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Abstract: We consider the problem of solving a constrained system of nonlinear equations. After reformu-
lating the system into an equivalent constrained global optimization problems, we construct a filled function
based on a special property of the reformulated problem. A filled function method is then proposed to solve
the constrained system of nonlinear equations. Some numerical examples are presented to illustrate the
usefulness of the present techniques.
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1 Introduction

Consider the following constrained system of nonlinear equations:

(CSNE) F (x) = 0
G(x) ≤ 0,

where F : IRn → IRm and G : IRn → IRl are continuously differentiable. The system
(CSNE) has found myriad applications in various industrial and economic areas.

If n = m and l = 0, then the system (CSNE) reduces to an unconstrained square system
of nonlinear equations, which is a classical problem in mathematics, and there are many well-
known techniques such as Newton-type methods, secant methods and trust-region methods
for solving it, see e.g. [1, 2, 3]. The solving of a general form of the system (CSNE),
however, has not been intensively investigated, see e.g. [6].

A typical way of solving (CSNE) is to reformulate it into the following constrained
optimization problem

(COP ) min ‖F (x)‖2
s.t. G(x) ≤ 0,
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where ‖ · ‖ denotes the Euclidean norm, and then solve (COP ) using well-developed opti-
mization methods. It is clear that global optimal solutions of problem (COP ) with the zero
objective function value correspond to solutions of system (CSNE). Therefore, efficient
global optimization methods are crucial for successfully solving system (CSNE).

Filled function methods have been initially proposed for solving unconstrained or box-
constrained global optimization problems, see e.g. [4, 5]. Recently, a new filled function
method has been developed to solve constrained global optimization problems as well, see
[7].

In [8], we proposed a filled function method to solve a box-constrained system of nonlinear
equations. To the best of our knowledge, it was the first filled function method in the
literature proposed especially for solving nonlinear equations. The present paper deals with
a more general case of constrained system of nonlinear equations where general nonlinear
inequality constraints G(x) ≤ 0 are addressed by employing the idea of penalty function
in constrained optimization. The obtained numerical experiments show that our present
method works quite well.

Note that the optimization problems discussed in both [8] and the present paper are
special cases of the optimization problems discussed in [7]. In [8] the fact that the opti-
mal objective function value of the reformulated optimization problem is zero if and only if
the original system of nonlinear equations has at least one solution has been used in con-
structing the filled function there, with the property that the objective function value of the
reformulated optimization problem can be reduced by half in each iteration of the corre-
sponding filled function algorithm. The same fact is used in the present paper to construct
an appropriate filled function with a similar property to that in [8].

The rest of this paper is organized as follows. In Section 2, a filled function is constructed
for the reformulated constrained optimization problem (COP ). The corresponding filled
function algorithm is presented in Section 3. Several numerical examples are reported in
Section 4.

2 Filled Function for Problem (COP )

Let

F (x) := (f1(x), . . . , fm(x))T ,

G(x) := (g1(x), . . . , gl(x))T ,

f(x) :=
1
2

m∑

i=1

f2
i (x).

Then problem (COP ) can be rewritten as

(COP ) min f(x)
s.t. gj(x) ≤ 0, j = 1, . . . , l.

The following assumptions are needed in developing the filled function method to solve
(CSNE).

Assumption 2.1. The constrained system of nonlinear equations (CSNE) has at least one
solution.
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Let

S = {x ∈ IRn | gj(x) ≤ 0, j = 1, . . . , l}, (2.1)
S◦ = {x ∈ IRn | gj(x) < 0, j = 1, . . . , l}. (2.2)

Note that S◦ is not necessarily identical to the interior of S.

Assumption 2.2. S◦ 6= ∅ and clS◦ = S, where clA denotes the closure of set A.

By Assumption 2.2, we know that for any x0 ∈ S, there exists a sequence {xk} ⊂ S◦,
such that lim

k→∞
xk = x0.

Throughout the rest of the present paper, we suppose that Assumptions 2.1 and 2.2 hold.
It is easy to see that x∗ is a solution of (CSNE) if and only if it is a global minimizer

of problem (COP ) and satisfies that f(x∗) = 0.
For a given point x∗ with f(x∗) > 0, a filled function at x∗ is defined as follows.

Definition 2.3. A continuously differentiable function px∗(x) is said to be a filled function
of problem (COP ) at x∗ with f(x∗) > 0, if

1◦ x∗ is a strict global maximizer of px∗(x) on IRn;
2◦ any local minimizer x̄ of px∗(x) on IRn satisfies

f(x̄) <
f(x∗)

2
and x̄ ∈ S◦;

and
3◦ there exist infinite points in S◦ which are local minimizers of px∗(x) on IRn.

In what follows, we introduce a filled function at x∗ with f(x∗) > 0, which satisfies
Definition 2.3. To begin with, we present a continuously differentiable function hr,a(t) with
the following properties: it equals to zero when t is less than a negative number −r, and
equals to a positive constant a when t > 0. More specifically, for any given r > 0 and a > 0,
let

hr,a(t) =





a, t ≥ 0

−2a

r3
t3 − 3a

r2
t2 + a, −r < t ≤ 0

0, t ≤ −r

. (2.3)

Note that the requirement for continuous differentiability of hr,a(t) justifies the use of cubic
polynomial in constructing hr,a(t).

Consequently we have that

h′r,a(t) =





0, t ≥ 0

−6a

r3
t2 − 6a

r2
t, −r < t ≤ 0

0, t ≤ −r

. (2.4)

Note that hr,a(t) is increasing on IR. Given x∗ ∈ S with f(x∗) > 0, let

pq,x∗(x) =
1

‖x− x∗‖2 + 1
h f(x∗)

4 ,1

(
h f(x∗)

4 ,f(x∗)

(
f(x)− f(x∗)

2

)

+
l∑

i=1

h f(x∗)
q ,f(x∗)

(
gi(x)

)
− f(x∗)

2

)
, (2.5)
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where q > 0 is a parameter. It is clear that pq,x∗(x) is continuously differentiable on IRn.
Note that pq,x∗(x) includes

∑l
i=1 h f(x∗)

q ,f(x∗)(gi(x)) as a penalty term to penalize unfeasible
points.

The following theorems show that pq,x∗(x) satisfies Definition 2.3 when q is sufficiently
large.

Theorem 2.4. Let f(x∗) > 0. For any q > 0, x∗ is a strict global maximizer of pq,x∗(x) on
IRn.

Proof. For any q > 0 and x 6= x∗, we have that

pq,x∗(x∗) = 1 and pq,x∗(x) ≤ 1
‖x− x∗‖2 + 1

< 1.

Thus, x∗ is a strict global maximizer of pq,x∗(x) on IRn.

Theorem 2.5. Let f(x∗) > 0. Any local minimizer x̄ of pq,x∗(x) on IRn satisfies that

f(x̄) <
f(x∗)

2
and x̄ ∈ S◦.

Proof. Let x̄ be a local minimizer of pq,x∗(x) on IRn, then ∇xpq,x∗(x̄) = 0 and x̄ 6= x∗ since
x∗ is a strict global maximizer of pq,x∗(x) on IRn. By contradiction, suppose that

f(x̄) <
f(x∗)

2
and x̄ ∈ S◦

do not hold. Then

∇xpq,x∗(x̄) =
−2(x̄− x∗)

(‖x̄− x∗‖2 + 1)2
6= 0,

which is impossible since ∇xpq,x∗(x̄) = 0. Therefore, any local minimizer x̄ of pq,x∗(x) on
IRn satisfies that

f(x̄) <
f(x∗)

2
and x̄ ∈ S◦.

Theorem 2.6. Let f(x∗) > 0. For any x̄ with f(x̄) ≤ f(x∗)
4 and x̄ ∈ S◦, there exists q0 > 0

such that when q ≥ q0, x̄ is a local minimizer of pq,x∗(x) on IRn. Furthermore, the number
of point x̃ with f(x̃) ≤ f(x∗)

4 and x̃ ∈ S◦ is infinite.

Proof. For any x̄ satisfy f(x̄) ≤ f(x∗)
4 and x̄ ∈ S◦, we have that

f(x̄)− f(x∗)
2

≤ −f(x∗)
4

and gi(x̄) < 0, i = 1, . . . , l.

Thus, there exists q0 > 0 such that gi(x̄) < − f(x∗)
q0

for any i = 1, . . . , l. It follows that
pq,x∗(x̄) = 0 when q ≥ q0. Since pq,x∗(x) ≥ 0 for any x ∈ IRn, x̄ is a global minimizer of
pq,x∗(x) on IRn. Therefore, x∗ is a local minimizer of pq,x∗(x) on IRn.

Let x̂ be a solution of (CSNE). Then we have that x̂ 6= x∗. By clS◦ = S, there exists a
sequence {xk} ⊂ S◦ such that xi 6= xj for i 6= j and

lim
k→+∞

xk = x̂.

Hence, there exists a positive integer number k0 such that when k ≥ k0, f(xk) ≤ f(x∗)
4 .

Therefore the number of point x̃ with f(x̃) ≤ f(x∗)
4 and x̃ ∈ S◦ is infinite.
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Remark 2.7. Note that the present filled function pq,x∗(x) is essentially different from the
filled function pr,c,q,x∗(x) proposed in [7] for constrained global optimization. In pr,c,q,x∗(x),
x∗ is assumed to be a given local minimizer of the original optimization problem, while in
pq,x∗(x), x∗ is only assumed to be a given point with f(x∗) > 0 and it is not necessarily a
local minimizer of (COP ), even not necessarily a feasible point of (COP ). Furthermore, as
it is shown in Theorem 2.5, any local minimizer x̄ of the function pq,x∗(x) on IRn satisfies
f(x̄) < f(x∗)

2 , while any local minimizer x̄ of the function pr,c,q,x∗(x) on a box X, except
for a vertex of X, satisfies only f(x̄) < f(x∗) instead, when the parameters r, c and q are
appropriately chosen (see Theorem 2.2 in [7]).

3 Filled Function Algorithm

In this section, we present a global optimization method for solving problem (COP ), which
leads to a solution or an approximate solution to (CSNE).

The general idea of the global optimization method is as follows. Consider the following
unconstrained optimization problem:

(UOP ) min
x∈IRn

pq,x∗(x),

where pq,x∗(x) is given in (2.5). Let x̄1 be a local minimizer of problem (UOP ) on IRn,
then we have f(x̄1) < f(x∗)

2 and x̄1 ∈ S◦. By locally solving the problem (COP ) starting
from the point x̄1, we are able to obtain a local minimizer x∗1 of problem (COP ), which
also satisfies that f(x∗1) < f(x∗)

2 . If f(x∗1) = 0, then x∗1 is the solution of system (CSNE);
otherwise locally solve problem (UOP ) with x∗ replaced by x∗1. Let x̄2 be the obtained local
minimizer, then we have that f(x̄2) <

f(x∗1)
2 and x̄2 ∈ S◦. Repeat this process, we can finally

obtain a solution of system (CSNE) or a sequence {x∗k} with f(x∗k) <
f(x∗1)
2k−1 , k = 1, 2, . . . .

For such a sequence {xk}, k = 1, 2, . . ., when k is sufficiently large, x∗k can be regarded as an
approximate solution of system (CSNE).

Let x∗ ∈ IRn, µ > 0. x∗ is said to be a µ-approximate solution of system (CSNE) if x∗ ∈
S and f(x∗) ≤ µ. The corresponding filled function algorithm for the global optimization
problem (COP ) is described below.

Algorithm 3.1 (Filled Function Algorithm for (COP )).
Step 0. Choose a small positive number µ and an initial value q1 for the parameter q.

Choose an initial point x∗0 ∈ IRn with f(x∗0) > 0 (if f(x∗0) = 0 and x∗0 ∈ S, then stop, and
x∗0 is already a solution of nonlinear system (CSNE)). Let k := 0, and go to Step 1.

Step 1. Let

pqk,x∗k(x) =
1

‖x− x∗k‖2 + 1
h f(x∗

k
)

4 ,1

(
h f(x∗

k
)

4 ,f(x∗k)

(
f(x)− f(x∗k)

2

)

+
m∑

i=1

h f(x∗
k
)

qk
,f(x∗k)

(
gi(x)

)
− f(x∗k)

2

)
, (3.1)

where hr,c(t) is defined by (2.3). Choose a point y∗k with y∗k 6= x∗k(in the numerical examples
of Section 4, y∗k is taken from the proximity of x∗k). Solve the following problem:

min
x∈IRn

pqk,x∗k(x) (3.2)
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by local search method starting from y∗k (in the numerical examples of Section 4, the con-
jugate gradient method is used to search for a local minimizer of problem (3.2)). Let x̄k be
the obtained local minimizer. Go to Step 2.

Step 2. Solve problem (COP ) by local search method starting from x̄k (in the numerical
examples of Section 4, the SQP method is used to search for a local minimizer of problem
(COP )). Let x∗k+1 be the obtained local minimizer. If f(x∗k+1) ≤ µ, then stop, and x∗k+1

is a solution or a µ-approximate solution of the constrained nonlinear system (CSNE);
otherwise, let k := k + 1 and go to Step 1.

From Theorems 2.4-2.6, it is clear that Algorithm 3.1 will terminate within finite steps.

4 Numerical Examples

Example 4.1 (See Problem 32 in the “Polynomially Constrained Problems” sec-
tion on the website “http://icwww.epfl.ch/∼sam/Coconut-benchs/”. We incor-
porate gi(x), i = 1, 2 into the original problem.).

f1(x) = 4x3
1 − 3x1 − x2 = 0

f2(x) = x2
1 − x2 = 0

g1(x) = x1 + x2
2 − 1 ≤ 0

g2(x) = x1x2 − x1 − 2 ≤ 0.

The solution provided in the above source is (0, 0)T .

Table 1 records the numerical results of solving Example 4.1 by Algorithm 3.1. The
initial point x∗0 in the table is obtained by locally solving the corresponding constrained
optimization problem (COP ) starting from

(0.5000000,−0.5000000)T .

The algorithm terminated after x∗4 had been obtained. Note that the obtained approximate
solution x∗4 is very close to the solution provided in the source of the example.

Table 1: Numerical results for Example 4.1

k x∗k f(x∗k) x̄k f(x̄k)

0

„ −6.5798857E−5
3.4764635E−6

«
3.7617063E−8

„ −1.4918665E−5
5.4908469E−5

«
3.1179883E−9

1

„ −1.4918665E−5
5.4908469E−5

«
3.1179883E−9

„
3.9115548E−7
1.5321442E−5

«
5.0682858E−10

2

„
3.9115548E−7
1.5321442E−5

«
5.0682858E−10

„
2.4704084E−6
−3.3367971E−7

«
5.0202995E−11

3

„
2.4704084E−6
−3.3367971E−7

«
5.0202995E−11

„
5.5533303E−7
−3.0155272E−6

«
1.0914633E−11

4

„
5.5533303E−7
−3.0155272E−6

«
1.0914633E−11 −− −−



A FILLED FUNCTION METHOD FOR CONSTRAINED NONLINEAR EQUATIONS 15

Example 4.2 (See Problem 93 in the same source as Example 4.1. Here gi(x), i = 1, 2
have been incorporated into the original problem.).

f1(x) = x1x
2
2 + x1x

2
3 + x1x

2
4 − 1.1x1 + 1 = 0

f2(x) = x2x
2
1 + x2x

2
3 + x2x

2
4 − 1.1x2 + 1 = 0

f3(x) = x3x
2
1 + x3x

2
2 + x3x

2
4 − 1.1x3 + 1 = 0

f4(x) = x4x
2
1 + x4x

2
2 + x4x

2
3 − 1.1x4 + 1 = 0

g1(x) = x2
1 − 1 ≤ 0

g2(x) = x1x2 + x3x
2
4 − 2 ≤ 0.

The solution provided in the source of the example is



−0.8667443047168157
−0.8667443047168157
−0.8667443047168157
−0.8667443047168158


 .

Example 4.3 (See Problem 128 in the same source as Example 4.1. We incorpo-
rate gi(x), i = 1, 2 into the original problem.).

f1(x) = 200x3
1 − 200x1x2 + x1 − 1 = 0

f2(x) = −100x2
1 + 110.1x2 + 9.9x4 − 20 = 0

f3(x) = 180x3
3 − 180x3x4 + x3 − 1 = 0

f4(x) = −90x2
3 + 9.9x2 + 100.1x4 − 20 = 0

g1(x) = x2
1x3 − x4 − 1 ≤ 0

g2(x) = x3x
2
4 − x1x2 − 2 ≤ 0.

The solution provided in the source of the example is (1, 1, 1, 1).

Table 3 records the numerical results of solving Example 4.3 by Algorithm 3.1. The
initial point x∗0 is obtained by locally solving the corresponding constrained optimization
problem (COP ) starting from

(2.000000, 2.000000, 2.000000, 2.000000)T .

The algorithm terminated after x∗8 had been obtained. The obtained approximate solution
x∗8 provides a new approximate solution to the example.

Table 2 records the numerical results of solving Example 4.2 by Algorithm 3.1. The
initial point x∗0 in the table is obtained by locally solving the corresponding constrained
optimization problem (COP ) starting from

(2.000000,−2.000000, 2.000000,−2.000000)T .

The algorithm terminated after x∗11 had been obtained. Note that the obtained approximate
solution x∗11 is very close to the solution provided in the source of the example.
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Table 2: Numerical results for Example 4.2

k x∗k f(x∗k) x̄k f(x̄k)

0

0
B@

0.3500557
0.3532820
0.3410559
0.3532815

1
CA 2.212058

0
B@

−0.9473325
−0.4817399
−0.6425902
−0.8257586

1
CA 1.638936

1

0
B@

−0.8868951
−0.8275127
−0.8812694
−0.8678638

1
CA 2.6905691E−04

0
B@

−0.8751874
−0.8494877
−0.8726978
−0.8684734

1
CA 5.1920211E−5

2

0
B@

−0.8753983
−0.8497847
−0.8729223
−0.8687181

1
CA 4.2430343E−5

0
B@

−0.8733780
−0.8684126
−0.8626447
−0.8627962

1
CA 1.0453566E−5

3

0
B@

−0.8733780
−0.8684126
−0.8626447
−0.8627962

1
CA 1.0453566E−5

0
B@

−0.8694260
−0.8684902
−0.8638253
−0.8652345

1
CA 2.5523368E−6

4

0
B@

−0.8694260
−0.8684902
−0.8638253
−0.8652345

1
CA 2.5523368E−6

0
B@

−0.8674767
−0.8672043
−0.8653255
−0.8669978

1
CA 3.4384695E−7

5

0
B@

−0.8674767
−0.8672043
−0.8653255
−0.8669978

1
CA 3.4384695E−7

0
B@

−0.8668536
−0.8667719
−0.8663250
−0.8669671

1
CA 6.0641263E−8

6

0
B@

−0.8668536
−0.8667719
−0.8663250
−0.8669671

1
CA 6.0641263E−8

0
B@

−0.8668450
−0.8668247
−0.8666589
−0.8666413

1
CA 5.1467350E−9

7

0
B@

−0.8668450
−0.8668247
−0.8666589
−0.8666413

1
CA 5.1467350E−9

0
B@

−0.8667801
−0.8667427
−0.8667115
−0.8667474

1
CA 2.9517841E−10

8

0
B@

−0.8667801
−0.8667427
−0.8667115
−0.8667474

1
CA 2.9517841E−10

0
B@

−0.8667552
−0.8667444
−0.8667303
−0.8667516

1
CA 4.9410889E−11

9

0
B@

−0.8667552
−0.8667444
−0.8667303
−0.8667516

1
CA 4.9410889E−11

0
B@

−0.8667511
−0.8667451
−0.8667399
−0.8667451

1
CA 1.0076683E−11

10

0
B@

−0.8667511
−0.8667451
−0.8667399
−0.8667451

1
CA 1.0076683E−11

0
B@

−0.8667474
−0.8667444
−0.8667455
−0.8667434

1
CA 1.0448101E−12

11

0
B@

−0.8667474
−0.8667444
−0.8667455
−0.8667434

1
CA 1.0448101E−12 −− −−
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Table 3: Numerical results for Example 4.3

k x∗k f(x∗k) x̄k f(x̄k)

0

0
B@

−0.2469030
0.1978096
0.4532202
0.3017455

1
CA 1.4278629E−2

0
B@

5.3684991E−2
0.1683867
−0.1114347
0.2020276

1
CA 1.5322113E−3

1

0
B@

5.3684991E−2
0.1683867
−0.1114347
0.2020276

1
CA 1.5322113E−3

0
B@

−4.8455458E−2
0.1678947
−1.8444225E−3
0.1784243

1
CA 1.4261539E−4

2

0
B@

−4.8455458E−2
0.1678947
−1.8444225E−3
0.1784243

1
CA 1.4261539E−4

0
B@

−3.8237344E−2
0.1656266
−1.8925449E−2
0.1842932

1
CA 2.1158787E−5

3

0
B@

−3.8237344E−2
0.1656266
−1.8925449E−2
0.1842932

1
CA 2.1158787E−5

0
B@

−3.5062015E−2
0.1660308
−2.5907500E−2
0.1838242

1
CA 4.4843623E−6

4

0
B@

−3.5062015E−2
0.1660308
−2.5907500E−2
0.1838242

1
CA 4.4843623E−6

0
B@

−3.3213530E−2
0.1661449
−2.9969044E−2
0.1842321

1
CA 5.7323098E−7

5

0
B@

−3.3213530E−2
0.1661449
−2.9969044E−2
0.1842321

1
CA 5.7323098E−7

0
B@

−3.1922456E−2
0.1659903
−3.0865408E−2
0.1841901

1
CA 6.5348772E−8

6

0
B@

−3.1922456E−2
0.1659903
−3.0865408E−2
0.1841901

1
CA 6.5348772E−8

0
B@

−3.1538315E−2
0.1660062
−3.1218626E−2
0.1842820

1
CA 9.8290069E−9

7

0
B@

−3.1538315E−2
0.1660062
−3.1218626E−2
0.1842820

1
CA 9.8290069E−9

0
B@

−3.1393509E−2
0.1659961
−3.1268597E−2
0.1842589

1
CA 2.5058471E−9

8

0
B@

−3.1393509E−2
0.1659961
−3.1268597E−2
0.1842589

1
CA 2.5058471E−9 −− −−
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