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1 Introduction

Let Rn×p
∗ , with p < n, denote the set of all n×p matrices with full column rank, let Gr(p, n)

denote the set of all p-dimensional linear subspaces of Rn, and let span(Y ) ∈ Gr(p, n) denote
the column space of Y ∈ Rn×p

∗ . It is well known (see, e.g., [16,6]) that the set Gr(p, n) admits
one and only one “natural” differentiable structure, the one for which the span mapping is a
submersion (i.e., span is differentiable and its differential map is a surjection at every point
of Rn×p

∗ ). Endowed with this differentiable structure, Gr(p, n) is called the Grassmann
manifold of p-planes in Rn.

Consider in Rn×p
∗ the continuous-time dynamical system

Ẏ = F (Y ), (1.1)

where Ẏ (t) = d
dtY (t) denotes the time derivative of Y at t, and where F is a vector field

on Rn×p
∗ . Note that F can be viewed as a function from Rn×p

∗ to Rn×p since the tangent
spaces of Rn×p

∗ are copies of Rn×p. An integral curve of the vector field F—or a solution
trajectory of (1.1)—passing through Y0 ∈ Rn×p

∗ at time t0 is a curve γ : J → Rn×p
∗ , defined

on an interval J ⊆ R containing t0, such that

d
dt

γ(t) = F (γ(t)) for all t ∈ J,

γ(t0) = Y0.
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From now on we assume that F is a continuously differentiable vector field defined on
an open subset D of Rn×p

∗ . Given Y0 ∈ Rn×p
∗ , we let TY0 denote the largest time such that

there exists on [0, TY0) an integral curve of F through Y0 at t = 0. A classical existence
and uniqueness result ensures that TY0 > 0 and that the integral curve is unique. We let
t 7→ ϕF

t (Y0) denote this unique integral curve of F through Y0 at t = 0. The function
(Y0, t) 7→ ϕF

t (Y0) on {(Y0, t) ∈ Rn×p
∗ × R : t ∈ [0, TY0)} into Rn×p

∗ is called the flow of the
vector field F .

In this paper, we are interested in those flows in Rn×p
∗ that induce a flow on the Grass-

mann manifold Gr(p, n), in the following sense.

Definition 1.1 (subspace flows). Let D be an open subset of Rn×p
∗ and let F be a

continuously differentiable vector field on D. The flow ϕF of F is said to induce or to realize
a subspace flow if, for all Ya and Yb in D such that span(Ya) = span(Yb), it holds that
span(ϕF

t (Ya)) = span(ϕF
t (Yb)) for all t ∈ [0,min{TYa

, TYb
}). The induced subspace flow ΦF

is the flow on span(D) := {span(Y ) : Y ∈ D} ⊆ Gr(p, n) that satisfies

ΦF
t+τ (Y0) = span(ϕF

τ (Y ))

for all Y0 ∈ span(D), all Y ∈ span−1(ΦF
t (Y0)), and all τ ∈ [0, TY ). The flow ϕF is termed a

matrix realization of the subspace flow ΦF .

If (1.1) induces a subspace flow, then its analysis can be decomposed into two parts:
(i) the behavior of the subspace span(Y (t)) evolving on the Grassmann manifold and (ii) the
behavior of the representation Y (t) of span(Y (t)). Subspace flows can be useful, e.g., for
computing the invariant subspace of a matrix A corresponding to p clustered eigenvalues.
In this case, the p principal eigenvectors are ill-conditioned with respect to errors in A
(see, e.g., the introduction of [63]) while the principal subspace (i.e., the column space
of the p principal eigenvectors) is well-conditioned. It is then expected that the flow on
Rn×p will have poor convergence properties, while the induced subspace flow will have good
convergence properties.

The paper is organized as follows. The context of this work is discussed in Section 2.
The general results on subspace flows and their realizations as matrix flows are presented in
Section 3. We give necessary and sufficient conditions on F for (1.1) to induce a subspace
flow, and we describe the class of functions F that induce the same subspace flow. Within
this class of functions we show that there are degrees of freedom that may be used to specify
properties of the matrix realization of the flow without altering the subspace flow itself.
Then, in Section 4, we briefly review the case

F (Y ) = AY (1.2)

where A is assumed to be symmetric. The flow of F induces a subspace flow called the power
flow, which can be interpreted as the gradient flow of a Rayleigh quotient on the Grassmann
manifold [40]. In Section 5, we consider the function F implicitly defined by

AF (Y )− F (Y )(Y T Y )−1Y T AY = Y, (1.3)

where A is a symmetric matrix and Y T denotes the transpose of the matrix Y . The flow of
F induces a subspace flow that we call the Grassmann Rayleigh quotient flow (GRQF). The
case p = 1 was analyzed in [52]. Using a particular matrix representation of the GRQF, we
show that the Ritz values of A with respect to span(Y ) increase with constant rate. This
property is analogous to the monotonic increase of the Rayleigh quotient seen in the p = 1
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case [24, 52]. We show that, when a Ritz value reaches an eigenvalue of the matrix A, the
associated eigenvector lies in the span of the subspace flow. We briefly indicate how the flow
may be deflated to generate a flow on a reduced representation of the matrix A. Conclusions
are drawn in Section 6.

2 History and Context

The origins of (1.2) can be traced back to the power method, which is probably the simplest
of all methods for solving for eigenvalues and eigenvectors. The basic idea of the power
method is to apply A repeatedly to a well chosen starting vector, namely

xk+1 =
Axk

‖Axk‖ , x0 ∈ Sn−1,

where ‖ · ‖ denotes the Euclidean 2-norm and Sn−1 = {x ∈ Rn : xT x = 1} denotes the unit
sphere in Rn. If λ1 > λ2, then the power method converges to ±v1 for almost all initial
condition; see, e.g., [69]. Note that the norm of the iterates of the power method is irrelevant:
all the information is conveyed in the direction of xk and the purpose of the normalization is
merely to prevent overflow or underflow. This means that the power method can be regarded
as a subspace iteration evolving on the set of one-dimensional subspaces of Rn [2, 40].

When the dominant eigenvalues of A are clustered, or when a multi-dimensional dominant
eigenspace is sought, it is advisable to iterate on multi-dimensional subspaces. A natural
p-dimensional version of the power method is the direct subspace iteration [59] defined by
Y+ = AY, where Y and Y+ are p-dimensional subspaces of Rn and AY := {Ay : y ∈ Y}.

The direct subspace iteration is an example of subspace iteration, i.e., an iterative process
evolving on the set of p-dimensional subspaces of Rn. Several subspace iterations have been
built on the framework described in Algorithm 2.1 below. Observe that the set of matrices
that have the same column space as Y ∈ Rn×p

∗ is

span−1(span(Y )) = {Y M : M ∈ GLp} =: Y GLp,

where GLp denotes the set of all invertible p× p matrices.

Algorithm 2.1 (Subspace Iteration). Requires: function f : Rn×p
∗ 7→ Rn×p

∗ such that

∀Y ∈ Rn×p
∗ ,∀M ∈ GLp : ∃N ∈ GLp : f(Y M) = f(Y )N. (2.1)

Input: Y0 ∈ Gr(p, n)
Output: Ykmax

For k = 0, 1, . . . , kmax − 1
Pick Yk ∈ Rn×p

∗ such that Yk = span(Yk)
Y+ = f(Yk)
Yk+1 = span(Y+)

End

Condition (2.1) guarantees that Yk+1 does not depend on the choice of Yk in span−1(Yk).
The correspondence between the iteration function f and the subspace iteration is not

one-to-one. Two functions f and f̂ define the same subspace iteration through Algorithm 2.1
if and only if

∀Y ∈ Rn×p
∗ : ∃N ∈ GLp : f̂(Y ) = f(Y )N.
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Several iterations for invariant subspace computation are instances of Algorithm 2.1. This
includes the direct subspace iteration mentioned above, obtained with f as in (1.2); shifted
inverse iterations [43,2], where A is replaced by (A− µI)−1; a Grassmannian version of the
Rayleigh quotient iteration [62,7] obtained with f given by (1.3) (see also the two-sided ver-
sion presented in [10]); Grassmannian Newton methods [32,50,47,4]; and the Grassmannian
implicit trust-region method proposed in [11]. See also [9] for an overview.

Since the early 1980’s, there has been considerable interest in studying continuous-time
flows related to discrete-time iterations. The result that ignited interest in such flows was
when iterates of the unshifted QR-algorithm (which is closely related to the power method;
see [67]) were shown to be unit time samples of a particular Lax-pair equation [36,64,30,56].
This work sparked extensive research on using dynamical systems to solve linear algebraic
problems; see, e.g., [17,68,24,20,25,27,40,26,28,22,60,52,13,21,55,37]. More generally, there
is a vast literature on continuous-time algorithms, spanning several areas of computational
science, including, but not limited to, linear programming [14,15,18,34], continuous nonlinear
optimization [33, 51], discrete optimization [41, 42, 65, 8], signal processing [1, 31, 23], model
reduction [40, 70] and automatic control [40, 54, 38]. There is a computability theory for
continuous-time algorithms, initiated by the work of Shannon on the general-purpose analog
computer [61]; see [58,19,53] and references therein. A theory of computational complexity
for continuous-time algorithms has recently started developing [12]. Continuous-time flows
are also used to study the asymptotic behavior of their discrete counterpart, referring to the
theory of Ljung [48] and Kushner and Clark [44]; see for example [57]. Finding adequate
discretizations of flows endowed with computational properties that preserve or even improve
those properties is also an important area of research; see [39,35,46,49] and references therein.

Equation (1.1) can be thought of as the continuous-time analogue of Algorithm 2.1 when
f = F . In this sense, the power flow, given by (1.1) and (1.2), is a continuous analogue of
the power method, defined by Algorithm 2.1 and (1.2). This is a strong analogy in the sense
that the iterates of the power method are the unit-time samples of the power flow of log(A).
Likewise, the Grassmann Rayleigh quotient flow, given by (1.1) and (1.3), can be viewed
as a continuous-time analogue of the Grassmann Rayleigh quotient iteration, defined by
Algorithm 2.1 and (1.3). Here, the analogy is weaker since the interpolation property does
not hold. Nevertheless the Grassmann Rayleigh quotient flow has interesting convergence
properties, as shown in Section 5.

3 Subspace Flows and Their Matrix Realizations

In this section, we give necessary and sufficient conditions for (1.1) to induce a subspace
flow and we describe the classes of functions that induce the same subspace flow. First
we introduce some notation and definitions as well as two preparation lemmas. Given
Y ∈ Rn×p

∗ , we let ΠY⊥ := I − Y (Y T Y )−1Y T denote the orthogonal projector onto the
orthogonal complement of span(Y ). The tangent space to Y GLp at Y ∈ Rn×p

∗ is called the
vertical space [45]

VY = {Y M : M ∈ Rp×p},
and we choose the horizontal space as its complement

HY = {Z ∈ Rn×p : Y T Z = 0}.

Observe that HY is the range of ΠY⊥ . We refer the reader to [6] for details about manifolds,
vector fields, and differential maps.
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Lemma 3.1. The Grassmann manifold Gr(p, n) is diffeomorphic to the set Pp,n of all
rank-p orthogonal projectors in Rn (viewed as a submanifold of Rn×n), with diffeomorphism
span(Y ) ∈ Gr(p, n) 7→ PY = Y (Y T Y )−1Y T ∈ Pp,n.

Proof. See, e.g., [40, Ch. 1].

Definition 3.2 (Ψ-related vector fields). Let F , G be vector fields on manifolds M and
N respectively and let Ψ : M→ N be a smooth map. Then F and G are Ψ-related if the
following diagram commutes:

M N

TM TN
?

F

-Ψ

?

G

-
DΨ

where DΨ denotes the differential of Ψ. In other words, DΨ(x)[F ] = G(Ψ(x)) for all x ∈M.

Lemma 3.3 (integral curves of Ψ-related vector fields). Let F and G be vector fields
on M and N respectively and let Ψ : M→ N be a smooth map. Then the vector fields F
and G are Ψ-related if and only if, for every integral curve γ of F , Ψ◦γ is an integral curve
of G.

Proof. See, e.g., [3].

We are now ready to give a characterization of vectors fields on Rn×p
∗ that induce the

same subspace flow.

Theorem 3.4. Let F and F̂ be continuously differentiable functions from an open domain
D ⊆ Rn×p

∗ to Rn×p. Let F (Y ) = Fh(Y ) + Y UY denote the decomposition of F (Y ) into a
horizontal part Fh(Y ) = ΠY⊥F (Y ) and a vertical part Y UY = Y (Y T Y )−1Y T F (Y ). Let
F̂ (Y ) = F̂h(Y ) + Y ÛY denote the same decomposition for F̂ (Y ). For all Y0 ∈ D, let TY0 ,
resp. T̂Y0 , be the largest time such that for all t ∈ [0, TY0), the differential system

Ẏ = F (Y ) ≡ Fh(Y ) + Y UY , (3.1)

resp. Ẏ = F̂ (Y ) ≡ F̂h(Y ) + Y ÛY , has one and only one solution ϕF
t (Y0), resp. ϕF̂

t (Y0),
in D with initial condition ϕF

0 (Y0) = ϕF̂
0 (Y0) = Y0. The flow of F induces a subspace flow

(Definition 1.1) if and only if
Fh(Y M) = Fh(Y )M (3.2)

for all Y ∈ D and all M ∈ GLp such that Y M ∈ D. Moreover, the subspace flows ΦF and
ΦF̂ coincide if and only if

F̂h(Y ) = Fh(Y ) (3.3)

for all Y ∈ D.

Proof. We first prove the “only if” statements. Let Y ∈ D and M ∈ GLp be such that Y M
belongs to D. Assume that the flow of F induces a subspace flow. We show that (3.2) holds.
Since the flow of F induces a subspace flow, it follows that, for all t ∈ [0, TY ), there exists
N(t) ∈ GLp such that

ϕF
t (Y M) = ϕF

t (Y )N(t). (3.4)

Equation (3.4) at t = 0 gives Y M = Y N(0). Since Y has full rank, it follows that N(0) = M .
Since the curves t 7→ ϕF

t (Y M) and t 7→ ϕF
t (Y ) are continuously differentiable, it follows
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that the curve t 7→ N(t) is continuously differentiable. Taking the time derivative of (3.4) at
t = 0, we obtain F (Y M) = F (Y )N(0) + Y Ṅ(0). Applying ΠY⊥ on the left of this equation
gives the homogeneity property (3.2).

Assume further that ϕF and ϕF̂ induce the same subspace flow. Then, for all t ∈
[0,min{TY , T̂Y }), there exists Ñ(t) ∈ GLp such that

ϕF̂
t (Y ) = ϕF

t (Y )Ñ(t), (3.5)

with N(0) = I. Taking the time derivative of (3.5) and applying ΠY⊥ on the left yields (3.3).
We now prove the converse statements. Assume that Fh(Y M) = Fh(Y )M for all Y ∈ D

and all M ∈ GLp such that Y M ∈ D. Consider the mapping

Ψ : Rn×p
∗ → Pp,n : Y 7→ Y (Y T Y )−1Y T .

Observe that the mapping Ψ identifies to the span mapping through the diffeomorphism
defined in Lemma 3.1. In particular, Ψ−1(Ψ(Y )) = Y GLp. Routine matrix manipulations
lead to

DΨ(Y )[F (Y )] = F (Y )(Y T Y )−1Y T

− Y (Y T Y )−1((F (Y ))T Y + Y T F (Y ))(Y T Y )−1Y T

+ Y (Y T Y )−1(F (Y ))T

=Fh(Y )(Y T Y )−1Y T

− Y (Y T Y )−1((Fh(Y ))T Y + Y T Fh(Y ))(Y T Y )−1Y T

+ Y (Y T Y )−1(Fh(Y ))T

+ Y UY (Y T Y )−1Y

− Y (Y T Y )−1(UT
Y Y T Y + Y T Y UY )(Y T Y )−1Y T

+ Y (Y T Y )−1UT
Y Y T

=Fh(Y )(Y T Y )−1Y T + Y (Y T Y )−1(Fh(Y ))T =: G̃(Y ), (3.6)

where we have used the identity Y T Fh(Y ) = 0. Note that G̃ is a function from D ⊆
Rn×p
∗ to TPp,n that maps any Y ∈ D to G̃(Y ) ∈ TΨ(Y )Pp,n. It is readily checked that G̃

satisfies G̃(Y M) = G̃(Y ) whenever Y and Y M belong to D. It follows that there exists a
projected map G : Ψ(D) → Pp,n such that G(Ψ(Y )) = G̃(Y ) for all Y ∈ D. Hence we have
DΨ(Y )[F (Y )] = G(Ψ(Y )), i.e., F and G are Ψ-related (Definition 3.2).

Gr(p, n)

Rn×p
∗ Pp,n

TRn×p
∗ TPp,n

¡
¡

¡
¡¡µ

span

-Ψ

@
@

@
@@R

G̃

?

F

6

?

diffeo

?

G

-
DΨ
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Since F is continuously differentiable and Ψ is smooth, it follows that G is a continuously-
differentiable vector field, which guarantees uniqueness of the integral curves of G. From
Lemma 3.3, we conclude that Ψ(ϕF

t (Y )) = ϕG
t (Ψ(Y )) for all t ∈ [0, TY ). From Lemma 3.1,

it follows that span(ϕF
t (Y )) = ϕG

t (span(Y )) for all t ∈ [0, TY ), i.e., the flow of F induces a
subspace flow.

Moreover, if (3.3) holds, then, by (3.6), we have DΨ(Y )[F (Y )] = DΨ(Y )[F̂ (Y )], and
thus the flows of F and F̂ induce the same subspace flow.

Note that if Ẏ = F (Y ) = Fh(Y ) + Y UY , then d
dt det(Y T Y ) = trace(adj(Y T Y )(Ẏ T Y +

Y T Ẏ )) = 2 trace(adj(Y T Y )Y T Y UY ) = 2 trace(det(Y T Y )UY ) = 2 trace(UY ) det(Y T Y ).
Hence det(Y (t)T Y (t)) = det(Y (0)T Y (0)) exp[

∫ t

0
2trace(UY (τ)) dτ ]. Thus, the requirement

that ϕF
t (Y0) is full-rank for all t ∈ [0, TY0) only depends on the vertical dynamics. In

particular, if the integral
∫ T

0
trace(UY (τ)) dτ exists, then Y (t) is full rank for all t ∈ [0, T ).

In the parlance of principal fiber bundle theory (see [45] or the more introductory [66]),
the horizontality of Fh(Y ) and the homogeneity condition (3.2) ensure that Fh(Y ) is a
horizontal lift of a tangent vector field on Gr(p, n) = Rn×p

∗ /GLp; see [45, 5]. Theorem 3.4
states that (i) Ẏ = F (Y ) defines a subspace flow if and only if the horizontal component of
F is a horizontal lift and (ii) Ẏ = F (Y ) and Ẏ = F̂ (Y ) define the same subspace flow if and
only if they have the same horizontal component.

Consider the differential system

Ẏ = F (Y ) + Y R, Y (0) = Y0, (3.7)

where the horizontal part Fh(Y ) satisfies the homogeneity condition (3.2). It follows from
Theorem 3.4 that the span of the solution Y (t) of (3.7) does not depend on R. This flexibility
can be exploited for analysis purposes (e.g., in order to simplify the equations governing the
dynamics) or design purposes (e.g., choosing well-conditioned representations), as we will
see in the following sections.

4 The Power Flow

As an illustration, we consider the well-known case where F (Y ) := AY , i.e., the differential
system (3.7) becomes

Ẏ = AY + Y R, (4.1)

where A is assumed to be symmetric, with eigenvalues λ1 ≥ . . . ≥ λn and associated
orthonormal eigenvectors v1, . . . , vn. From Theorem 3.4, one obtains that the horizontal
component Fh(Y ) = ΠY⊥AY verifies the homogeneity condition. Therefore, (4.1) defines a
subspace flow, called the power flow. This fact was already observed, e.g., in [28,29].

First consider the choice R = 0, i.e.

Ẏ = AY. (4.2)

The solution of (4.2) is Y (t) = eAtY (0) =
∑n

i=1 eλitviv
T
i Y (0). Assume that λp > λp+1.

Then for almost all starting point Y (0), one has lim
t→∞

span(Y (t)) = span(v1| . . . |vp), i.e.,

span(Y (t)) converges to the principal subspace of A. For this reason, one says that the power
flow has Principal Subspace Analysis (PSA) properties. However, the matrix Y (t) itself be-
comes arbitrarily close to rank-deficiency as time evolves: Y (t) = eλ1t((v1| . . . |v1)diag(vT

1 Y (0))+
ε(t)) with lim

t→∞
ε(t) = 0. This is problematic because the span of an ill-conditioned matrix

is very sensitive to perturbations in that matrix.
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Fortunately, the vertical degrees of freedom contained in R can be taken advantage of in
order to achieve well-conditioned representations (orthonormal representations in particular)
without modifying the induced subspace flow. In fact, R can be chosen regardless of F in
such a way that the solution of (3.7) always converges to the set of orthonormal matrices, as
we now show. Take R = (Y T Y )−1(−Y T F (Y ) + S + Ω) where Ω = −ΩT is skew-symmetric
and S = ST is symmetric. Then (3.7) becomes

Ẏ = Fh(Y ) + Y (Y T Y )−1Ω + Y (Y T Y )−1S (4.3)

where Fh(Y ) = ΠY⊥F (Y ). Define W = Y T Y − I. The dynamics (4.3) yields Ẇ = 2S.
The choice S = −cW , c > 0, produces Ẇ = −2cW , which implies that W (t) = e−2ctW (0),
and then Y (t)T Y (t) goes to I as t goes to infinity. This means that for the choice S =
−c(Y T Y − I), the solution trajectories of (4.3) converge to the set of orthonormal matrices
for all initial conditions in Rn×p

∗ . In conclusion, for almost all initial conditions, the solution
of

Ẏ = ΠY⊥AY + cY (Y T Y )−1(I − Y T Y ) + Y (Y T Y )−1Ω, ΩT = −Ω, c > 0, (4.4)

converges to the set of orthonormal bases of the dominant eigenspace of A.

5 The Grassmann-Rayleigh Quotient Flow

As an illustrative application of Theorem 3.4, we now analyze the dynamics (3.7) for F
defined by (1.3), namely

Ẏ = ZY + Y R (5.1a)

AZY − ZY (Y T Y )−1Y T AY = Y. (5.1b)

The solution of (5.1b) possesses the homogeneity property ZY M = ZY M , therefore by
Theorem 3.4 the flow defined by (5.1) induces a unique subspace flow, regardless of R. We
call this flow the Grassmann-Rayleigh Quotient Flow (GRQF).

We will take advantage of the vertical degrees of freedom contained in R (see Sec-
tion 3) in order to facilitate the analysis of (5.1) by making (5.1b) simpler. If RA(Y ) :=
(Y T Y )−1Y T AY is diagonal, then (5.1b) decouples into p independent linear systems where
the unknowns are the p columns of ZY ; see e.g. [47, 7]. Therefore, we will attempt to keep
(Y T Y )−1Y T AY diagonal. Moreover, we will require Y T Y to remain constant. From (5.1),
one obtains

d
dt

(Y T Y ) = Y T ZY + Y T Y R + ZT
Y Y + RT Y T Y

and, assuming that d
dt (Y

T Y ) = 0 holds,

d
dt

((Y T Y )−1Y T AY ) = (Y T Y )−1Y T A(ZY + Y R) + (Y T Y )−1(ZT
Y + RT Y T )AY.

From (5.1b), one has AZY = Y + ZY (Y T Y )−1(Y T AY ). Substitute this expression in the
above equation to obtain

d
dt

((Y T Y )−1Y T AY ) =I + (Y T Y )−1Y T ZY (Y T Y )−1Y T AY + (Y T Y )−1Y T AY R

+ I + (Y T Y )−1(Y T AY )(Y T Y )−1ZT
Y Y + (Y T Y )−1RT Y T AY.

It is now easy to see that the choice R = −(Y T Y )−1ZT
Y Y achieves d

dt (Y
T Y ) = 0 and

d
dt ((Y

T Y )−1Y T AY ) = 2I, which keeps RA(Y (t)) diagonal. We have thus proved the fol-
lowing result.
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Proposition 5.1 (structure-preserving representation of the GRQF). The solution
Y (t) of (5.1) with R = −(Y T Y )−1ZT

Y Y , i.e.,

Ẏ = ZY − Y (Y T Y )−1ZT
Y Y (5.2a)

AZY − ZY (Y T Y )−1Y T AY = Y. (5.2b)

satisfies the following properties

1. d
dt (Y

T Y ) = 0.
2. d

dt [(Y
T Y )−1Y T AY ] = 2I.

Define
C := {Y ∈ Rn×p : Y T Y = I and Y T AY is diagonal}. (5.3)

Given Y ∈ C, the diagonal entries of Y T AY are called the Ritz values of A with respect to
span(Y ), and the columns of Y are associated Ritz vectors.

The following result directly follows from Proposition 5.1.

Proposition 5.2 (Ritz representation of the GRQF). Let Y (0) be such that
Y (0)T Y (0) = I and Y (0)T AY (0) = Σ(0) = diag(σ1(0), . . . , σp(0)), i.e., Y (0) belongs to C
defined in (5.3). Then the solution Y (t) of (5.2) satisfies Y (t)T Y (t) = I and

RA(Y (t)) = Y (t)T AY (t) = diag(σ1(0), . . . , σp(0)) + 2It =: diag(σ1(t), . . . , σp(t))

with σi(t) = σi(0) + 2t. In particular, (5.2) leaves C invariant. On C, (5.2) simplifies to

Ẏ = ZY − Y ZT
Y Y (5.4a)

AZY − ZY diag(σ1(t), . . . , σp(t)) = Y. (5.4b)

Equation (5.4b) decouples into p equations

(A− σiI)Z:,i = Y:,i, i = 1, . . . , p,

which shows that ZY is well defined by (5.4b) as long as

σi(t) = σi(0) + 2t /∈ spec(A), i = 1, . . . , p. (5.5)

The times t at which a Ritz value belongs to the spectrum of A are called critical times.
When p = 1, one obtains the situation described in [52].

We will now use the Ritz representation to demonstrate the deflating property of the
GRQF.

Theorem 5.3. Let A be an n × n symmetric matrix with distinct eigenvalues λ1, . . . , λn

and associated eigenvectors v1, . . . , vn. Let Y0 ∈ Gr(p, n) be such that the Ritz values
σ1(0), . . . , σp(0) of A with respect to Y0 and the eigenvalues of A are disjoint. Let t∗ =
min{(λi−σj(0))/2 : λi−σj(0) ≥ 0, i = 1. . . . , n, j = 1, . . . , p}. Then over the time interval
[0, t∗) the Grassmann Rayleigh quotient flow, i.e., the subspace flow induced by (5.1), admits
one and only one solution Y(t) ∈ Gr(p, n) with initial condition Y(0) = Y0.

Assume moreover that there is only one (i′, j′) such that t∗ = (λi′ −σj′(0))/2. Let σj(t),
j = 1, . . . , p, denote the Ritz values of A with respect to Y(t), and let x1(t), . . . , xp(t) ∈ Rn be
associated Ritz vectors. Then, either limt→t∗ xj′(t) = ±vi′ , or limt→t∗ ∠(xj′(t), vi′) = π/2.
The latter case is unstable under perturbations.
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Proof. To simplify the development, without loss of generality, we express A in the coordinate
system achieving v1 = e1, . . . , vn = en, where {e1, . . . , en} is the canonical basis of Rn. Thus
A = diag(λ1, . . . , λn). We choose Y0 such that Y0 = span(Y0), Y T

0 Y0 = I, Y T
0 AY0 = Σ(0) =

diag(σ1(0), . . . , σp(0)). That is, the columns of Y0 are Ritz vectors of A with respect to
Y0. The differential system (5.4) with initial condition Y (0) = Y0 admits one and only
one solution Y (t) on the time interval [0, t∗) where t∗ (as defined in the statement) is the
first critical time. Moreover Y (t) has full rank since it is orthonormal. Therefore, over
the time interval [0, t∗), the Grassmann Rayleigh quotient flow admits the unique solution
Y(t) = span(Y (t)) with initial condition Y(0) = Y0.

We now prove the second claim. It follows from Proposition 5.2 that Y (t) =
[x1(t)| . . . |xp(t)] where the xi’s match the definition given in the statement. Since there is
no constraint on the way the λ’s and the σ’s are ordered, we will assume that i′ = j′ = 1.
Denote by Yij the ij element of Y and by Yj the jth column of Y . The element-by-element
expression of (5.4) is

Ẏij = (λi − σj)−1Yij −
∑

km

Yik(λm − σk)−1YmkYmj (5.6)

where σl = Y T
l AYl. Equivalently,

Ẏ11 =
1

λ1 − σ1
Y11(1− Y 2

11) −
∑

(k,m) 6=(1,1)

Yik(λm − σk)−1YmkYmj (5.7a)

Ẏij = − 1
λ1 − σ1

Yi1Y1jY11 +
1

λi − σj
Yij −

∑

(k,m) 6=(1,1)

Yik(λm − σk)−1YmkYmj , (5.7b)

where the first terms the right-hand sides are the ones that reach infinity at the first critical
time t∗. Define the new time variable

τ = − ln(λ1 − σ1(t)) = − ln(2(t∗ − t)), t ≤ t∗,

and denote Dτ by ′. Then, with ξ := λ1 − σ1, (5.7) becomes

Y ′
11 = Y11(1− Y 2

11) + ξK11(Y ) (5.8a)
Y ′

ij = −Yi1Y1jY11 + ξKij(Y ) (5.8b)

ξ′ = −ξ (5.8c)

where K(Y ) is bounded on t ∈ [0, t∗] because Y is orthonormal and λm−σk for (k, m) 6= (1, 1)
evolves linearly with t (see (5.5)) and does not vanish for t ∈ [0, t∗] by hypothesis.

Recall that there are constraints on Y and ξ, namely (Y, ξ) ∈ C′ with

C′ := {(Y, ξ) : Y ∈ C and ξ = λ1 − Y T
1 AY1}. (5.9)

For a moment, let us relax the constraints on (Y (0), ξ(0)) and view (5.8) as a system in
Rn×p × R. The set of equilibrium points is U ∪ S with

S := {(Y, ξ) : Y ∈ Rn×p, Y11 = ±1, ξ = 0}
U := {(Y, ξ) : Y ∈ Rn×p, Y11 = 0, ξ = 0}.

The linearization of (5.8) at a point (Ȳ , ξ̄) ∈ S yields

Y ′
11 = −2Y11 + ξK̄11

Y ′
ij = . . .

ξ′ = −ξ
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and the set S is stable. The linearization of (5.8) at a point (Ȳ , ξ̄) ∈ U yields

Y ′
11 = Y11 + ξK̄11

Y ′
ij = −Ȳi1Ȳ1jY11 + ξK̄ij

ξ′ = −ξ

and the set U is unstable, with a certain stable manifold W s.
Now we reintroduce the constraint (Y, ξ) ∈ C′. Since K11 is bounded and ξ = e−τ ,

equation (5.8a) implies that either

(i) Y11 → 0. This happens only if (Y (0), ξ(0)) belongs to the stable manifold W s of the
unstable set U . Or

(ii) Y11 → ±1. This means that x1, the first column of Y , converges to the eigenvector
±e1 of A.

Since (Y (0), ξ(0)) ∈ C′, it remains to show that C′ is not included in W s. To this end, we
show that C′ is transverse to W s at U . Consider a small perturbation µ on Y11 from an
equilibrium point. Then

Y T AY =




σ1 + µ2λ1 µλ1Y12 . . . µλ1Y1p

µλ1Y12 σ2

...
. . .

µλ1Y1p σp


 .

This implies that σ1, thus ξ, is perturbed to the second order only. On the other hand, the
stable manifold of (5.8) verifies to the first order ξ = − 2

K̄11
Y11. This means that the case

(ii) is generic.

At time t∗, one has σj′(t∗−) = σj′(0) + 2t∗ = λi′ , hence the solution ZY of (5.1b) is not
well defined. Moreover, the Ritz vector xj′(t∗−) ∈ Y(t∗−) is collinear with the eigenvector vi′

of A. Choose W such that [vi′ ,W ] is orthogonal. The deflation of the GRQF is the flow
associated with the matrices Â = WT AW and Ŷ (0) = WT Y (t∗−). The GRQF associated
with Â, Ŷ is a flow on Gr(p− 1, n− 1) that has the same properties as (5.1).

Concerning the condition in Theorem 5.3 that the Ritz values σ1(0), . . . , σp(0) of A
with respect to Y0 and the eigenvalues of A be disjoint, we point out that the condition is
false if and only if Y0 = span(Y0) where Y0 (of full rank) satisfies the polynomial equation∏n

i=1 det(Y T
0 AY0 − λiY

T
0 Y0) = 0. The condition is thus not difficult to satisfy.

6 Conclusion

We have given a characterization of the flows on the set Rn×p
∗ of full-rank n × p matrices

that induce a subspace flow. Using this result, we have studied two continuous-time flows on
the Grassmann manifold: the power flow and the novel Grassmann Rayleigh quotient flow
(GRQF). The realization of these flows by differential equations in Rn×p

∗ leaves degrees of
freedom that can be exploited in order to achieve specific computations (principal component
extraction) or simplify the analysis. The dynamics in the matrix space can be controlled,
without altering the subspace flow, in such a way that the matrix representation converges
to the set of orthonormal matrices. Moreover, we have constructed a matrix representation
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of the GRQF that clearly reveals the monotonic increase of the Ritz values along its solution
and the finite time convergence to a subspace containing an eigenvector. In this sense the
GRQF achieves finite-time deflation.
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