −→−→ IRm, is upper semicontinuous and
compact valued. Then, from the compactness of the set X, it follows that

⋃
x∈X Y (x)

is a compact set (see [2]). On the other hand, for any feasible point (x, y, t) of (Ŝε), we
have f(x, y) − ε ≤ t ≤ v(x). Since (x, y) ∈ ⋃

x∈X Y (x) (which is a compact set), and
f and v are continuous, then the variable t belongs to a compact set. Hence, the set{
(x, y, t) ∈ Gε/ v(x) ≥ t

}
is compact and the result follows from the continuity of F̂ .

For εk > 0, k ∈ IN, set (xεk
, yεk

, tεk
) = (xk, yk, tk), and denote (Ŝεk

) by (Ŝk). Then, we
have following approximation result.

Theorem 3.2. Let assumptions (2.1) and (3.1) hold. Let εk ↘ 0+, (xk, yk, tk) be a solution
of (Ŝk), and let (x̂, ŷ, t̂) be any accumulation point of the sequence (xk, yk, tk)k. Then, x̂
solves (S).
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Proof. First, let us show the existence of accumulation points. As mentioned in the proof
of Proposition 3.1, the set

⋃
x∈X Y (x) is compact. On the other hand, we have

f(xk, yk)− εk ≤ tk ≤ v(xk).

Since X ×⋃
x∈X Y (x) is a compact set, f and v are continuous and εk ↘ 0+, it follows that

there exists (a, b) ∈ IR2, such that

a ≤ f(xk, yk)− εk ≤ tk ≤ v(xk) ≤ b.

Hence, (xk, yk, tk) ∈ X ×⋃
x∈X Y (x) × [a, b], which is a compact set. Hence such an accu-

mulation point exists. Let N ⊂ IN, such that lim k→+∞
k∈N

(xk, yk, tk) = (x̂, ŷ, t̂). It is easy to
see that

G(x̂) ≤ 0, g(x̂, ŷ) ≤ 0, f(x̂, ŷ) ≤ t̂, and v(x̂) ≥ t̂.

Then,
G(x̂) ≤ 0, g(x̂, ŷ) ≤ 0, and v(x̂) = f(x̂, ŷ).

Hence, (x̂, ŷ) is a feasible point of (Ŝ). Let (x, y) be any feasible point of (Ŝ). Then,
(x, y, v(x)) is feasible for (Ŝk). It follows that

F (xk, yk) ≤ F (x, y).

By passing to the limit, we obtain F (x̂, ŷ) ≤ F (x, y). Then, (x̂, ŷ) solves (Ŝ), and hence x̂
solves (S) (Remark 2.2).

Remark 3.3. The applicability of Theorem 3.2 mainly depends on the applicability of the
numerical methods that exist in the literature of reverse convex programs.

4 The Second Approach

4.1 Preliminaries

In order to establish our main result in this section (Theorem 4.10), we first need to show
some stability results for every problem (Ŝε), ε > 0. For this, we recall the following
definitions and results from [8].

Let f̂ , ĝ : IRn → IR, α, β ∈ IR, and D̂ is a nonempty subset of IRn. Consider the following
problems which are in duality

(Pβ) Min
x∈D̂

ĝ(x)≥β

f̂(x), (Qα) Max
x∈D̂

f̂(x)≤α

ĝ(x).

Definition 4.1. i) The problem (Pβ) is stable if limβ′→β+ inf Pβ′ = inf Pβ .

ii) A feasible point x of (Pβ) is said to be regular for (Pβ), if there exists a sequence
(xk) converging to x such that xk ∈ D̂, and ĝ(xk) > β, for large k.

We recall the following fundamental results.

Proposition 4.2 ([20]). If inf Pβ > −∞, f̂ is upper semicontinuous on D̂, and there exists
at least one solution of (Pβ) that is regular for (Pβ), then (Pβ) is stable.

Proposition 4.3 ([8]). Assume that (Pβ) is stable. Then, β ≥ supQα, implies α ≤ inf Pβ.
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Before introducing our additional assumptions, we need some notations and definitions.
For i ∈ {1, ..., p}, let G

′
i(x; d) denote the directional derivative of Gi at x, in the direction

d ∈ IRn \ {0}, i.e.,

G
′
i(x; d) = lim

t↘0+

Gi(x + td)−Gi(x)
t

and let I(x) denote the index set of active constraints Gi at x, i.e., I(x) =
{
i ∈ {1, ..., p}/Gi(x) =

0
}
. For k ∈ {1, ..., p}, set Ik =

{
1, ..., k

}
, J = {1, ..., q},





Dε,k =
⋃

i∈Ik

{
(x, y, t) ∈ Gε/Gi(x) = 0

} ⋃ ⋃

j∈J

{
(x, y, t) ∈ Gε/ gj(x, y) = 0

}

⋃{
(x, y, t) ∈ Gε/ f(x, y)− t = ε

}
,

Gε,k = Gε \ Dε,k,

fmax = sup
(x,y)∈IRn×IRm

G(x)≤0
g(x,y)≤0

f(x, y), and fmin = inf
(x,y)∈IRn×IRm

G(x)≤0
g(x,y)≤0

f(x, y).

We will make the following assumptions which were introduced in [1].
(4.1) ∃ l ∈ Ip, ∃fl ≥ fmax, ∃x(l) ∈ X, y(l) ∈ intY (x(l)), and t(l) ≤ fmin, with

f(x(l), y(l)) < t(l) + ε, such that

1) F̂ (x(l), y(l), t(l)) < inf (x,y,t)∈Dε,l
t≤fl

F̂ (x, y, t),

and for any (x, y) ∈ X × IRm, such that g(x, y) < 0, we have

2) 0 6∈ ⋃
i∈I(x) ∂Gi(x),

3)





∂xf(x, y) ⊂ ⋂
i∈I(x)

{
d ∈ IRn/G

′
i(x; d) < 0

}
,

⋃
j∈J ∂xgj(x, y) ⊂ ⋂

i∈I(x)

{
d ∈ IRn/G

′
i(x; d) ≤ 0

}
.

(4.2) ∃ l ∈ Ip, ∃fl ≥ fmax, ∃x(l) ∈ X, y(l) ∈ intY (x(l)), and t(l) ≤ fmin, with
f(x(l), y(l)) < t(l) + ε, such that

1) F̂ (x(l), y(l), t(l)) < inf (x,y,t)∈Dε,l
t≤fl

F̂ (x, y, t),

and for any (x, y) ∈ X × IRm, such that g(x, y) < 0, and any (u, vj) ∈ ∂xf(x, y) ×
∂xgj(x, y), j = 1, ..., q, we have

2) 0 6∈ ⋃
i∈I(x) ∂Gi(x),

3) 〈wi, u〉 ≥ 0, 〈wi, vj〉 ≥ 0, for any descent direction wi of Gi at x, i ∈ I(x), where 〈., .〉
denotes the inner product of two vectors.

(4.3) ∃ l ∈ Ip, ∃fl ≥ fmax, ∃x(l) ∈ X, y(l) ∈ intY (x(l)), and t(l) ≤ fmin, with
f(x(l), y(l)) < t(l) + ε, such that

1) F̂ (x(l), y(l), t(l)) < inf (x,y,t)∈Dε,l
t≤fl

F̂ (x, y, t),

and for any (x, y) ∈ X × IRm, such that g(x, y) < 0, we have

2) the functions f and g are differentiable at (x, y), and for any i ∈ I(x), the function
Gi is differentiable at x, and satisfies
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i) 〈∇Gi(x),∇xf(x, y)〉 < 0, 〈∇Gi(x),∇xgj(x, y)〉 ≤ 0, ∀j, where ∇ stands for the gradi-
ent,

ii) 0 6∈ {∇Gi(x), i ∈ I(x)}.
Let us give in the following remark some explanations and properties that result from the

above definitions and assumptions. Note that assumption (4.3) expresses the assumption
(4.1) in the differentiable case.

Remark 4.4. i) Set G∗ε,l =
{
x ∈ IRn/∃(y, t) such that (x, y, t) ∈ Gε,l

}
, i.e., the projection

onto X of the set Gε,l. Then, from the definition of Gε,l, we have
⋃

x∈G∗ε,l
I(x) ⊂ {l+1, ..., p}.

ii) Assumption (4.1) implies that (x(l), y(l), t(l)) is a feasible point of (Ŝε). Furthermore,
we have t(l) ≤ fl, (x(l), y(l), t(l)) 6∈ Dε,l, and

F̂ (x(l), y(l), t(l)) < inf
(x,y,t)∈Dε,l

v(x)≥t

F̂ (x, y, t).

iii) If (x̂, ŷ, t̂) solves (Ŝε), then (x̂, ŷ, t̂) ∈ Gε,l \
{
(x, y, t) ∈ Dε,l/ v(x) ≥ t

}
.

iv) We have Dε,k ⊂ bdGε, the boundary of Gε.
v) If (x, y, t) 6∈ Dε,k, then, Gi(x) < 0, ∀i ∈ {1, ..., k}, f(x, y) < t + ε, and gj(x, y) < 0,

∀j ∈ {1, ..., q}, but it is possible to have Gi(x) = 0, for some i ∈ {k + 1, ..., p}.
vi) Let (x, y) ∈ X×IRm, such that g(x, y) < 0. The property 3) of assumption (4.1) (with

the convexity of the function G
′
i(x; .)) implies that for any (u∗, v∗j ) ∈ ∂xf(x, y)× ∂xgj(x, y),

j ∈ J , and any (α, βj) ∈ IR∗+ × IR+, with IR∗ = IR \ {0}, the vector αu∗ +
∑

j∈J βjv
∗
j is

a descent direction of the function Gi at x, for i ∈ I(x). This property will be used for
establishing our stability results.

vii) The properties i) and ii) of 2) in assumption (4.3) will play the same role as property
3) of assumption (4.1).

4.2 The Second Approach

In order to give the second approach, we proceed in two steps. Firstly, we select a
feasible point (xk, yk, tk) of (Ŝk) that satisfies a condition that uses a min-max problem.
Then, we show that the projection onto X of any accumulation points of the sequence
(xk, yk, tk)k solves (S).

Remark 4.5. Let ε > 0. Let assumptions (2.1), (3.1) and (4.1) be satisfied, and let (x̂, ŷ, t̂)
be a solution of (Ŝε). Assume that I(x̂) = ∅. Then

G(x̂) < 0, g(x̂, ŷ) ≤ 0, f(x̂, ŷ) ≤ t̂ + ε, and v(x̂) ≥ t̂.

Since (x̂, ŷ, t̂) solves (Ŝε), it follows that

g(x̂, ŷ) < 0, f(x̂, ŷ) < t̂ + ε.

Otherwise, (x̂, ŷ, t̂) ∈ Dε,l, and the contradiction [see iii) of Remark 4.4]. Define xk = x̂,
yk = ŷ, and tk = t̂− 1/k, for all k ≥ 1. Then (xk, yk, tk) → (x̂, ŷ, t̂), as k → +∞. Hence,

G(xk) < 0, g(xk, yk) < 0, f(xk, yk) < tk + ε, v(xk) > tk, for large k.

That is (x̂, ŷ, t̂) is regular for (Ŝε). Then, in the following propositions 4.6–4.8, without loss
of generality, we will prove that any solution (x, y, t) of (Ŝε) is regular by assuming that
I(x) 6= ∅.
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Proposition 4.6. Let ε > 0. Let assumptions (2.1), (2.2), (3.1) and (4.1) hold. Then, the
problem (Ŝε) is stable.

Proof. First, note that from Proposition 3.1, we have inf Ŝε > −∞. On the other hand,
as mentioned above in Remark 4.5, let (x̂, ŷ, t̂) be an arbitrary solution of (Ŝε) such that
I(x̂) 6= ∅, and let us prove that (x̂, ŷ, t̂) is regular for (Ŝε). We have (x̂, ŷ, t̂) ∈ Gε,l, and
v(x̂) ≥ t̂ [see iii) of Remark 4.4]. Let x∗ ∈ ∂v(x̂). From Lemma 2.1, there exist (u∗, v∗j ) ∈
∂xf(x̂, y)× ∂xgj(x̂, y), and λj ≥ 0, j = 1, ..., q, such that

x∗ = u∗ +
q∑

j=1

λjv
∗
j ,

where y ∈ IRm satisfies g(x̂, y) ≤ 0, and v(x̂) = f(x̂, y). Let i ∈ I(x̂) ⊂ {l + 1, ..., p} [see i)
of Remark 4.4]. We have

G
′
i(x̂;x∗) ≤ G

′
i(x̂;u∗) +

q∑

j=1

λjG
′
i(x̂; v∗j ) < 0, (2)

where the last strict inequality follows from assumption (4.1). Then, from (2) we deduce
that x∗ is a descent direction of Gi at x̂, and hence x∗ 6= 0. Let xk = x̂ + αkx∗, yk = ŷ,
tk = t̂, for all k ∈ IN, with αk ↘ 0+. Then, (xk, yk, tk) → (x̂, ŷ, t̂), as k → +∞. It follows
that

Gi(x̂ + αkx∗) < Gi(x̂) = 0, for large k.

Besides, we have g(x̂, ŷ) < 0, and f(x̂, ŷ) < t̂ + ε. Hence,

g(xk, yk) < 0, and f(xk, yk) < tk + ε, for large k.

Finally, for i 6∈ I(x̂), it is easy to see that Gi(xk) < 0, for large k. On the other hand, since
x∗ ∈ ∂v(x̂), we have

v(xk) ≥ v(x̂) + αk‖x∗‖2 > tk, for all k,

where ‖.‖ denotes the Euclidean norm in IRn. Hence (x̂, ŷ, t̂) is regular and the result follows
from Proposition 4.2.

Proposition 4.7. Proposition 4.6 holds with the qualification condition (4.1) is replaced by
(4.2).

Proof. The majority of the proof is identical to the one of Proposition 4.6. Let us give
the arguments concerning the modifications. Let i ∈ I(x̂) ⊂ {l + 1, ..., p} and x∗ ∈ ∂v(x̂).
Let w∗ be a descent direction of Gi at x̂. Define xk = x̂ + αkw∗, αk ↘ 0+, yk = ŷ, and
tk = t̂ − 1/k, for all k ≥ 1. Then, (xk, yk, tk) → (x̂, ŷ, t̂), as k → +∞. From Lemma 2.1,
there exist u∗ ∈ ∂xf(x̂, y), v∗j ∈ ∂xgj(x̂, y), and λj ≥ 0, such that

x∗ = u∗ +
q∑

j=1

λjv
∗
j ,

where y satisfies g(x̂, y) ≤ 0, and f(x̂, y) = v(x̂). Since x∗ ∈ ∂v(x̂), it follows that

v(xk) ≥ v(x̂) + αk〈x∗, w∗〉 = v(x̂) + αk〈u∗, w∗〉+ αk

q∑

j=1

λj〈vj , w
∗〉.

Then, by assumption (4.2), we have v(xk) ≥ v(x̂) > tk, for large k. On the other hand, from
the definition of w∗, it follows that Gi(xk) < Gi(x̂) = 0, for large k. The end of the proof is
identical to the end of the proof of Proposition 4.6.



286 A. ABOUSSOROR, Z. ANKHILI AND A. MANSOURI

Proposition 4.8. Proposition 4.6 holds with the qualification condition (4.1) is replaced by
(4.3).

Proof. Let x∗ ∈ ∂v(x̂). Then, from [18, Theorem 2.1], we have

∂v(x̂) =
{∇xf(x̂, y) +

q∑

j=1

λj∇xgj(x̂, y)/∇yf(x̂, y)+

q∑

j=1

λj∇ygj(x̂, y) = 0, λj ≥ 0, and λj = 0, if gj(x̂, y) < 0
}
,

where y ∈ IRm satisfies g(x̂, y) ≤ 0, and v(x̂) = f(x̂, y). Hence, there exists λj ≥ 0,
j = 1, ..., q, with λj = 0, if gj(x̂, y) < 0, such that

x∗ = ∇xf(x̂, y) +
q∑

j=1

λj∇xgj(x̂, y).

Let i ∈ I(x̂). Assumption (4.3) implies that

〈∇Gi(x̂), x∗〉 < 0. (3)

Then, x∗ is a descent direction of Gi at x̂, and hence x∗ 6= 0. Let (xk, yk, tk) → (x̂, ŷ, t̂), as
k → +∞, be the sequence defined in Proposition 4.6, xk = x̂ + αkx∗, αk ↘ 0+, yk = ŷ, and
tk = t̂, for all k, that satisfies v(xk) > tk, for large k. Since the function Gi is differentiable
at x̂, it follows that

Gi(xk) = Gi(x̂) + αk〈∇Gi(x̂), x∗〉+ αk‖x∗‖β(x̂, αkx∗), (4)

where β(x̂, αkx∗) → 0 as k → +∞. Then, using (3) and (4), we get

Gi(xk) < Gi(x̂) = 0, for large k.

On the other, we have g(x̂, ŷ) < 0, and f(x̂, ŷ) < t̂ + ε. Hence

g(xk, yk) < 0, and f(xk, yk) < tk + ε, for large k.

Finally, for i 6∈ I(x̂), we have Gi(xk) < 0, for large k. Hence, (x̂, ŷ, t̂) is regular and the
result is deduced from Proposition 4.2.

The following theorem gives sufficient optimality conditions for the problem (Ŝε).

Theorem 4.9. Let ε > 0. Let assumptions of one of Propositions 4.6 to 4.8 hold. Let
(x̂ε, ŷε, t̂ε) be a feasible point of (Ŝε) that satisfies the following condition

max
(x,y,t)∈Gε

F̂ (x,y,t)≤F̂ (x̂ε,ŷε,t̂ε)

min
u∈IRm

g(x,u)≤0

[f(x, u)− t] = 0 (OCε)

Then, (x̂ε, ŷε, t̂ε) solves the problem (Ŝε).

Proof. Set αε = F̂ (x̂ε, ŷε, t̂ε) and let (P0) and (Qαε), denote respectively the problem (Ŝε)
and the problem

Max
(x,y,t)∈Gε

F̂ (x,y,t)≤αε

[v(x)− t].
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The latter can be rewritten as

Max
(x,y,t)∈Gε

F̂ (x,y,t)≤αε

min
u∈IRm

g(x,u)≤0

[f(x, u)− t].

Then, since (Ŝε) is stable, it follows from Proposition 4.3, that αε ≤ inf Ŝε = inf P0.
Hence, (x̂ε, ŷε, t̂ε) is a solution of (Ŝε).

Now, we can state our main result in this section.

Theorem 4.10. Let εk ↘ 0+. Let assumptions of one of Propositions 4.6 to 4.8 hold. Let
(x̂k, ŷk, t̂k) be a feasible point of (Ŝk) that satisfies the condition (OCεk

). Let (x̂, ŷ, t̂) be an
accumulation point of the sequence (x̂k, ŷk, t̂k)k. Then, x̂ solves the original problem (S).

Proof. Use respectively Theorems 4.9 and 3.2.

Let us give the following example in the differentiable case where assumptions of Propo-
sition 4.8 are satisfied.

Example 4.11. Let F (x, y) = |x− y| − 2x, G = (G1, G2),

G1(x) = 1− x,G2(x) = x− 5,

f(x, y) = −x− y, g = (g1, g2),

g1(x, y) = −y − 1, g2(x, y) = −x + y + 1,

where x ∈ IR, y ∈ IR.We have X = {x ∈ IR/ 1 ≤ x ≤ 5}, which is a compact set, and
Y (x) = {y ∈ IR/ − 1 ≤ y ≤ x− 1}. Let Z = [−1, 4]. Then, Y (x) ⊂ Z, for all x ∈ X. Hence
assumptions (2.1), (2.2), (3.1) are satisfied. Let us verify assumption (4.3). Let l = 1, and
for ε > 0 sufficiently small,

Dε,1 =
{
(x, y, t) ∈ Gε/G1(x) = 0

} ⋃ ⋃

j=1,2

{
(x, y, t) ∈ Gε/ gj(x, y) = 0

}

⋃{
(x, y, t) ∈ Gε/ f(x, y)− t = ε

}
.

We have

fmin = inf
(x,y)∈IR×IR

G(x)≤0
g(x,y)≤0

f(x, y) = −9, fmax = sup
(x,y)∈IR×IR

G(x)≤0
g(x,y)≤0

f(x, y) = 0.

Let f1 = 0, x(1) = 5 ∈ X, y(1) = 4− ε/2 ∈ intY (x(1)), and t(1) = −9. Then,

f(x(1), y(1)) = −9 + ε/2 < −9 + ε = t(1) + ε,
and

F̂ (x(1), y(1), t(1)) = −9 + ε/2 < inf
(x,y,t)∈Dε,1

t≤f1

F̂ (x, y, t) = 0.

Let x ∈ X and y ∈ IR, such that g(x, y) < 0. We have I(x) = {2} [see i) of Remark 4.4],
and

G
′
2(x) = 1, f

′
x(x, y) = −1, g

′
1,x(x, y) = 0, g

′
2,x(x, y) = −1.

Then,

G
′
2(x)f

′
x(x, y) = −1 < 0, G

′
2(x)g

′
j,x(x, y) ≤ 0, j = 1, 2, et 0 6∈ {G′

2(x)}.
Hence, assumption (4.3) is satisfied.
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5 The Third Approach

In this section, we will improve the approach given in Section 4. In fact, when the functions
f and g are respectively polyhedral and linear, we can reduce the problem (S) to a maxi-
mization problem of a polyhedral convex function over a compact convex set (similar results
are given in [5]). Let f and g be the functions defined by

f(x, y) = max
i=1,...,r

[〈Ai, x〉+ 〈Bi, y〉 − ci

]
, g(x, y) = Cx + Dy − e,

where

Ai = (ai1, ..., ain)T , Bi = (bi1, ..., bim)T , ci ∈ IR, i = 1, 2, ..., r,

C ∈ IRq×n, D ∈ IRq×m, e ∈ IRq.

Then, the lower level problem P (x) is equivalent to the following linear programming
problem [7]

P̂ (x) Min
y∈IRm,z∈IR

〈Ai,x〉+〈Bi,y〉−ci≤z ∀i
Cx+Dy≤e

z

in the sense that if (ŷ, ẑ) solves P̂ (x), then, ŷ solves P (x) and ẑ = v(x). Let A and B
denote the matrices with the ith rows being equal to AT

i and (BT
i ,−1) respectively, and set

c = (c1, ..., cr)T . Then, the problem P̂ (x) can be rewritten as follows

Min
t∈IRm+1

B̂t≤d−Âx

〈ĉ, t〉

where Â =
(

A
C

)
, B̂ =

(
B

(D, 0)

)
, ĉ = (0, ..., 0︸ ︷︷ ︸

m

, 1)T , d =
(

c
e

)
and t =

(
y
z

)
.

Consequently, by duality, we have

v(x) = max
u∈(IR+)r+q

B̂T u=−ĉ

〈Âx− d, u〉 = max
j=1,...,s

[〈ÂT uj , x〉 − 〈d, uj〉],

with u1, ..., us, the vertices of the polyhedral set
{
u ∈ (IR+)r+q \ {0}/ B̂T u = −ĉ

}
.

Then, Theorem 4.9 is improved to the following:

Theorem 5.1. Let ε > 0. Let assumptions of one of Propositions 4.6 to 4.8 hold. Let
(x̂ε, ŷε, t̂ε) be a feasible point of (Ŝε) that satisfies the condition

max
(x,y,t)∈Gε

F̂ (x,y,t)≤F̂ (x̂ε,ŷε,t̂ε)

[
max

j=1,...,s
[〈ÂT uj , x〉 − 〈d, uj〉]− t

]
= 0 (ÔCε)

Then, (x̂ε, ŷε, t̂ε) solves the problem (Ŝε).

Proof. The result follows from Theorem 4.9.

Theorem 5.2. Let εk ↘ 0+. Let assumptions of one of Propositions 4.6 to 4.8 hold. Let
(x̂k, ŷk, t̂k) be a feasible point of (Ŝk) that satisfies the condition (ÔCεk

). Let (x̂, ŷ, t̂) be an
accumulation point of the sequence (x̂k, ŷk, t̂k)k. Then, x̂ solves the original problem (S).

Proof. It suffices to use respectively Theorems 5.1 and 3.2.
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6 Conclusion

As it is well-known, the numerical resolution of bilevel programming problems is a difficult
task, especially when the solution set of the lower level is not always a singleton. So, in
order to get round this difficulty and give other prospects to this situation, under certain
assumptions, we have given three approaches of the strong bilevel programming problem
(S) by some well-known global optimization problems. Precisely, these three approaches
use reverse convex and min-max problems, and problems of maximization of a polyhedral
convex function over a compact convex set. In spite of that the involved global optimiza-
tion problems are also known as difficult problems, such theoretical approaches open other
ways which can lead to a possible numerical resolution of the considered class of bilevel
programming problems. Then, this connection established between such class of bilevel pro-
gramming problems and the other global optimization problems gives a contribution in the
investigation of bilevel programming problems.
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