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1 Introduction

In this paper we consider the solution schemes for the following unconstrained optimization
problem

min
x∈Rn

f(x), f ∈ C2(Rn), (1.1)

by using the so-called continuous method or Ordinary Differential Equation (ODE) method
(see [8, 12, 13, 19, 25, 32, 38] and the references therein). Different from the conventional
optimization approaches, such method adopts some kind of differential equation with the
initial condition to define the trajectory of variable x in terms of a parameter t. By tracing
this trajectory, the stationary point(s) satisfying∇f(x) = 0, or hopefully, the local minimizer
of f(x) can be located. To be more precise, let x(t) for t ∈ T ⊆ R, be the solution of the
following initial value problem (IVP):

{
dx(t)

dt = h(x), t ≥ 0
x(0) = x0,

(1.2)
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where h : Rn → Rn is a continuous mapping and T denotes the maximal interval of existence
of x(t). The solution of (1.2), {x(t), t ∈ T}, is said to be the trajectory of (1.2), and without
confusion, in order to simplify the following presentation, we also call x(t) the trajectory of
(1.2).

From the optimization point of view, the simplest trajectory of (1.2) can be defined with
h(x) = dG(x) = −∇f(x), i.e.,

{
dx(t)

dt = dG(x), t ≥ 0,
x(0) = x0,

(1.3)

which goes back to Cauchy and was proposed to solve some optimization problems in [10].
This method has been studied extensively later, e.g., in [1, 4, 5, 17, 37].

Another natural trajectory of (1.2) can be defined from Newton’s direction, say h(x) =
dN (x) = −(∇2f(x))−1∇f(x), and the IVP becomes

{
dx(t)

dt = dN (x), t ≥ 0,
x(0) = x0.

(1.4)

It is called the continuous Newton method, and if the Hessian matrix ∇f2(x) along the
trajectory x(t) of (1.4) is positive definite for t ∈ T , it then follows that

∇f(x(t)) = e−t∇f(x0), t ∈ T, (1.5)

and hence

∇f(x(t))
‖∇f(x(t))‖2 =

∇f(x0)
‖∇f(x0)‖2 ∈ Sn−1 := {x ∈ Rn|‖x‖2 = 1}, t ∈ T. (1.6)

This property is observed and utilized in [18] to show an interesting topological property
of the continuous Newton method that in some neighborhood of a strict local minimizer
x∗ of f(x), when perturbing f(x) to f̃(x) on an open region not containing x0 and x∗, the
trajectories x(t) and x̃(t) with x(0) = x̃(0) = x0 defined by the continuous Newton equations
for f(x) and f̃(x) coincide outside the perturbed region, hence coincide in their asymptotic
states.

The continuous Newton method converges very fast since ‖∇f(x(t))‖2 reduces exponen-
tially as indicated by (1.5). However, the nonpositive definiteness of the Hessian matrix
∇2f(x) is the major obstacle for this method. In [6], Branin then considered the following
corresponding form

∇2f(x)
dx(t)

dt
= ∓∇f(x), (1.7)

and suggested to change the sign of (1.7) whenever its trajectory x(t) encounters a change
in sign of the determinant of ∇2f(x(t)) or arrives at a solution point of ∇f(x) = 0 in order
to find multiple local minima numerically. Moreover, Branin also suggested to employ the
adjoint matrix, say A(x), of ∇2f(x) to get around the singularity, and then to replace (1.7)
with

dx(t)
dt

= −A(x)∇f(x), (1.8)
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which is now well-defined in Rn. However, the consequence of adopting (1.8), the trouble-
some extraneous singular points (see [6]) defined by {x̂ ∈ Rn|A(x̂)∇f(x̂) = 0, ∇f(x̂) 6= 0}
are induced (see [22, 23] for the structure of such extraneous singular points).

An analogous modification of (1.8) proposed by Smale ([36]) is called “global Newton
equation”, and has the following form in the context of the unconstrained optimization

∇2f(x)
dx(t)

dt
= −φ(x)∇f(x), (1.9)

where φ(x) is a real function suggested specifically to satisfy the following condition

sign(φ(x)) = sign(det(∇2f(x))),

and the simple choice of φ(x) = det(∇2f(x)) leads to the equation (1.8) immediately.

Additional research related to continuous Newton method has been carried out (see
[2, 3, 12, 13, 14, 21] and the reference therein). For example, Diener et al. developed the
so-called “Newton-leaves” and attempted to connect several or all of the stationary points
of f(x) in a single connected trajectory. For more details, reader can refer to [12, 13, 14].

In this paper, we propose a continuous Newton-type method (in the form of an ODE),
which combines the negative gradient dG(x) and Newton’s direction dN (x), and is well-
defined in Rn. It is shown that our method gets around the singularities of∇2f(x), and under
certain conditions, it converges globally to a connected stationary point subset for a general
function f(x), and converges globally to a stationary point for a real analytic function§ f(x).
Moreover, the trajectory defined by the proposed ODE moves strictly downhill with respect
to f(x) (meaning that the value of f(x(t)) is strictly decreasing as t increases); and for
the uniformly convex function f(x), it becomes the exact Newton trajectory of (1.4), and
therefore, the fast convergence can be achieved.

The rest of this paper is organized as follows. In the next section, the ODE corresponding
to our continuous Newton-type method is established and the existence and uniqueness of the
trajectory are verified. The convergence analysis of this trajectory is addressed in Section 3.
A powerful numerical solver for some continuous models is examined for our new continuous
Newton-type method in Section 4. The encouraging numerical results on a set of standard
test problems are presented in Section 5. Some concluding remarks are drawn in Section 6.

2 A continuous Newton-type Method

First, let’s state some assumptions on the objective function f(x) that we are going to
minimize. Let

L = {x ∈ Rn|f(x) ≤ f(x0)}

be the level set of f(x), and let Lf(x0) denote the connected component of L that contains
the point x0.

Assumptions:

(a) ∇2f(x) is at least locally Lipschitz continuous in Rn.

§A real function is said to be analytic if it possesses derivatives of all orders and agrees with its Taylor
series in the neighborhood of every point.
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(b) f(x) is bounded from below by f∗ > −∞.

(c) For any x0 ∈ Rn, Lf(x0) is bounded.

It is clear that Assumption (c) is much weaker than the condition that the level set
L = {x ∈ Rn|f(x) ≤ f(x0)} is bounded. For example, if f(x) = sin x, x ∈ R, and for any
given x0 ∈ R with f(x0) 6= 1, the level set

L =
+∞⋃

k=−∞
[(2k − 1)π − arcsin f(x0), 2kπ + arcsin f(x0)], k ∈ Z (the integer set),

is unbounded, but

Lf(x0) = [(2k̃ − 1)π − arcsin f(x0), 2k̃π + arcsin f(x0)]

for some k̃ ∈ Z with x0 ∈ Lf(x0) is bounded. From Assumption (c), we know also that the
set Lf(x0) is compact, and furthermore, for any x0 ∈ Rn, the set Sf(x0) defined by

Sf(x0) := S ∩ Lf(x0), (2.1)

is compact too, where S is the stationary points set of f(x) given by

S := {x ∈ Rn|∇f(x) = 0}. (2.2)

Consider the following continuous Newton-type differential equation,
{

dx(t)
dt = d(x), t ≥ 0

x(0) = x0,
(2.3)

where

d(x) = α(x)dN (x) + β(x)dG(x), (2.4)

with

α(x) =





1, if λmin(x) > δ2,
λmin(x)−δ1

δ2−δ1
, if δ1 ≤ λmin(x) ≤ δ2,

0, if λmin(x) < δ1;
(2.5)

and

β(x) = 1− α(x) =





0, if λmin(x) > δ2,
δ2−λmin(x)

δ2−δ1
, if δ1 ≤ λmin(x) ≤ δ2,

1, if λmin(x) < δ1.

(2.6)

Here, λmin(x) represents the smallest eigenvalue of ∇2f(x), and δ2 > δ1 > 0 are two prede-
fined positive constants. It should be noted that the smallest eigenvalue of ∇2f(x), λmin(x),
can be easily estimated from the modified Cholesky factorization in [33] numerically.

A first observation is that for a general function f(x) ∈ C2(Rn), (2.4) is well-defined
in Rn; and when ∇2f(x) is uniformly positive definite, i.e., yT∇2f(x)y ≥ δ̃‖y‖22, for some
constant δ̃ > 0 and ∀y ∈ Rn, the trajectory generated from (2.3) is exactly the continuous
Newton trajectory for any 0 < δ1 < δ2 ≤ δ̃. Since the direction d(x) in (2.4) is continuous
in Rn, the Cauchy-Peano existence theorem implies that there is a solution to the IVP
(2.3); for the uniqueness of the solution, furthermore, we need to prove d(x) is also locally
Lipschitz continuous in Rn. The first result shows that under Assumption (a), λmin(x) is
locally Lipschitz continuous in Rn, which is a direct consequence of the following Wielandt-
Hoffman lemma.
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Lemma 2.1 ([16], p. 396). If A and A + E are n-by-n symmetric matrices, then

|λk(A + E)− λk(A)| ≤ ‖E‖2, k = 1, · · · , n,

where λk(A) designates the kth largest eigenvalue of A.

Since ∇2f(x) is locally Lipschitz continuous by Assumption (a), the previous lemma
reveals that for any two points y, z in some neighborhood of any x ∈ Rn,

|λmin(y)− λmin(z)| ≤ ‖∇2f(y)−∇2f(z)‖2 ≤ C1‖y − z‖2, (2.7)

where C1 > 0 is the Lipschitz constant of ∇2f(x), and hence it follows that λmin(x) is locally
Lipschitz continuous in Rn. Assumptions (a) also implies that

‖dG(y)− dG(z)‖2 ≤ C2‖y − z‖2, (2.8)

for a constant C2 > 0 and for any two points y, z in some neighborhood of x ∈ Rn.
Moreover, from the result in [30] (p.46), we know that for any x ∈ Rn, if λmin(x) > 0,

there exist a γ > 0 and a neighborhood Nτ (x) of x such that ∀y ∈ Nτ (x),∇2f(y) is invertible
and ‖(∇2f(y))−1‖2 ≤ γ. Hence, for any y, z ∈ Nτ (x), it follows

‖(∇2f(y))−1 − (∇2f(z))−1‖2 = ‖(∇2f(y))−1[∇2f(z)−∇2f(y)](∇2f(z))−1‖2
≤ γ2 · ‖∇2f(z)−∇2f(y)‖2
≤ γ2C1‖z − y‖2, (2.9)

which implies that when λmin(x) > 0, (∇2f(x))−1 is Lipschitz continuous at x too; and
additionally, it is true that

‖dN (y)− dN (z)‖2 ≤ C3‖y − z‖2, ∀y, z ∈ Nτ (x), (2.10)

for some positive constant C3 > 0 and λmin(x) > 0.

Theorem 2.2. Suppose that f(x) satisfies Assumptions (a), (b) and (c), then for any
x(0) = x0 ∈ Rn, there exists a unique solution x(t) to (2.3), and the maximal interval of
existence of the solution can be extended to [0,+∞).

Proof. See the Appendix.

We next provide a general result which shows that the trajectory x(t) of (2.3) will never
reach the set Sf(x0) at finite time t ≥ 0 provided that∇f(x0) 6= 0. This result is the extension
of Theorem 2(iii) in [26] which obtains the same conclusion for the gradient system (1.3).

Theorem 2.3. Suppose h : Rn → Rn is locally Lipschitz continuous. Then for any x0 =
x(0) ∈ Rn with h(x0) 6= 0, the solution to the IVP (1.2), x(t), satisfies h(x(t)) 6= 0 for any
t ∈ T, where T denotes the maximal interval of existence of x(t).

Proof. The proof can be conducted along the same arguments as Theorem 2 (iii) in [26].

Under the Assumptions (a), (b) and (c), (6.1) together with the previous theorem reveals
that f(x(t)) is strictly decreasing along the trajectory as t increases whenever ∇f(x0) 6= 0.
This property also guarantees that there is no periodic solution for (2.3).

Theorem 2.4. There is no periodic solution to (2.3) for any x(0) = x0 ∈ Rn with ∇f(x0) 6=
0.

Proof. See the Appendix.
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3 Convergence Analysis

Since for any x0 ∈ Rn, the solution x(t) of (2.3) is unique and its maximal interval of
existence can be extended to [0,+∞), we then can apply some results (refer to [31]) of the
dynamical system to develop the convergence analysis.

Consider the ODE

dx(t)
dt

= h(t). (3.1)

We suppose that for any x0 ∈ Rn, the solution x(t) to (3.1) with x(0) = x0 is unique and
its right maximal interval of existence is [0,+∞).

Definition 3.1. A point p ∈ Rn is an ω-limit point of the trajectory x(t) of (3.1) with
x(0) = x0 if there is a sequence ti → +∞ (as i → +∞) such that

lim
i→+∞

x(ti) = p.

The set of all ω-limit points of the trajectory x(t) of (3.1) with x(0) = x0 is called the ω-limit
set of x(t) and it is denoted by Ωx0 .

Some properties of the ω-limit set are summarized in the following Lemma 3.2 (see [31],
p. 175).

Lemma 3.2. The ω-limit set of a trajectory x(t) of (3.1) with x(0) = x0, Ωx0 , is a closed
subset of Rn and if x(t) is contained in a compact subset of Rn, then Ωx0 is non-empty,
connected and compact subset of Rn.

Denote by

dist(x(t),Ωx0) = inf
x̂∈Ωx0

‖x(t)− x̂‖2

the distance of x(t) to the set Ωx0 . If the trajectory x(t) is contained in a compact subset
of Rn, it then is true that

lim
t→+∞

dist(x(t),Ωx0) = 0,

since otherwise, there exists some ε > 0 and a sequence {ti} such that ti → +∞ and

dist(x(ti),Ωx0) > ε, i = 1, 2, · · · . (3.2)

The boundedness of {x(ti)} then implies that there is a convergent subsequence {x(t′i)} with
the limit point p ∈ Rn. The fact p ∈ Ωx0 then contradicts (3.2).

Applying these results to (2.3), we can analyze the convergence of the trajectory x(t) of
(2.3).

Remark 3.3. Let Ωx0 represent the ω-limit set of trajectory x(t) of (2.3) with x(0) = x0 ∈
Rn. As indicated by (6.1), Ωx0 ⊆ Lf(x0); and moreover, we can say that the trajectory x(t)
converges to the set Ωx0 as t → +∞ in the sense that

lim
t→+∞

dist(x(t),Ωx0) = 0.
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If, in addition, Ωx0 contains only one point p ∈ Rn, it then implies that

lim
t→+∞

dist(x(t),Ωx0) = lim
t→+∞

inf
x̂∈{p}

‖x(t)− x̂‖2 = lim
t→+∞

‖x(t)− p‖2 = 0,

which equivalently implies that x(t) converges to a single point p ∈ Rn.

The following theorem gives the convergence result for a general function f(x).

Theorem 3.4. Suppose f(x) satisfies Assumptions (a), (b), and (c), and for any x0 ∈ Rn,
let x(t) be the trajectory of (2.3) with x(0) = x0 ∈ Rn, and let Ωx0 denote the ω-limit set of
x(t). Then there exists some constant f̄ such that

Ωx0 ⊆ {x ∈ Rn|f(x) = f̄} ∩ Sf(x0); (3.3)

and x(t) converges to some connected subset of Sf(x0) as t → +∞, where Sf(x0) is defined
by (2.1).

Proof. Since ∇f(x0) = 0 is the trivial case in which the unique trajectory becomes x(t) ≡
x0, t ≥ 0 (due to uniqueness), we just consider ∇f(x0) 6= 0.

From (6.1) and Theorem 2.3, it follows that f(x(t)) is strictly decreasing as t increases,
but still bounded below by Assumption (b), which consequently implies that there exists a
constant, say f̄ , so that

lim
t→+∞

f(x(t)) = f̄ .

As a result, for any x̄ ∈ Ωx0 , there exists a sequence {ti}+∞i=1 such that ti → +∞, x(ti) → x̄
and f(x(ti)) → f(x̄) = f̄ as i → +∞, which implies Ωx0 ⊆ {x ∈ Rn|f(x) = f̄} directly.

Furthermore, the LaSalle invariant set theorem (Theorem 3.4 in [35]) says that for any
x̄ ∈ Ωx0 , we have df(x̄)

dt = ∇f(x̄)T d(x̄) = 0, which is true only when ∇f(x̄) = 0 by (6.1).
Consequently, from Lemma 3.2, Remark 3.3 and x(t) ∈ Lf(x0) for t ≥ 0, we conclude
Ωx0 ⊆ {x ∈ Rn|f(x) = f̄} ∩ Sf(x0), and complete the proof.

Special cases of the set Ωx0 below directly lead to the convergence to a stationary point,
and the proof is obvious by Lemma 3.2, Remark 3.3, and Theorem 3.4.

Corollary 3.5. Under the conditions of Theorem 3.4, suppose that x(t) is the trajectory of
(2.3) with x(0) = x0 ∈ Rn. If each point in Sf(x0) is isolated from one another, then x(t)
converges to a stationary point as t → +∞; and therefore, if there is an x̄ ∈ Ωx0 being a
strictly local minimizer of f(x), then x(t) → x̄ as t → +∞.

However, in general, it should be pointed out that converging to a (single) stationary
point may not be obtained, because it is known that the trajectory of (1.3) will not necessarily
converge to a single point (see [19], Prop. C.12.1; and see [1] for a counterexample). By only
endowing f(x) to be real analytic additionally, however, converging to a single stationary
point is achievable. The proof for this is based on Corollary 3.5 and similar to the proof of
Theorem 2.2 in [1].

Theorem 3.6. Suppose that f(x) is a real analytic function satisfying Assumption (a), (b),
and (c). Then for any x0 ∈ Rn, the trajectory x(t) of (2.3) converges to a (single) stationary
point of f(x) as t → +∞ for any x(0) = x0 ∈ Rn.
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Proof. We just need to consider the case ∇f(x0) 6= 0. Let Ωx0 be the ω-limit set of x(t). If
there exists an x̄ ∈ Ωx0 such that λmin(x̄) > 0, then x̄ must be a strictly local minimizer of
f(x) and Corollary 3.5 completes the proof already; otherwise, ∀x̄ ∈ Ωx0 , λmin(x̄) ≤ 0. We
prove next that x̄ is the unique point in Ωx0 and therefore limt→+∞ x(t) = x̄.

Obviously, there exists a neighborhood Nτ1(x̄) of x̄ such that ∀x ∈ Nτ1(x̄), λmin(x) < δ1

for the predefined δ1 > 0 in (2.5). Also, since f(x) is real analytic, the following ÃLojasiewicz
gradient inequality (see [27]) holds in a neighborhood Nτ2(x̄) of x̄,

‖∇f(x)‖2 ≥ c|f(x)− f(x̄)|σ, ∀x ∈ Nτ2(x̄),

for some constants c > 0 and σ ∈ [0, 1). We then can assume that for any sufficiently small
ε > 0, the ÃLojasiewicz gradient inequality and λmin(x) < δ1 hold in the neighborhood Nε(x̄).

From Theorem 3.4 and ∇f(x0) 6= 0, it follows that f(x(t)) > f(x̄) for t ≥ 0. Then for
any x(t) ∈ Nε(x̄), we have

d[f(x(t))− f(x̄)]
dt

= −‖∇f(x(t))‖22 ≤ −c[f(x(t))− f(x̄)]σ · ‖dx(t)
dt

‖2,

or equivalently,

c1
d[f(x(t))− f(x̄)]1−σ

dt
≤ −‖dx(t)

dt
‖2, (3.4)

where c1 = (c(1− σ))−1 > 0, c > 0 and σ ∈ [0, 1).
Note that x̄ is an accumulation point and f(x(t)) → f(x̄) as t → +∞, there must exist

some t1 ≥ 0 such that the following two inequalities hold simultaneously,

‖x(t1)− x̄‖2 <
ε

2
,

c1[f(x(t1))− f(x̄)]1−σ <
ε

2
.

Suppose x(t) will leave Nε(x̄) after t1, and let t2 be the smallest such that ‖x(t2)− x̄‖2 = ε,
then x(t) ∈ Nε(x̄) for all t ∈ (t1, t2). From (3.4) and the decreasing property of f(x(t)), we
get

0 <

∫ t2

t1

‖dx(t)
dt

‖2dt ≤ c1[f(x(t1))− f(x̄)]1−σ − c1[f(x(t2))− f(x̄)]1−σ

< c1[f(x(t1))− f(x̄)]1−σ <
ε

2
.

Therefore,

‖x(t2)− x̄‖2 ≤ ‖x(t2)− x(t1)‖2 + ‖x(t1)− x̄‖2
≤

∫ t2

t1

(‖dx(t)
dt

‖2)dt + ‖x(t1)− x̄‖2 < ε.

This contradiction implies that ∀ε > 0 arbitrarily small, ∃ a t1 such that ‖x(t) − x̄‖2 < ε,
∀t ≥ t1, this is just the definition of the convergence of x(t) to x̄ as t → +∞.

It should be mentioned that different from Theorem 2.2 in [1], we do not rely on the
angle condition

df(x(t))
dt

≡ ∇f(x(t))T dx(t)
dt

≤ −θ‖∇f(x(t))‖2 · ‖dx(t)
dt

‖2, θ > 0, (3.5)
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to prove that x(t) converges to a single stationary point. This is due to our special structure
of (2.3). Moreover, the converging point of the trajectory x(t) of (2.3) is also a stationary
point, which is stronger than that of Theorem 2.2 in [1]. In general, Theorem 2.2 of [1] can
still be strengthened to guarantee the convergence to a stationary point of a real analytic
function f(x), and an analogous version is presented as follows.

Theorem 3.7. Let f(x) be a real analytic function and let x(t) be a C1 curve in Rn with
dx(t)

dt = h(x). Assume that there exist a θ > 0 and a real η such that for t > η, x(t) satisfies
the angle condition (3.5) and

[
df(x)

dt
= 0] ⇒ [h(x) = 0] ⇒ [∇f(x) = 0]. (3.6)

Then, as t → +∞, either ‖x(t)‖2 →∞ or there exists an x∗ ∈ Rn such that x(t) → x∗ with
∇f(x∗) = 0.

Proof. According to Theorem 2.2 in [1], we just need to verify ∇f(x∗) = 0. Lemma 2 in
[7] (p. 429) ensures that if there exists an x∗ ∈ Rn such that x(t) → x∗ as t → +∞, then
h(x∗) = 0, and hence by (3.6), it leads to the result.

4 Pseudo-transient Continuation

Pseudo-transient continuation (Ψtc ) is one way to solve (1.2). This Ψtc method was orig-
inally designed for finding steady-state solutions to time-dependent differential equations
without computing a fully time-accurate solution. The approach can also be adapted to
optimization problems. We refer to [24, 9, 15, 20, 11] for the details of the theory and
some applications. In this section we will only summarize the method. We report numerical
results for Ψtc in Section 5.

In the context of optimization, one would integrate (1.2) numerically, managing the
“time step”, say ξi, in a way that, while maintaining stability, would increase as rapidly as
possible in order to make the transition to Newton’s method near the solution. One way to
implement this is the iteration

xi+1 = xi − (ξ−1
i I + H(xi))−1h(xi), i = 0, 1, · · · , (4.1)

where H(x) is the model Hessian or H(x) = h′(x). A common way to manage the time step
ξi is “Switched Evolution Relaxation” (SER) [29]

ξi+1 = ξi‖h(xi)‖/‖h(xi+1)‖, i = 0, 1, · · · . (4.2)

SER is supported by theory, and it is this approach we use in the numerical test in Section
5.

One thing we should mention is that for the sequence {xi} generated from Ψtc , the cor-
responding objective function value sequence {f(xi)} may not be monotonically decreasing.
This is different from the continuous method (2.3) where df(x(t))

dt ≤ 0, for t ≥ 0.

5 Computational Experiments

This section deals with the numerical test of our continuous Newton-type method whose
ODE is in the form of (2.3) in comparing with the continuous steepest descent method
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whose ODE is in the form of (1.3) by using the Matlab ODE solver. In addition, we also
report the numerical results of Ψtc in solving the related ODEs. For this purpose, the set of
the 17 standard test functions (except for the last Chebyquad function) for unconstrained
minimization from [28] is used and tested with their dimensions ranging from 2 to 400.
For each test function, the same initial value x0 as in [28] is used. The test problems are
summarized in Table 1.

Table 1. Test Problems
No. Function name n m
P1 Helical valley function 3 3
P2 Biggs EXP6 function 6 m ≥ n
P3 Gaussian function 3 15
P4 Powell badly scaled function 2 2
P5 Box three− dimensional function 3 m ≥ n
P6 V ariably dimensioned function n m = n + 2
P7 Watson function 2 ≤ n ≤ 31 31
P8 Penalty function I n m = n + 1
P9 Penalty function II n m = 2n
P10 Brown badly scaled function 2 3
P11 Brown and Dennis function 4 m
P12 Gulf research and development function 3 n ≤ m ≤ 100
P13 Trigonometric function n m = n
P14 Extended Rosenbrock function n(even) m = n
P15 Extended Powell singular function n(multiple of 4) m = n
P16 Beale function 2 3
P17 Wood function 4 6

5.1 Matlab Platform

All computation in this section is performed on Matlab platform. Before presenting our
numerical results, several points should be clarified. First, the minimum eigenvalue routine
used in our tests is directly based on the MATLAB code eig.m, although the attractive
modified Cholesky factorization in [33] can be used for efficiency consideration. Second, for
each test function, the explicit expression of ∇2f(x) is provided. Third, due to the result of
Theorem 3.4, we do not have to require, as Theorem 3.6 states, that the test functions are
real analytic. Finally, we let δ2 = 1000δ1 in (2.5), and fix δ1 to δ(0) = 1e− 9, but if this fails
for some problems, δ1 is set as δ(1) = 1e− 4.

All our tests are performed on a PC with Intel(R) Pentium(R)4 Processor at 3.20GHz.
The nonstiff ODE solver ODE113 is used to solve (1.3) and (2.3) with the relative tolerance
rtol = 1e− 8 and absolute tolerance atol = 1e− 9 to control the accuracy of the integrated
trajectory (see [34] for the details of these options), and ‖ d

dtx(t)‖∞ ≤ 1e− 6 is the stopping
criterion. The CPU times to obtain the acceptable solutions are summarized in Table 2
where ‘∗’ denotes that the algorithm cannot stop within 1000 seconds of the CPU time; and
the CPU times of the continuous steepest descent ODE (1.3) and our continuous Newton-
type ODE (2.3) are denoted by CPUG and CPUN , respectively. In addition, we also list the
smallest eigenvalue (labeled as λ∗min) of the Hessian at the computed point x∗ for supporting
the validity of our choices of δ1, δ2 and for detecting whether the computed point is a local
minimizer. f∗G and f∗N represent the final computed objective function values from (1.3) and
(2.3), respectively.
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Table 2. Comparison of (1.3) and (2.3) on ODE113
No. n m CPUG(s) CPUN (s) λ∗min f∗G f∗N
P1 3 3 2.5781 0.5313 1.4328e− 000 6.4722e− 013 7.9391e− 013
P2 6 6 128.9375 165.2656 −4.5330e− 005 3.5509e− 005 3.5509e− 005
P3 3 15 0.0938 0.0469 1.3966e− 001 1.1283e− 008 1.1282e− 008
P4 2 2 ∗ 604.8594 1.0059e− 006 ∗ 4.1537e− 010

P5 3 10 18.2656 7.3750(δ(1)) 9.1158e− 004 5.6492e− 010 5.6174e− 012

P5 3 20 15.3438 7.2031(δ(1)) 1.6145e− 003 3.1329e− 010 2.8701e− 012
P6 5 7 0.1563 0.0625 2.0000e− 000 1.1589e− 015 4.0253e− 011
P6 10 12 0.1406 0.0781 2.0000e− 000 1.9155e− 015 5.8237e− 010
P6 20 22 0.1719 0.1250 2.0000e− 000 4.6993e− 016 1.9398e− 008
P6 30 32 0.1875 0.4375 2.0000e− 000 1.7847e− 016 6.3986e− 008
P7 2 31 0.1250 0.0781 2.3977e + 001 5.4661e− 001 5.4661e− 001
P7 6 31 ∗ 1.6250 2.8101e− 003 ∗ 2.2877e− 003
P7 8 31 ∗ 4.8750 7.5430e− 006 ∗ 1.8162e− 005
P8 4 5 20.9688 0.1250 7.9998e− 005 2.2514e− 005 2.2500e− 005
P8 10 11 15.0313 0.1719 1.2648e− 004 7.0893e− 005 7.0877e− 005
P8 20 21 11.3906 0.1875 1.7887e− 004 1.5780e− 004 1.5778e− 004
P8 50 51 9.1563 0.4531 2.8281e− 004 4.3181e− 004 4.3179e− 004
P8 100 101 8.7031 1.4531 3.9993e− 004 9.0253e− 004 9.0249e− 004
P8 200 201 9.7031 6.5781 5.6554e− 004 1.8611e− 003 1.8611e− 003
P9 4 8 0.1719 0.4844 2.9693e− 006 9.4914e− 006 9.3763e− 006
P9 10 20 773.6875 0.4531 1.8842e− 005 2.9369e− 004 2.9366e− 004
P9 20 40 ∗ 0.3281 1.3795e− 004 ∗ 6.3897e− 003
P9 50 100 188.5469 0.5313 1.6645e− 002 4.2961e− 000 4.2961e− 000
P9 100 200 2.5000 1.5156 2.2137e− 001 9.7096e + 004 9.7096e + 004
P9 200 400 14.3281 5.7188 2.6871e + 002 4.7116e + 013 4.7116e + 013
P10 2 3 ∗ 5.2188 2.0000e− 000 ∗ 2.5763e− 015
P11 4 10 0.8750 0.3125 4.7720e− 000 1.4432e− 000 1.4432e− 000
P11 4 20 4.0625 0.1563 1.5158e + 003 8.5822e + 004 8.5822e + 004
P11 4 50 ∗ 0.3594 1.4581e + 009 ∗ 2.6684e + 016
P11 4 100 ∗ 0.6406 1.5186e + 018 ∗ 1.5087e + 034
P12 3 3 ∗ 0.3438 1.9330e− 006 ∗ 3.2312e− 007
P13 5 5 0.4063 0.5156 1.5045e− 001 4.3481e− 011 1.5018e− 011
P13 10 10 0.2500 0.6875 9.8024e− 001 2.7951e− 005 2.7951e− 005
P14 2 2 10.5625 0.1094 3.9936e− 001 3.9442e− 012 2.9867e− 013
P14 10 10 11.2031 0.1250 3.9936e− 001 1.9721e− 011 1.4933e− 012
P14 20 20 12.2500 0.2500 3.9936e− 001 3.9442e− 011 2.9867e− 012
P14 50 50 15.4063 0.9844 3.9936e− 001 9.8606e− 011 7.4667e− 012
P14 100 100 28.2813 4.5938 3.9936e− 001 1.9721e− 010 1.4933e− 011
P14 200 200 79.7500 27.0313 3.9936e− 001 3.9442e− 010 2.9867e− 011
P14 400 400 340.0625 212.2969 3.9936e− 001 7.8885e− 010 5.9733e− 011
P15 4 4 234.0938 3.7656 3.2196e− 008 1.4476e− 009 3.1023e− 015
P15 20 20 400.0781 5.3281 3.2596e− 008 7.2380e− 009 1.5628e− 014
P15 40 40 606.6875 10.8438 3.2228e− 008 1.4476e− 008 2.4472e− 014
P15 100 100 ∗ 46.2813 3.2281e− 008 ∗ 6.3657e− 014
P15 200 200 ∗ 198.1563 3.2127e− 008 ∗ 1.1339e− 013
P16 2 3 0.6719 0.3281 3.0146e− 001 2.2351e− 012 1.0640e− 013

P17 4 6 23.9219 6.7031(δ(1)) 7.1957e− 001 1.6888e− 012 5.4878e− 013

Except for the second problem P2, where the computed solution x∗ is a saddle point, the
rest computed points are all local minima. These numerical results clearly demonstrate that
our continuous Newton-type ODE (2.3) is much more efficient and reliable compared with
the steepest descent ODE (1.3), and it converges globally to the regular stationary point(s).

5.2 Ψtc Approach

Though the continuous Newton-type ODE (2.3) can be successively solved by the sophisti-
cated ODE solver ODE113, it seems still time-consuming since it is intended to produce
a high accurate trajectory by cautiously controlling the stepsize. However, for an ODE
model in optimization, either (1.3) or (2.3), the accuracy of the trajectory is of no essential
consequence as long as the asymptotical point can be found, and hence the steady-state
solutions of ODE are essential. According to this point, we employ Ψtc which is in the spirit
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of efficiently implementing an ODE model in optimization to implement (1.3) and (2.3) for
(1.1).

As mentioned in Section 4, Ψtc is a very fast solver for (1.2). Even though the objec-
tive function values at the computed points generated by Ψtc would not be monotonically
decreasing, yet its fast convergence would always provide an attractive and competitive ap-
proach for any ODE resulted from the optimization problem. In our Ψtc implementation
for (1.3), we utilize the SER (4.2) strategy to update the time step ξi. Table 3 and Table 4
summarize the numerical results with the initial time steps ξ0 = 1e− 1 and ξ0 = 1e− 2 re-
spectively, in which Iter represents the number of iterations, f∗ represents the final objective
function value, and ξ∗i represents the final value of the time step ξi.

Table 3. Numerical results of Ψtc for (1.3) with ξ0 = 1e− 1
No. n m Iter CPU(s) f∗ ξ∗i
P1 3 3 41 0.0313 5.8305e− 013 1.9527e + 004
P2 6 6 78 0.1719 3.5505e− 005 9.7840e + 006
P3 3 15 8 0.0781 1.1279e− 008 1.0285e + 004
P4 2 2 42 0.0781 1.3039e− 008 8.5200e + 002
P5 3 10 46 0.0313 8.2370e− 019 2.2327e + 007
P5 3 20 141 0.0781 3.6143e− 014 1.0918e + 006
P6 5 7 11 0.0156 9.8752e− 011 5.1768e + 005
P6 10 12 14 0.0313 1.0315e− 009 1.7620e + 006
P6 20 22 16 0.0156 1.9000e− 003 4.6426e + 007
P6 30 32 17 0.0313 5.5257e− 002 1.3659e + 007
P7 2 31 6 0.0155 5.4661e− 001 8.5340e + 006
P7 6 31 16 0.1406 2.3000e− 003 1.7110e + 006
P7 8 31 18 0.3125 1.8162e− 005 3.0671e + 007
P7 9 31 17 0.4063 1.4375e− 006 1.0825e + 007
P8 4 5 21 0.0313 2.2501e− 005 2.2898e + 006
P8 10 11 13 0.0156 7.4403e− 005 2.3594e + 006
P8 20 21 15 0.0313 1.6347e− 004 4.3232e + 007
P8 50 51 16 0.0313 1.7000e− 002 3.5908e + 007
P8 100 101 17 0.0938 4.5525e− 001 1.1564e + 007
P8 200 201 17 0.1563 3.7352e + 001 1.1867e + 007
P9 4 8 21 0.0313 9.3763e− 006 6.5247e + 005
P9 10 20 32 0.0313 2.9367e− 004 2.1867e + 004
P9 20 40 32 0.1250 6.3897e− 003 8.4172e + 005
P9 50 100 22 0.0625 4.2961e− 000 2.6271e + 006
P9 100 200 19 0.1094 9.7096e + 004 1.8427e + 007
P9 200 400 10 0.1406 4.7116e + 013 3.8687e + 005
P10 2 3 17 0.0157 1.3580e− 014 1.5268e + 006
P11 4 10 85 0.0625 1.4433e− 000 1.0524e + 007
P11 4 20 17 0.0313 8.5822e + 004 1.4144e + 007
P11 4 50 12 0.0313 2.6684e + 016 1.5367e + 007
P11 4 100 12 0.0313 1.5087e + 034 3.3363e + 005
P12 3 3 4 0.0313 1.4000e− 003 1.0000e + 005
P13 5 5 538 0.2188 4.0773e− 017 2.3249e + 007
P13 10 10 664 0.3906 2.7951e− 005 3.2628e + 007
P14 2 2 16 0.0155 4.1877e− 015 2.3416e + 004
P14 10 10 16 0.0156 2.0939e− 014 2.3416e + 004
P14 20 20 16 0.0157 4.1877e− 014 2.3416e + 004
P14 50 50 16 0.0313 1.0469e− 013 2.3416e + 004
P14 100 100 16 0.0938 2.0939e− 013 2.3416e + 004
P14 200 200 16 0.3438 4.1877e− 013 2.3416e + 004
P14 400 400 16 1.1719 8.3754e− 013 2.3416e + 004
P15 4 4 18 0.0156 2.0684e− 009 1.4122e + 007
P15 20 20 18 0.0156 1.0342e− 008 1.4122e + 007
P15 40 40 17 0.0313 2.0684e− 008 1.4122e + 007
P15 100 100 17 0.0469 5.1711e− 008 1.4122e + 007
P15 200 200 17 0.1094 1.0342e− 007 1.4122e + 007
P16 2 3 fail fail fail fail
P17 4 6 61 0.0313 3.5720e− 019 2.0420e + 007
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Table 4. Numerical results of Ψtc for (1.3) with ξ0 = 1e− 2
No. n m Iter CPU(s) f∗ ξ∗i
P1 3 3 76 0.0156 2.4296e− 012 2.0169e + 003
P2 6 6 489 0.5938 3.5505e− 005 1.1425e + 005
P3 3 15 24 0.0156 1.1279e− 008 5.7233e + 004
P4 2 2 37 0.0313 3.3789e− 007 1.8238e + 000
P5 3 10 32 0.0155 4.0396e− 013 1.4709e + 005
P5 3 20 22 0.0313 1.3365e− 017 1.3774e + 006
P6 5 7 11 0.0153 1.1030e− 010 5.2633e + 004
P6 10 12 14 0.0156 1.0326e− 009 1.7623e + 005
P6 20 22 16 0.0313 1.8704e− 003 4.6426e + 006
P6 30 32 17 0.0155 5.5257e− 002 1.3659e + 006
P7 2 31 9 0.0153 5.4661e− 001 4.3214e + 005
P7 6 31 22 0.1875 2.2877e− 003 3.9246e + 006
P7 8 31 25 0.4219 1.8185e− 005 2.8944e + 006
P7 9 31 21 0.5000 2.7859e− 006 1.2264e + 006
P8 4 5 20 0.0312 2.2501e− 005 1.3018e + 005
P8 10 11 13 0.0156 7.4418e− 005 2.9452e + 005
P8 20 21 15 0.0313 1.6349e− 004 4.4251e + 006
P8 50 51 16 0.0156 1.7070e− 002 3.5939e + 006
P8 100 101 17 0.4375 4.5525e− 001 1.1565e + 006
P8 200 201 17 0.1250 3.7352e + 001 1.1867e + 006
P9 4 8 39 0.0313 9.3763e− 006 3.1829e + 004
P9 10 20 34 0.0938 2.9366e− 004 1.3461e + 004
P9 20 40 32 0.1250 6.3897e− 003 4.3641e + 004
P9 50 100 22 0.0625 4.2961e− 000 2.6661e + 005
P9 100 200 19 0.0938 9.7096e + 004 1.8365e + 006
P9 200 400 10 0.0938 4.7116e + 013 3.8783e + 004
P10 2 3 63 0.0313 4.7304e− 013 1.1728e + 005
P11 4 10 85 0.0625 1.4433e− 000 1.0518e + 006
P11 4 20 17 0.0156 8.5822e + 004 1.4095e + 006
P11 4 50 12 0.0313 2.6684e + 016 1.5367e + 006
P11 4 100 12 0.0313 1.5087e + 034 3.3363e + 004
P12 3 3 fail fail fail fail
P13 5 5 792 0.2656 4.1105e− 017 2.3344e + 006
P13 10 10 904 0.5938 2.7951e− 005 3.2390e + 006
P14 2 2 21 0.0156 9.4629e− 019 1.2025e + 004
P14 10 10 21 0.0156 4.7314e− 018 1.2025e + 004
P14 20 20 21 0.0153 9.4629e− 018 1.2025e + 004
P14 50 50 21 0.0313 2.3657e− 017 1.2025e + 004
P14 100 100 21 0.0625 4.7314e− 017 1.2025e + 004
P14 200 200 21 0.3125 9.4629e− 017 1.2025e + 004
P14 400 400 21 1.2031 1.8937e− 016 1.2025e + 004
P15 4 4 18 0.0313 2.1577e− 009 2.0004e + 006
P15 20 20 18 0.0154 1.0789e− 008 2.0004e + 006
P15 40 40 18 0.0156 2.1577e− 008 2.0004e + 006
P15 100 100 18 0.0625 5.3944e− 008 2.0004e + 006
P15 200 200 18 0.1406 1.0789e− 007 2.0004e + 006
P16 2 3 19 0.0156 7.2047e− 019 2.7779e + 005
P17 4 6 48 0.0313 8.2639e− 016 1.6817e + 005

Since the Ψtc method for solving (1.3) already adopts the Hessian of f(x), there is no
direct application of Ψtc to the ODE (2.3). However, we can apply Ψtc partially to solve
(2.3). Our test for solving (2.3) is to adopt Newton’s direction if λmin(x) > δ2, otherwise
we adopt the Ψtc direction. The numerical results of this combined method are reported in
Table 5 and Table 6, where Iter, f∗, ξ∗i share the same meanings as Table 3 and Table 4;
λ∗min denotes the final computed λmin(x). We set δ1 = 1e− 7 and δ2 = 1e− 4 in (2.4).
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Table 5. Numerical results of the combined method with ξ0 = 1e− 1
No. n m Iter CPU(s) f∗ λ∗min ξ∗i
P1 3 3 90 0.0625 1.0225e− 014 1.4328e− 000 1.4013e + 005
P2 6 6 78 0.1250 3.5505e− 005 −4.4169e− 005 9.7840e + 006
P3 3 15 3 0.0156 1.1279e− 008 1.3966e− 001 2.6052e + 003
P4 2 2 36 0.0625 5.0082e− 008 5.7972e− 005 7.3800e + 002
P5 3 10 45 0.0313 7.5602e− 002 −5.3429e− 010 6.3309e + 005
P5 3 20 fail fail fail fail fail
P6 5 7 11 0.0156 9.7541e− 011 2.0000e− 000 5.1672e + 005
P6 10 12 14 0.0152 1.0314e− 009 2.0000e− 000 1.7620e + 006
P6 20 22 16 0.0313 1.9155e− 003 2.0000e− 000 4.6426e + 007
P6 30 32 17 0.0156 5.5257e− 002 2.0000e− 000 1.3659e + 007
P7 2 31 6 0.0156 5.4661e− 001 2.3977e + 001 1.7146e + 007
P7 6 31 13 0.1406 2.2877e− 003 2.8101e− 003 3.3248e + 007
P7 8 31 18 0.3281 1.8162e− 005 7.5430e− 006 3.0671e + 007
P7 9 31 17 0.4375 1.4375e− 006 3.1599e− 007 1.0825e + 007
P8 4 5 17 0.0156 2.2513e− 005 1.0022e− 003 5.1724e + 006
P8 10 11 13 0.0156 7.4402e− 005 1.3945e− 002 2.3004e + 006
P8 20 21 15 0.0154 1.6347e− 004 5.1832e− 002 4.3120e + 007
P8 50 51 16 0.0313 1.7043e− 002 1.5880e− 000 3.5905e + 007
P8 100 101 17 0.1250 4.5525e− 001 6.6031e− 000 1.1564e + 007
P8 200 201 17 0.2813 3.7352e + 001 5.5580e + 001 1.1867e + 007
P9 4 8 28 0.0155 9.3765e− 006 6.2659e− 004 3.9608e + 004
P9 10 20 29 0.0313 2.9366e− 004 2.1416e− 003 6.2639e + 005
P9 20 40 34 0.0625 6.402e− 003 2.5972e− 004 2.0886e + 006
P9 50 100 22 0.0938 4.2961e− 000 1.7843e− 002 2.6228e + 006
P9 100 200 19 0.1250 9.7096e + 004 2.2412e− 001 1.8434e + 007
P9 200 400 10 0.2188 4.7116e + 013 2.6924e + 002 3.8677e + 005
P10 2 3 5 0.0156 9.8341e− 010 2.0000e− 000 5.6000e + 000
P11 4 10 85 0.0625 1.4433e− 000 4.7750e− 000 1.0525e + 007
P11 4 20 17 0.0155 8.5822e + 004 1.5158e + 003 1.4150e + 007
P11 4 50 12 0.0154 2.6684e + 016 1.4581e + 009 1.5367e + 007
P11 4 100 12 0.0313 1.5087e + 034 1.5197e + 018 3.3363e + 005
P12 3 3 2 0.0153 1.4000e− 003 −9.4304e− 000 1.0000e− 001
P13 5 5 653 0.2656 5.0235e− 017 2.3764e− 001 2.2897e + 007
P13 10 10 644 0.5000 2.7951e− 005 9.8102e− 001 3.2449e + 007
P14 2 2 7 0.0155 6.8653e− 020 3.9944e− 001 3.9929e + 007
P14 10 10 7 0.0154 3.4326e− 019 3.9944e− 001 3.9929e + 007
P14 20 20 7 0.0156 6.8653e− 019 3.9944e− 001 3.9929e + 007
P14 50 50 7 0.0625 1.7163e− 018 3.9944e− 001 3.9929e + 007
P14 100 100 7 0.1250 3.4326e− 018 3.9944e− 001 3.9929e + 007
P14 200 200 7 0.4219 6.8653e− 018 3.9944e− 001 3.9929e + 007
P14 400 400 7 2.7031 1.3731e− 017 3.9944e− 001 3.9929e + 007
P15 4 4 17 0.0156 1.7193e− 009 9.0837e− 005 1.2294e + 007
P15 20 20 17 0.0313 8.5966e− 009 9.0837e− 005 1.2294e + 007
P15 40 40 17 0.0313 1.7193e− 008 9.0837e− 005 1.2294e + 007
P15 100 100 17 0.1094 4.2983e− 008 9.0837e− 005 1.2294e + 007
P15 200 200 17 0.2813 8.5966e− 008 9.0837e− 005 1.2294e + 007
P16 2 3 fail fail fail fail fail
P17 4 6 14 0.0313 7.8770e− 000 −1.1943e− 001 6.7781e + 007
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Table 6. Numerical results of the combined method with ξ0 = 1e− 2
No. n m Iter CPU(s) f∗ λ∗min ξ∗i
P1 3 3 90 0.0625 1.0225e− 014 1.4328e− 000 1.4013e + 005
P2 6 6 78 0.1250 3.5505e− 005 −4.4169e− 005 9.7840e + 006
P3 3 15 3 0.0155 1.1279e− 008 1.3966e− 001 2.6052e + 003
P4 2 2 36 0.0938 8.6100e− 009 4.9937e− 005 7.6421e + 002
P5 3 10 46 0.0313 7.5602e− 002 −8.3937e− 012 2.6963e + 005
P5 3 20 145 0.1094 9.5334e− 002 −8.8936e− 008 7.9937e + 006
P6 5 7 11 0.0153 9.7541e− 011 2.0000e− 000 5.1672e + 005
P6 10 12 14 0.0156 1.0314e− 009 2.0000e− 000 1.7620e + 006
P6 20 22 16 0.0313 1.9155e− 003 2.0000e− 000 4.6426e + 007
P6 30 32 17 0.0156 5.5257e− 002 2.0000e− 000 1.3659e + 007
P7 2 31 6 0.0156 5.4661e− 001 2.3977e + 001 1.7146e + 007
P7 6 31 16 0.1406 2.2877e− 003 2.8101e− 003 1.7110e + 006
P7 8 31 18 0.3281 1.8162e− 005 7.5430e− 006 3.0671e + 007
P7 9 31 17 0.4375 1.4375e− 006 3.1599e− 007 1.0825e + 007
P8 4 5 17 0.0156 2.2513e− 005 1.0022e− 003 5.1724e + 006
P8 10 11 13 0.0156 7.4402e− 005 1.3945e− 002 2.3004e + 006
P8 20 21 15 0.0153 1.6347e− 004 5.1832e− 002 4.3120e + 007
P8 50 51 16 0.0313 1.7043e− 002 1.5880e− 000 3.5905e + 007
P8 100 101 17 0.1250 4.5525e− 001 6.6031e− 000 1.1564e + 007
P8 200 201 17 0.2813 3.7352e + 001 5.5580e + 001 1.1867e + 007
P9 4 8 29 0.0156 9.3763e− 006 3.9279e− 005 2.3035e + 005
P9 10 20 29 0.0313 2.9366e− 004 2.1416e− 003 6.2639e + 005
P9 20 40 34 0.0625 6.4022e− 003 2.0922e− 004 1.2226e + 006
P9 50 100 22 0.0938 4.2961e− 000 1.7843e− 002 2.6228e + 006
P9 100 200 19 0.1250 9.7096e + 004 2.2412e− 001 1.8434e + 007
P9 200 400 10 0.2188 4.7116e + 013 2.6924e + 002 3.8677e + 005
P10 2 3 5 0.0150 9.8341e− 010 2.0000e− 000 5.6000e + 000
P11 4 10 85 0.0625 1.4433e− 000 4.7750e− 000 1.0525e + 007
P11 4 20 17 0.0156 8.5822e + 004 1.5158e + 003 1.4150e + 007
P11 4 50 12 0.0156 2.6684e + 016 1.4581e + 009 1.5367e + 007
P11 4 100 12 0.0313 1.5087e + 034 1.5197e + 018 3.3363e + 005
P12 3 3 2 0.0156 1.4000e− 003 −9.4304e− 000 1.0000e− 001
P13 5 5 684 0.2813 5.1161e− 017 2.3764e− 001 2.3107e + 007
P13 10 10 644 0.5000 2.7951e− 005 9.8102e− 001 3.2449e + 007
P14 2 2 7 0.0156 6.8653e− 020 3.9944e− 001 3.9929e + 007
P14 10 10 7 0.0151 3.4326e− 019 3.9944e− 001 3.9929e + 007
P14 20 20 7 0.0151 6.8653e− 019 3.9944e− 001 3.9929e + 007
P14 50 50 7 0.0625 1.7163e− 018 3.9944e− 001 3.9929e + 007
P14 100 100 7 0.1250 3.4326e− 018 3.9944e− 001 3.9929e + 007
P14 200 200 7 0.4219 6.8653e− 018 3.9944e− 001 3.9929e + 007
P14 400 400 7 2.7031 1.3731e− 017 3.9944e− 001 3.9929e + 007
P15 4 4 17 0.0156 1.7231e− 009 9.6064e− 005 1.2314e + 007
P15 20 20 17 0.0153 8.6154e− 009 9.6064e− 005 1.2314e + 007
P15 40 40 17 0.0313 1.7231e− 008 9.6064e− 005 1.2314e + 007
P15 100 100 17 0.1094 4.3077e− 008 9.6064e− 005 1.2314e + 007
P15 200 200 17 0.2500 8.6154e− 008 9.6064e− 005 1.2314e + 007
P16 2 3 fail fail fail fail fail
P17 4 6 14 0.0313 7.8770e− 000 −1.1943e− 001 6.7781e + 007

Compared with the results of Table 3 and Table 4, we can see that the combined method
works well. However a specially designated Ψtc method for (2.3) can be expected to have
better performance, but this is beyond the scope of this paper.

6 Concluding Remarks

By combining Newton’s direction and the steepest descent direction, a new continuous
Newton-type method, whose ODE is given by (2.3), is proposed in this paper. The di-
rection

d(x) = α(x)dN (x) + (1− α(x))dG(x)

of the new ODE (2.3) is actually the convex combination of Newton’s direction dN (x) and
the negative gradient direction dG(x). The convergence of this ODE is fully addressed
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in Section 3. Our numerical results reported in Section 5 clearly illustrate that our new
method works well numerically. However, we should point out that the optimal choice of
the parameters δ1 and δ2 in (2.5) is somehow problem dependent, which can be seen from the
numerical results of problems P5 and P17 in Table 2. Theoretically, (2.3) prefers small δ1

and δ2, and the smaller values of δ1 and δ2 are, the closer trajectory of the proposed method
to the continuous Newton trajectory, and hence the faster convergence. However, if δ1 and
δ2 are too small, it could cause numerical difficulties and instability. From our preliminary
numerical results, the values in the examples appear to be proper and they seem to work
well in practice. Even though the Ψtc method cannot be applied directly to solve (2.3), yet
a partial implementation of the Ψtc on the new ODE (2.3) also works well as shown in Table
5 and Table 6.
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Appendix:

Proof of Theorem 2.2. We first prove d(x) defined by (2.4) is locally Lipschitz continuous
in Rn. For any x̄ ∈ Rn with λmin(x̄) 6= δ1 and λmin(x̄) 6= δ2, the local Lipschitz continu-
ity of d(x) at x̄ can be immediately obtained from (2.7), (2.8), and (2.10). Suppose now
λmin(x̄) = δ1. Let ρ > 0 be sufficiently small so that (2.7), (2.8), (2.9), and (2.10) hold in
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the neighborhood Nρ(x̄) of x̄, and moreover, for any y ∈ Nρ(x̄), δ2 > λmin(y). Consider any
two points y, z ∈ Nρ(x̄), if

(λmin(y)− δ1)(λmin(z)− δ1) ≥ 0,

it then follows
‖d(y)− d(z)‖2 ≤ C‖y − z‖2

for some constant C > 0. Otherwise, we assume δ2 > λmin(y) > δ1 > λmin(z), and hence

‖d(y)− d(z)‖2 = ‖α(y)dN (y) + β(y)dG(y)− α(z)dN (z)− β(z)dG(z)‖2
≤ |α(y)− α(z)| · ‖dN (y)‖2 + α(z)‖dN (y)− dN (z)‖2
+ |β(y)− β(z)| · ‖dG(y)‖2 + β(z)‖dG(y)− dG(z)‖2
≤ λmin(y)− λmin(z)

δ2 − δ1
· ‖dN (y)‖2 + ‖dN (y)− dN (z)‖2

+
λmin(y)− λmin(z)

δ2 − δ1
· ‖dG(y)‖2 + ‖dG(y)− dG(z)‖2

≤ (
C1‖dN (y)‖2

δ2 − δ1
+

C1‖dG(y)‖2
δ2 − δ1

+ C2 + C3) · ‖y − z‖2
≤ C4‖y − z‖2

for some C4 > 0. This leads to the local Lipschitz condition of d(x) at x̄.

With the same arguments as the case λmin(x̄) = δ2, we finally show that d(x) is locally
Lipschitz continuous in Rn, from which the existence and uniqueness of the solution of (2.3)
are obtained by the Picard-Lindelöf theorem.

Furthermore,

df(x(t))
dt

= ∇f(x)T d(x)

=





−dN (x)T dG(x), if λmin(x) > δ2,

−λmin(x)−δ1
δ2−δ1

dN (x)T dG(x)− δ2−λmin(x)
δ2−δ1

‖dG(x)‖22, if δ1 ≤ λmin(x) ≤ δ2,

−‖dG(x)‖22, if λmin(x) < δ1,

(6.1)

which implies that df(x(t))
dt ≤ 0 and f(x(t)) is nonincreasing along the trajectory x(t) for

t ≥ 0. Therefore, the solution x(t) will always stay in the compact set Lf(x0), and the
maximal interval of existence can be extended to [0,+∞).

Proof of Theorem 2.4. Suppose there is a periodic solution x(t) with its minimal period
T̂ > 0, then f(x(t+ T̂ )) = f(x(t)), for t ≥ 0, which just contradicts the fact that df(x(t))

dt < 0
for any t ≥ 0 (by Theorem 2.3). This completes the proof.


