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1 Introduction

A wide variety of optimization problems arising in aerodynamics and engineering inherently
involve optimizing multiple design objectives. The difficulty lies in the often conflicting
nature of the different cost functions: A possible example in bridge construction could be the
maximization of the stiffness while simultaneously minimizing the total mass of that bridge.
Similarly, the drag minimization problem of an airfoil is coupled with the lift generated. A
drag reduction is thus easily achievable with sacrifices in the latter. Therefore, optimization
usually involves a constant lift constraint. However, the actual design goal would be to
minimize drag while simultaneously maximizing lift. Since it is highly improbable that
these conflicting objectives can both be extremised by the same design, the single optimum
solution has to be replaced by a set of solutions that are indifferent to each other. That
means, we are to find all possible designs in which the drag cannot be further reduced without
also decreasing the lift. A design for which this holds true is usually called Pareto-optimal
and the set of all Pareto-optimal solutions is called the indifference set.

The goal of this paper is to investigate the generalization of existing solvers for the single
objective optimization into the multiobjective framework exemplified by the adjoint based
One-Shot SQP drag minimization of the RAE2822 testcase governed by the Euler Equations
[5, 8, 9, 10]. Special attention is given to parametrizations which are advantageous for this,
i.e. a parametrization via the violation of constraints. There are numerous approaches
to reach this goal and the quality of each approach can be measured by the convergence
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speed and the distribution of the points found. A distribution of the Pareto-optimal designs
according to the curvature of the indifference set provides a preferable discretization. For
more details see, e.g. [1, 17].

Several different approaches have been examined as a possible extension to the given
One-Shot single objective drag minimization of the RAE2822 airfoil:

Stochastic approaches have the distinct advantage of being able to converge to the whole
set of indifferent points in one optimization run. In addition to the well known Evolution-
ary Algorithms, there are also numerous other courses of action. For example, points of
the indifference set can be found by solving certain stochastical differential equations using
Brownian Motions. However, the point distribution and convergence speed of these stochas-
tic approaches usually depend on a variety of algorithmic parameters and seem to vary from
testcase to testcase, as described in [3, 17, 18].

A rather new representative of the deterministic approaches is the Normal Boundary
Intersection [1, 2]. Here, one tries to project the indifference set onto a certain simplex,
e.g. the convex hull of local minima of each individual objective function. Because of
this projection, one can expect a rather good distribution of the Pareto-optimal designs.
Some comparisons can be found in [17]. On the one hand, this provides certain advantages
when the dimension of the indifference set is greater than two. On the other hand, it is
not guaranteed that the whole indifference set will be found. One can also lose the global
Pareto-optimality of the designs when the rim of the indifference set is not convex. Those
problems, however, are present with a variety of other courses of action, also.

More traditional approaches are curve continuation strategies. It can be shown, that
the minimization of the convex combination, i.e. weighted sum, of the cost functions will
result in a Pareto-optimal point. One can then use these weights as a parametrization of
the whole indifference set. Unfortunately, this will result in a very poor distribution of the
designs [1] and solving the same optimization problem multiple times can be rather cost
intensive. There are several remedies to these problems varying from reparametrizations
to using curvature information for a first order approximation of the local shape of the
indifference set coupled with homotopy methods. This holds true especially for the two
dimensional case using homotopy curve continuation strategies like the predictor-corrector
algorithm. Numerous works exist in this field [7, 11, 13, 14, 15]. Since the single objective
drag minimization of the RAE2822 testcase via prSQP [16] provides some information on
the Hessian - and, as seen later, this information can also be used to extract information of
the local curvature of the indifference set - the predictor-corrector curve continuation seems
to offer the best synergies when mitigating to the multi-objective design problem. A proper
choice of the curve’s parametrization can help simplify this mitigation. However, some
problem remain when the Hessian is approximated using update formulas such as BFGS.

2 Mathematical Background

2.1 Problem Statement

A multi-objective optimization problem is given by

minF (x) =:




f1(x)
...

fm(x)




s.t. c(x) = 0
g(x) ≥ 0
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where F : IRn → IRm, c : IRn → IRm1 , g : IRn → IRm2 are sufficiently differentiable. Let

Z := {x ∈ IRn| c(x) = 0, g(x) ≥ 0}
denote the set of all feasible solutions. Since one cannot expect a single x∗ ∈ Z to minimize
all objective functions fi at the same time, the definition of optimality must be expanded
in the Pareto-sense. For x̂ ∈ Z and x̄ ∈ Z, the vector F (x̂) is said to dominate the vector
F (x̄) if x̂ solves at least one cost function better than x̄ does, e.g.:

∀i ∈ {1, . . . , m} : fi(x̂) ≤ fi(x̄) and ∃j ∈ {1, . . . , m} : fj(x̂) < fj(x̄)

A solution x∗ is now called Pareto-optimal if it is non-dominated [2]. While this definition
is quite useful for evolutionary approaches - where only the non-dominated solutions are
allowed to being carried over to the next generation - it provides fewer hooks for curve
continuation strategies. Far more useful for those is the following characterization:

Let ω ∈ IRm be greater than zero component wise and let x∗ be the solution of

min
x∈Z

ωT F (x) =: Fω(x). (2.1)

It can then be easily proven by contradiction, that x∗ is Pareto-optimal. However, note
that the above statement merely states, that the minimization of the linear combination
is sufficient for Pareto-optimality. The reverse does not generally hold. By adding the
additional constraint of

m∑

i=1

ωi = 1

it is possible to reduce one surplus degree of freedom in the parametrization which results
in the convex combination of cost functions as described in the introduction. Applying
the necessary Karush-Kuhn-Tucker optimality conditions to (2.1) results in a parameter
based problem where one has to find the roots of some function H(x, λ, ν, ω) = 0. The
implicit function theorem then provides the existence of mappings h(ω) = (x, λ, ν) which is
a description of the indifference set.

2.2 Existence of Indifference Sets

By using the convex combination of the individual objective functions, the problem of finding
one single Pareto-optimal point has been reduced to solving a single objective constraint
optimization problem for a fixed value of ω. Coupled with the implicit function theorem,
the existence of a solution of this optimization problem will lead to the existence of the
indifference set. Therefore, we now briefly focus on the solution theory of a single objective
constraint optimization problem:

min f(x)
s.t. c(x) = 0

g(x) ≥ 0,
(2.2)

f ∈ C2(IRn, IR), c ∈ C2(IRn, IRm1), g ∈ C2(IRn, IRm2).

This can be thought of as being equation (2.1) with ω silently omitted. Under the assumption
of the linear independence constraint qualification (LICQ), that is: With I(x) = {i1, . . . , is}
as the active set,

{∇c1(x), . . . ,∇cm1(x),∇gi1(x), . . . ,∇gis(x)}
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is linearly independent, one gets the following optimality conditions:
Suppose x̂ is feasible and LICQ. Suppose the Lagrangian satisfies:

L(x, λ, µ) :=f(x)− 〈λ|c(x)〉 − 〈µ|g(x)〉
=f(x)− λT c(x)− µT g(x)

where x ∈ IRn, λ ∈ IRm1 , µ ∈ IRm2 .

Karush-Kuhn-Tucker (KKT) Condition:

∇xL(x̂, λ, µ) = 0 (2.3)

Strict Complementary Condition:

µi ≥ 0 ∀i ∈ {1, . . . , m2}
µT g(x̂) = 0 rep. gj(x̂) > 0 ⇒ µj = 0, gj(x̂) = 0 ⇒ µj > 0 (2.4)

Second Order Sufficiency Condition:

vT HessxL(x̂, λ, µ)v > 0, ∀v ∈ T̃ (x̂) \ {0} (2.5)

where T̃ (x̂) = {v ∈ Core(Dc(x̂))| (∇gj(x̂))T
v = 0,∀µj > 0}.

Condition (2.3) and (2.4) are necessary and condition (2.5) is sufficient for the existence
of a solution [12]. Our goal is to apply the implicit function theorem to these necessary
conditions:

∇xf(x)−
m1∑

i=1

λi∇xci(x)−
m2∑

j=1

µj∇xgj(x) = 0

c(x) = 0
g(x) ≥ 0 (2.6)

µT g(x) = 0
µ ≥ 0

Unfortunately, the implicit function theorem does not allow any inequalities. However, it has
been shown, that the above system can be rewritten without inequalities [14]. For simplicity
reasons here, we can use an active set approach and assume the lift constraint always being
active, thus we may omit any further considerations of inequality constraints. This is no
gap in the theory, since the above system can be rewritten using equalities without losing
the order of differentiability. In our special case the necessary conditions therefore are:

H(x, λ, ω) :=
( ∇xFω(x)− λ∇c(x)

c(x)

)
= 0

2.3 The Implicit Function Theorem

For clarity, we define z := (x, λ)T . Suppose Ω ⊂ IRd × IRk is open and H ∈ C1(Ω, IRd).
Additionally, suppose (z̃, ω̃) ∈ Ω, so that H(z̃, ω̃) = 0 and det ∂H

∂z (z̃, ω̃) 6= 0.
Then:
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(1) There exist open neighborhoods U(ω̃) ⊂ IRk and W (z̃, ω̃) ⊂ Ω as well as a function
h : U → IRd, satisfying for (z, ω) ∈ W :

H(z, ω) = 0 ⇔ z = h(ω).

(2) Additionally, h ∈ C1(U, IRd) and

∂h

∂ω
(ω) = −

[
∂H

∂z
(h(ω), ω)

]−1
∂H

∂ω
(h(ω), ω)

A proof can be found in numerous sources, e.g. [4]. Interestingly, the requirements of the
implicit function theorem are automatically satisfied when the KKT Condition (2.3) and the
Second Order Sufficiency Conditions (2.5) are fulfilled [15]. We now can assume the existence
of the indifference set as long as the problem of minimizing the convex combination is well
posed.

2.4 Example for the Importance of Sufficient Conditions

The system of necessary conditions (2.6) actually only includes the first order conditions.
Condition (2.5) is not part of our function H on which we apply the implicit function
theorem. From a theoretical point of view, one could simply demand (2.5) to be satisfied
as part of the problem being well posed. Form a practical point of view, however, the fact
that the matrix is positive definite is rarely checked and this can lead to the computation
of an “indifference set” that also includes points that are not Pareto-optimal. Consider the
following basic example:

f(x) :=





1
3 (x + 5)3 if x < −5
0 if −5 ≤ x ≤ 5
1
3 (x− 5)3 if 5 < x

The derivatives are:

∂f

∂x
(x) =





(x + 5)2 , x < −5
0 , −5 ≤ x ≤ 5
(x− 5)2 , 5 < x

and
∂2f

∂x2
(x) =





2(x + 5) , x < −5
0 , −5 ≤ x ≤ 5
2(x− 5) , 5 < x

Consider the following multiobjective design problem:

min
x

( −x
f(x)

)

The convex combination and necessary conditions are as follows:

min
x

Fω(x) = min
x
−ωx + (1− ω)f(x) and

∂Fω

∂x
(x) = −ω + (1− ω)

∂f

∂x
(x) != 0.

If x ∈ IR \ [−5, 5] then ∂Fω

∂x (x) 6= 0 and one gets two implicit functions h1/2 : (0, 1) → IR of
the type x = h(ω) satisfying

h1(ω) = −
√

ω

1− ω
− 5 and h2(ω) = +

√
ω

1− ω
+ 5
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Figure 1: Curve based on the implicit functions

If x ∈ [−5, 5] then the above equation cannot be solved for x. The implicit function here
h3 : [−5, 5] → {0} is of the form ω = h3(x) with h3(x) ≡ 0.

Plotting the implicit functions in the f1/f2-space results in the curve as presented in
figure 1. However, checking the sufficient conditions shows, that the curve defined by the
implicit functions is actually “too large”.

∂2Fω

∂x2
(x) =





2(1− ω)(x + 5) < 0 ∀x = h1(ω) ⇒ maximum
0 = 0 ∀ω = h3(x) ⇒ saddle point
2(1− ω)(x− 5) > 0 ∀x = h2(ω) ⇒ minimum

Hence, only h2 defines the indifference set. The turning points on which the implicit func-
tions change correspond to points where one of the eigenvalues of the Hessian changes the
sign or becomes zero.

3 Curve Continuation

As mentioned earlier, one could simply solve the convex combination for a sufficient number
of different values of ω. This will, however, usually result in a very poor discretization of
the indifference set [1, 3]. Similar behavior was reproduced with the test example presented
later on. This approach is also very cost intensive.

3.1 Predictor-Corrector Methods

Suppose zk := h(ωk) is the k-th point on the indifference set. Without considering singu-
larities because of a change in the signs of the eigenvalues of the Hessian or a change of the
active set, a tangential approximate ẑk+1 of the next point zk+1 on the indifference set is
given by

ẑk+1 := zk +
∂

∂ω
h(ωk)

(
ωk+1 − ωk

)

Hence, ẑk+1 is the prediction of zk+1 after a step length of δk := ‖ωk+1 − ωk‖. In the
correction step, the predicted point ẑk+1 can then be used as the starting value of any
algorithm used to find zk in the first place. This makes the predictor-corrector algorithm
a very good candidate when mitigating from a single objective design problem into the
multi-objective framework.
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Figure 2: The Predictor-Corrector Algorithm

Again, the implicit function theorem provides a way to calculate the necessary derivative
∂

∂ω h(ωk):

∂h

∂ω
(ωk) = −

[
∂H

∂z
(zk, ωk)

]−1
∂H

∂ω
(zk, ωk).

If ∗ denotes only those components that are in the current active set, one gets in more detail:

∂H∗

∂ω
(x, λ, ν, ω) =




[∇xfj(x)−∇xfm(x)]j=1,...,m−1

0
0


 ∈ IR(n+m1+m∗

2)×(m−1)

∂H∗

∂z
(x, λ, ν, ω) =




HessxL(x, λ, ν, ω) − [
∂c
∂x (x)

]T −
[

∂g∗

∂x (x)
]T

∂c
∂x (x) 0 0
∂g∗

∂x (x) 0 0




Also note, that the expression ∂H
∂z corresponds to the system matrix of the quadratic sub-

problem when using SQP-methods for finding the original point zk, which suggests this
approach to be a very good candidate for expanding SQP based single objective solvers. For
a detailed pseudo code formulation see [15].

One problem still remains: The original solver has to be adapted to now solve the param-
eter based convex combination of the objective function and the equality constraints have to
be removed. In the case here, the existing One-Shot SQP method for solving “minimize drag,
keep lift constant” must be adapted to “minimize the convex combination, no constraints”.
However, by a certain reparametrization, one can even further reduce the modifications
to the existing solver without sacrificing the advantages of the predictor step. Basically,
the weights ω can be considered the adjoint variables of a certain constraint optimization
problem:
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3.2 Reparametrization

Consider the following optimization problem:

min fl(x)
s.t. fk(x) = f̂k, ∀k ∈ {1, . . . , m} \ {l}

c(x) = 0
g(x) ≥ 0.

That is, instead of moving on to the minimization of the convex combination of the individual
objective functions, one stays in the original problem formulation and parametrizes the
indifference set not by the value of ω but by the value of the constrains f̂k. A comparison
of the necessary optimality conditions shows that both formulations are equivalent:

m−1∑

j=1

ωj∇fj(x) +


1−

m−1∑

j=1

ωj


∇fm(x)−

[
∂c(x)
∂x

]T

λ−
[
∂g(x)
∂x

]T

µ = 0

⇔∇fl(x)−
m−1∑

j=1
j 6=l

−ωj

ωl
∇fj(x)−

−
(

1−
m−1∑
j=1

ωj

)

ωl
∇fm(x)−

[
∂c(x)
∂x

]T

λ

−
[
∂g(x)
∂x

]T

µ = 0

As one can see, the reparametrization roughly means a division by ωl and the original weights
become - slightly transformed - the adjoint variables.

Further comparisons reveal:

• A parametrization using the convex combination depends linearly on ω. This linearity
is usually lost after the reparametrization.

• When considering the convex combination, the parameter ω will enter the Hessian,
i.e. the system matrix of any SQP method, thus making more changes necessary than
using the reparametrization. Here, the values of f̂k will only enter the right hand side,
which means fewer changes. Also note, that the computation of the adjoint variables
need not to be touched since the correspondence between ω and the values of f̂k is
irrelevant. This also simplifies the computation of the tangential in the predictor step
as discussed later.

• When using the convex combination, the intervals of ω are relatively clear, whereas
now, possible starting values of f̂k are more difficult to find. This is less limiting from
a practical point of view, where a designer can provide an approximation, but a bad
choice can now lead to the problem being unsolvable.

Again, the implicit function theorem states:

[
∂H

∂z
(h(f̂k), f̂k)

]
∂h

∂f̂k

(f̂k) = −∂H

∂f̂k

(h(f̂k), f̂k)
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where

∂H

∂f̂
(x, λ, µ, f̂) =




0 0 . . . 0
−1 0 . . . 0
0 −1 . . . 0
...

...
. . .

...
0 0 . . . −1
0 0 . . . 0
0 0 . . . 0




Thus the gradient with respect to f̂k can easily be computed by one additional solution of
the SQP-system where the right hand side consists of a 1 in the (n + k)-th component:




HessxL −
[

∂f2,...,m

∂x

]T

− [
∂c
∂x

]T −
[

∂g∗

∂x

]T

∂f2,...,m

∂x 0 0 0
∂c
∂x 0 0 0
∂g∗

∂x 0 0 0







∂x
∂f̂k

∂λf2,...,fm

∂f̂k
∂λc

∂f̂k
∂µ

∂f̂k




=




0
...
0
1
0
...
0




The knowledge of this tangential can now be used twofold:

• The increments of the parametrization can be based on the slope of the Pareto-curve,
which leads to a better discretization.

• The starting value of the corrector iteration can be extrapolated based on this infor-
mation, hopefully accelerating convergence.

Before moving on to the Pareto-curve for the RAE2822 airfoil, the predictor-corrector
method based on both parametrizations has been tested on the academic example presented
in [8].

4 An Academic Testcase

The following academic testcase was chosen because the composition of the Hessian is similar
to the Hessian of the RAE2822 optimization [8].

Suppose α > 0 a regularization and ~n the outer normal. The following functions are
defined on the region Ω := [0, 1]2:

f1(ϕ, q) :=
∫

y=1

(
∂ϕ

∂~n
(x, 1)− g(x)

)2

dx + α

∫

y=1

(
q2(x) +

(
∂q

∂x
(x)

)2
)

dx

f2(ϕ, q) :=
∫

Ω

(
ϕ2(x, y)

)
dxdy
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Consider the multi-objective design problem:

min
(ϕ,q)

(
f1(ϕ, q)
f2(ϕ, q)

)

s.t. ∆ϕ(x, y) = 0 in Ω

ϕ(x, 1) = q(x) on y = 1
ϕ(x, 0) = ϕ0(x) on y = 0
ϕ(0, y) = ϕ(1, y) (periodicy)

The necessary optimality conditions for the parametrization according to the convex com-
bination are:

“Costate/Adjoint” dL
dϕ :

2ω ∂ϕ
∂~n (., 1)− 2ωg(.) + λ1(., 1) = 0 on y = 1

2(1− ω)ϕ + ∆λ1 = 0 in Ω
λ1 = 0 on y = 0
λ2 = ∂λ1

∂~n on y = 1
λ3 = ∂λ1

∂~n on y = 0

“Design” dL
dq :

2ωα(q − q̈) = λ2 = ∂λ1
∂~n on y = 1

“State” dL
dλ :

∆ϕ = 0 in Ω
ϕ(., 1) = q on y = 1
ϕ(., 0) = ϕ0 on y = 0

These equations have then been discretized using finite differences and solved for 250
equidistant values for ω on a 20x21 grid without using any information on the tangential.
The resulting curve is shown in figure 3. One can clearly see the insufficient discretization

Figure 3: 20x21 grid, 250 equidistant steps in ω

of the curve. Although the increments in ω were constant, the resulting points on the curve
are clustered in the upper region. For more details on this behavior see [1].
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When reparametrizing the curve based on the values of the constrains, one has to decide
whether f1 or f2 will be the parametrizing constraint. According to this decision, either
the factor ν2 := ω or the factor ν1 := (1 − ω) becomes the adjoint variable for the new
parametrizing state constraint, e.g. a parametrization according to f1 would add ν1 as an
additional degree of freedom to the necessary optimality condition and simultaneously would
set ν2 ≡ 1. Keeping this in mind, the new optimality conditions are:

“Costate/Adjoint” dL
dϕ :

2ν2
∂ϕ
∂~n (., 1)− 2ν2g(.) + λ1(., 1) = 0 on y = 1

2ν1ϕ + ∆λ1 = 0 in Ω
λ1 = 0 on y = 0
λ2 = ∂λ1

∂~n on y = 1
λ3 = ∂λ1

∂~n on y = 0

“Design” dL
dq :

2ν2α(q − q̈) = λ2 = ∂λ1
∂~n on y = 1

“State” dL
dλ :

∆ϕ = 0 in Ω
ϕ(., 1) = q on y = 1
ϕ(., 0) = ϕ0 on y = 0

f1(ϕ, q) = 〈ϕ|ϕ〉
f2(ϕ, q)

=
=

f̂1

f̂2

}
either / or

This system has again been discretized using finite differences and was then solved via SQP.
However, instead of fixed increments for the parametrization, information on the tangential
has been used:

f̂ i+1
k = f̂ i

k + δ
∂fl

∂f̂k

(f̂ i
k).

Here, δ denotes the step length, i is the iteration counter, k denotes any of the two functions
used as parametrization, and l denotes the function used as optimization objective. The

Figure 4: 20x21 grid, 86 steps based on the tangent
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resulting curve can be seen in figure 4. The chosen value for δ resulted in 86 points on the
curve. Comparing these two curves, the vast improvements in the discretization become
evident. Note that some possible slight discrepancies in those two curves are the result of
changing the approximation of the integrals.

The other point of interest was the reduction of SQP iterations needed in the corrector
step by extrapolating the starting solution for the next point on the curve. Note that the
calculation of the gradient of the Pareto-curve requires solving the SQP-system matrix once.
Thus, to achieve a true reduction in the numerical effort, an extrapolation based on gradient
information needs to reduce the corrector steps required by at least two. Unsurprisingly,
this could not be achieved in the testcase here. However, a reduction by one - from five to
four SQP iterations needed - was achieved. Thus, the improvement in the discretization of
the curve by using gradient information can be more or less considered numerically free of
cost.

Before moving on to the Pareto-curve for the RAE2822 airfoil, the transferability of this
academic testcase has to be considered: The distinct advantage here is the knowledge of the
exact Hessian. In most practical applications, the exact Hessian is not known but instead
approximated by some update-formulas like BFGS-updates. Although approximative SQP
methods still converge to the correct solution, the usefullness of a tangential on the Pareto-
Curve based on an approximate Hessian is not clear. This potential problem that was also
observed by [14].

5 RAE2822 Application

The starting point here is the One-Shot optimization of the RAE2822 airfoil [6, 8, 9, 10, 16].
The problem formulation is as follows:

min
q

CD(ϕ(q), q)

s.t. c(ϕ(q), q) = 0
CL(ϕ(q), q)− l0 = 0

where ϕ denotes the states, i.e. the flow solution, and q designates the control, i.e. the
parametrization of the shape of the airfoil based on Hicks-Henne functions. Additionally,
c(ϕ(q), q) = 0 are the Euler Equations and CD is the drag coefficient. CL denotes the lift
coefficient. The flow states ϕ are calculated by FLOWer, a very robust pseudo-timestepping
flow solver, courtesy of the German Aerospace Center (DLR) and the gradients are computed
by the adjoint approach [5].

5.1 The Pareto-Curve

The basic idea behind One-Shot is to merge the optimization with the flow solver by exploit-
ing the separability framework. Conceptually similar to a “black-box approach”, the opti-
mization is coupled with FLOWer’s pseudo-timestepping iteration, resulting in a very fast
routine with fewest modifications to the original flow solver possible. Theoretical background
for this procedure is the quadratic subproblem of the reduced SQP method in pseudo-time
formulation:

min
q̇

1
2 q̇T Bq̇ + gT

c q̇

s.t. gT
CL

q̇ = −CL + ∂CL

∂ϕ

[
∂c
∂ϕ

]−1

c

where g denotes the reduced gradient and B is the reduced Hessian. For more details see
any of the sources mentioned above.
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The aim here is to expand the One-Shot routine further to compute the complete indiffer-
ence set for the RAE2822 airfoil, i.e. to integrate the One-Shot optimization as the corrector
step of a predictor-corrector curve continuation. As discussed above, a parametrization of
the Pareto-curve based on the lift constraint seems most promising. Due to the “black-box
approach”, meaning only the control q is visible to the optimization, the calculation of the
tangential to the Pareto-curve with respect to the flow states ϕ would not have been possible
without major changes to the flow solver, thus violating one of the design goals of One-Shot.
Therefore, the predictor-step was omitted in the sense of being constant. To further gauge
the performance of One-Shot, the same Pareto-curve was also computed using a projected
gradient based corrector step. The resulting curve is shown in figure 5 and the corresponding
optimal shapes are shown in figure 6. The slightly odd inward bend of the low-lift profile is

Figure 5: Pareto-curve for the RAE2822 optimization

Figure 6: Optimal shapes

due to shortcomings of the Hicks-Henne parametrization that was not meant for such drastic
deformations of the original RAE2822 profile, thus avoiding dealing with the non-smooth
trailing edge of the airfoil. The slight deviations between the curves are due to the approx-
imative nature of some values in the One-Shot approach. It should also be mentioned, that
by using the Euler Equations, the resulting drag is solely inducted by the pressure shock, so
one has to consider the curve being influenced by FLOWer’s numerical viscosity.
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5.2 Computational Effort

When considering the numerical cost for finding the whole Pareto-curve, the advantages of
the One-Shot-corrector become obvious. Assuming that FLOWer needs 150 timesteppings
for full convergence, the cost for the pure simulation of the curve is as follows:

• Projected Gradient:
60 points×150 timesteppings

point = 9, 000 timesteppings. Additionally, two adjoints (one for
the gradient with respect to lift, and one for the gradient with respect to drag) must
be computed, totaling to 27, 000 timesteppings.

• One-Shot:
45 points × 150 timesteppings

point = 6, 750 timesteppings. With both adjoints totaling to
20, 250 timesteppings.

To judge the effectiveness of the One-Shot and the projected gradient based corrector, the
cost of the optimization is now compared to the cost of the simulation alone:

Numerical Costs Projected Gradient and One-Shot
Iterations Timesteppings Correction Timesteppings Relative
total per Iteration per Point, no Optimization Cost

Gradient 14.332 210 0 33,44
One-Shot 10.292 3 600 2,86

The correction timesteppings (3rd column) are needed to increase the accuracy of the ap-
proximative nature of One-Shot, thereby making the results compareable to the gradient
based method. The table once again shows the effectiveness of the One-Shot approach com-
pared to the projected gradient based method. According to [10], the relativistic cost of one
One-Shot optimization is less than 7 times of the simulation cost alone. When comparing
to the less than 3 times in the Pareto-case here, the effectiveness of the predictor-corrector
step becomes clear, especially when one considers the constant predictor step used.

6 Conclusions

Theoretically, the Pareto-curve is the implicit function of the optimality conditions. The
practicability of extending existing solvers in order to compute the Pareto-curve has been
shown. The predictor-corrector approach seems best suited for this endeavor in the 2-D case
and different single objective optimizer can easily be used in the corrector-step. Newton-
based solvers (SQP) are preferable because the system-matrix can be reused unchanged to
compute the tangent for the predictor-step when parametrizing according to the value of
the constraints. Even with a naive, i.e. constant, predictor, the increase of the numerical
cost efficiency when using a predictor-corrector approach is easily measurable.
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