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Abstract: In this paper we propose to deal with the combinatorial difficulties in mean-variance portfolio
selection, caused by various side constraints, via the randomization approach. As examples of such side
constraints, we consider in this paper the following two models. In the first model, an investor is interested
in holding a ‘small and compact’ portfolio, in the sense that it involves only a small number of securities.
The second model explicitly requires that each security involved in the portfolio need to have a substantial
presence if it is present at all, thereby avoiding inefficient diversifications. These constraints are motivated
by practical considerations, e.g. the management and/or informational costs. By incorporating these side
constraints, however, the mean-variance model becomes very hard to solve. We resort to the method of ran-
domization to find good approximation solutions. Extensive numerical experiments show that randomization
is indeed a viable alternative for solving such investment models, for which the combinatorial structures in
the constraints make it quite hopeless to find an exact optimal solution, whereas a good approximate solution
in fact already serves the purpose quite well, given the approximative nature of the models.
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1 Introduction

The classical Markowitz mean-variance portfolio selection model (see [7]) has been the cor-
nerstone for the portfolio theory in the last half century. In spite of its many shortcomings,
principles underlying the simple mean-variance model still guide the theory and practice of
portfolio selection till this day. Among a significant number of papers in the literature refin-
ing the original mean-variance model, we mention the following modifications: Markowitz [8]
proposed to replace variance by semi-variance as a more plausible measure for risk; Zhou
and Li [11] extended the model to a continuous framework; Goldfarb and Iyengar [4] studied
the data sensitivity issue of the original model and consequently proposed a robust mean-
variance model. The aim of the current paper is quite different. Instead of stretching the
model, we shall squeeze it. One practical issue for an investor is often the management costs
associated with maintaining a large and complicated portfolio, not least from an information-
gathering point of view. Thus, one desirable feature of an investment portfolio is that its
composition should be compact and manageable. Blog, Van der Hoek, Rinnooy Kan, and
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Timmer [3] called a portfolio with a small number of securities small portfolio – terminol-
ogy we shall borrow here – and discussed solution methods for such problems. In a similar
vein, Bienstock [2], and more recently Bertsimas and Shioda [1], studied the exact solution
methods for solving the problem, based on either the dynamic programming principle or
sophisticated branch-and-bound schemes. Our approach in this paper is quite different. As
investment is a business where uncertainties and ambiguities are inevitable, it can therefore
be argued that any model can only be a rough approximation of the reality. However, if a
model is inexact, then, as such, it makes sense to treat it no more than an approximation.
In light of this, the method of randomization becomes attractive. This paper is devoted
to studying the application of randomization methods for selecting a portfolio with some
sort of compactness (thus combinatorially hard) constraints. In Section 2, we consider the
problem of choosing a portfolio with a small number of assets, or, for brevity, the problem of
choosing a small portfolio, following the terminology in [3]. Two slightly different methods
are introduced, with different flavors for randomization. We further consider in Section 3
the problem of choosing a clean portfolio, in that once an asset is present in the portfolio
then its presence must be substantial, say, no less than a certain given percentage of the
entire volume. We attempt to strike a balance among three factors in investment: (1) the
expected return; (2) the risk (to be controlled by diversification); (3) the management costs
involved in the investment. In Section 4, we present the numerical results using simulated
data, in order to evaluate the performance of these randomization methods. The notations
to be used are as follows:

E: mathematical expectation of a random variable or random vector;
Var: the variance of a random variable;
Cov: the covariance matrix of two random vectors;
◦: the Hadamard product;

sign(x): the sign function, i.e. sign(x) = 1 if x > 0, sign(x) = −1 if x < 0,
and sign(0) = 0;

e: the all-one vector with an appropriate dimension;
Ck

n: the combinatorial number of choosing k elements from the set of
total n elements;

Sn: the set of all n× n symmetric matrices.

2 Selecting a ‘Small’ Portfolio

Consider the following portfolio selection problem. There are in total n available securities,
and the investment budget is scaled to be 1. Suppose that the first two moments of the return
of the assets are r (expected return) and Q (covariance matrix) respectively. Furthermore,
we assume that short-selling is allowed. As in the standard mean-variance model, we use
the variance of the return on the portfolio as the risk measure, and we set µ to be the target
expected rate of return. The only difference is that we are now only interested in a ‘small’
portfolio ([3]), i.e., a portfolio with no more than k (k < n) securities. The model now
becomes:

(MVs) min xT Qx
s.t. rT x ≥ µ,

eT x ≤ 1,
n∑

i=1

|sign(xi)| ≤ k.

(2.1)

The last notion is sometimes known as the L0-norm of x, i.e., ‖x‖0 :=
∑n

i=1 |sign(xi)|, and
so the constraint can also be written as ‖x‖0 ≤ k. In other words, a portfolio is called ‘small’
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if its L0-norm is small. Note, however, that the so-called L0-norm is not actually a norm;
in particular, it is non-convex.

Clearly, the last constraint introduces a great deal of combinatorial complexity, and in
fact makes the problem NP-hard. From a practicality point of view, however, this con-
straint is almost indispensable. Instead of attempting to solve (2.1) to optimality either
by dynamic programming or by branch-and-bound (see e.g. [1, 2, 3]), we take an entirely
different approach, viz. we shall consider some kind of randomization schemes to deal with
the combinatorial complexity issue encountered in solving (2.1) to optimality. Suppose that
we have setup a scheme to randomly pick up a small portfolio. Then, the question may be
posed as: what will be the quantity of each security once it is chosen? In other words, as an
approximation we may decompose the problem into two independent decision processes: (1)
which assets to pick; and (2), what quantity to buy once an asset is selected. The following
lemma is useful in our subsequent analysis.

Lemma 2.1. Suppose that ξ1 and ξ2 are two mutually independent n dimensional random
vectors, with finite first two moments. It holds that

Cov(ξ1 ◦ ξ2) = Cov(ξ1) ◦ Cov(ξ2) + Cov(ξ1) ◦ (Eξ2(Eξ2)T ) + Cov(ξ2) ◦ (Eξ1(Eξ1)T ).

Proof. Observe for any index pair i ≤ i, j ≤ n that

E(ξ1 ◦ ξ2)ij = E(ξ1
i ξ2

i ξ1
j ξ2

j ) = E(ξ1
i ξ1

j )E(ξ2
i ξ2

j )

= (Cov(ξ1)ij + E(ξ1)iE(ξ1)j)× (Cov(ξ2)ij + E(ξ2)iE(ξ2)j)
= Cov(ξ1)ijCov(ξ2)ij + E(ξ1)iE(ξ1)j × (Cov(ξ2)ij

+E(ξ2)iE(ξ2)jCov(ξ1)ij + E(ξ1)iE(ξ1)jE(ξ2)iE(ξ2)j .

Rearranging yields the desired result.

In the next two subsections we consider two slightly different randomization schemes.
The first one, to be presented in Subsection 2.1, takes the view that the cardinality constraint
is not necessary a strict constraint, in the sense that there might be some flexibility in
enforcing such constraint, and thus focuses on a selection process which will generate a
small portfolio with high probability. In Subsection 2.2, on the other hand, we shall discuss
how to impose the cardinality constraint strictly if necessary.

2.1 The Bernoulli Style Randomization

Consider the following simple way to make an investment decision: toss a coin and decide
whether or not to invest in asset i, i.e.,

ηi :=
{

xi, with probability k
n ,

0, with probability 1− k
n ,

where the vector x ∈ <n is deterministic, which will be determined by an optimization
process later. Suppose that ηi’s are generated independently, with i = 1, ..., n. Then the
first moment of η is k

nx, and the second moment, the covariance matrix, is

Cov(η) =
k(n− k)

n2
diag(x2).

Let ξ be the rate of return on these n given securities, with the known mean vector r and
covariance matrix Q. For brevity, let us denote ξ ∼ (r,Q). We consider a randomized
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portfolio on these assets as given by η. In fact, the return on the portfolio is given by ξT η,
or, equivalently eT (ξ ◦ η). Thus, the portfolio problem can be written as

min Var(ξT η)
s.t. E(ξT η) ≥ µ,

E(eT η) ≤ 1,

ηi :=
{

xi, with probability k
n

0, with probability 1− k
n ,

for i = 1, 2, · · · , n,

where the decision variable is x. Since ξ and η are independent, we conclude, using
Lemma 2.1, that

EeT (ξ ◦ η) =
k

n
rT x,

and

Var(eT (ξ ◦ η))
= eT Cov(ξ ◦ η)e
= Cov(ξ) • Cov(η) + E(η)T Cov(ξ)E(η) + E(ξ)T Cov(η)E(ξ)

=
k(n− k)

n2

n∑

i=1

qiix
2
i +

k(n− k)
n2

rT diag(x2)r +
(

k

n

)2

xT Qx.

By a variable transformation, x := k
n , the portfolio problem is turned into:

(RP1) min n−k
k

n∑
i=1

(qii + r2
i )x2

i + xT Qx

s.t. rT x ≥ µ,
eT x ≤ 1.

(2.2)

Compared with the original problem (MVs), (RP1) is now a convex quadratic program, and
thus is easy solvable. Theorem 2.3 below shows that the so-formed portfolio is indeed highly
probable to be ‘small’. To show this, we first note a technical lemma, involving a useful
estimation on binary random variables, which can be found, for instance, in [5].

Lemma 2.2. Let p ∈ (0, 1) and

Xi =
{

1, with probability p
0, with probability 1− p,

are i.i.d. binary random variables, i = 1, ..., n. Then, for any q ∈ (0, 1) it holds that

Prob

{
n∑

i=1

Xi > qn

}
≤ exp

(
−n log

(
q log

p

q
+ (1− q) log

1− q

1− p

))
.

Theorem 2.3. Suppose that k ≤ n/2. It holds that

Prob {‖η‖0 ≤ k} =
k∑

j=0

Cj
n

(
k

n

)j (
n− k

n

)n−j

>
1
2
,

and for any α > 0,

Prob {‖η‖0 > (1 + α)k} ≤ e−k

(
e

1 + α

)(1+α)k

.
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Proof. Let us introduce

fk,n(x) =
k∑

i=0

Ci
n(

x

n
)i(1− x

n
)n−i.

Clearly, Prob {‖η‖0 ≤ k} = fk,n(k), and the derivative of fk,n(x) is as follows

fk,n(x)′ =
k∑

i=1

Ci
n

(
i

n

) (x

n

)i−1 (
1− x

n

)n−i

−
k∑

i=0

Ci
n

(
n− i

n

) (x

n

)i (
1− x

n

)n−i−1

=
k−1∑

i=0

Ci+1
n

(
i + 1

n

) (x

n

)i (
1− x

n

)n−i−1

−
k∑

i=0

Ci
n

(
n− i

n

) (x

n

)i (
1− x

n

)n−i−1

= −Ck
n−1

(x

n

)k (
1− x

n

)n−k−1

= −n1−nCk
n−1x

k(n− x)n−k−1,

where we used Ci+1
n ( i+1

n ) = Ci
n−1, and Ci

n(n−i
n ) = Ci

n−1.
Let g(x) = xk(n− x)n−k−1, and then

g(x)′ = kxk−1(n− x)n−k−1 − (n− k − 1)xk(n− x)n−k−2

= (n− 1)xk−1(n− x)n−k−2

(
kn

n− 1
− x

)
.

For 0 < x < n, g(x) attains its maximum at

x̂ =
kn

n− 1
= k +

k

n− 1
,

where k < x̂ < k + 1. We see that g(x) is a increasing for x ∈ [k, x̂] and decreasing for
x ∈ [x̂, k + 1]. Moreover,

g(k)
g(k + 1)

=
(

k

k + 1

)k (
1 +

1
n− k − 1

)n−k−1

.

Since
(

1 +
1

n− k − 1

)n−k−1

≥
(

1 +
1
k

)k

,

whenever n− k− 1 ≥ k, or k ≤ (n− 1)/2, therefore, if k ≤ (n− 1)/2 and x ∈ [k, k +1], then

g(x) ≥ min{g(k), g(k + 1)} = g(k + 1) = (k + 1)k(n− k − 1)n−k−1.

By the mean value theorem, there exists some τ ∈ [k, k + 1] such that

fk,n(k)− fk,n(k + 1) = −fk,n(τ)′

=
1

nn−1
Ck

n−1τ
k(n− τ)n−k−1

>
1

nn−1
Ck

n−1(k + 1)k(n− k − 1)n−k−1

= Ck+1
n

(
k + 1

n

)k+1 (
1− k + 1

n

)n−k−1

.
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In general,

fj,n(j) > fj,n(j + 1) + Cj+1
n

(
j + 1

n

)j+1 (
1− j + 1

n

)n−j−1

= fj+1,n(j + 1)

whenever j < (n− 1)/2. This means that fk,n(k) ≥ fdn
2 e,n(dn

2 e) ≥ 1/2. This completes the
first part of the theorem.

Now let us consider the probability of large deviation. Let us denote Xi = sign ηi; that
is,

Xi =
{

1, with probability k/n
0, with probability 1− k/n,

where i = 1, ..., n. For 0 < t < n/k, according to Lemma 2.2, letting p = k/n and q = tk/n,
it follows that

Prob

{
n∑

i=1

Xi ≥ tk

}
≤ exp

(
−tk log t− n(1− tk/n) log

n− tk

n− k

)

= t−tk

(
1 +

(t− 1)k
n− tk

)n−tk

≤ t−tke(t−1)k = e−k
(e

t

)tk

.

Letting t = 1 + α completes the proof.

2.2 Picking Exact Number of Assets

The Bernoulli style selection may leave some space for fluctuations in terms of the number
of assets in the portfolio. This feature may or may not be desirable. Certainly, in some
circumstance, one may wish to pick an exact number of securities in the portfolio. To
implement this scheme, we observe that it is straightforward to select k out of n assets in
a uniform fashion. The procedure is as follows. We start by picking one asset uniformly
from n assets. Then, removing this assets and pick up another asset uniformly from the
remaining n − 1 assets. This procedure continues until k assets are picked up. To derive
an explicit form for optimization let us denote M to be a 0-1 matrix with n rows, and each
column of M consists of exactly k number of 1’s, implying that the number of columns in
M is Ck

n. Let θ be uniformly selected from the columns of M . Therefore,

E(θ) =
Ck−1

n−1

Ck
n

e =
k

n
e,

and

Cov(θ) =
1

Ck
n

MMT −
(

k

n

)2

eeT .

Moreover, we have

MMT =
(
Ck−1

n−1 − Ck−2
n−2

)
I + Ck−2

n−2ee
T .

Hence, after some calculations we get that

Cov(θ) =
k(n− k)
n(n− 1)

(
I − 1

n
eeT

)
.
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If we follow this new randomization process, and select a portfolio as x ◦ θ, then the return
on this portfolio will be eT (x ◦ θ ◦ ξ), or xT (θ ◦ ξ). According to Lemma 2.1, we have

Cov(ξ ◦ θ) =
k(n− k)
n(n− 1)

Q ◦
(

I − 1
n

eeT

)
+

(
k

n

)2

Q ◦ (eeT )

+
k(n− k)
n(n− 1)

(
I − 1

n
eeT

)
◦ (rrT ).

After rearrangements, one obtains that the corresponding optimization problem can be
formulated as (after replacing k

nx by x):

(RP2) min n(n−k)
k(n−1)

n∑
i=1

(qii + r2
i )x2

i + n(n−k)
k(n−1) x

T Qx− n−k
k(n−1) (r

T x)2

s.t. rT x ≥ µ,
eT x ≤ 1.

3 Selecting a ‘Clean’ Portfolio

By a clean portfolio, we mean a portfolio with a substantiated position (long or short) for
each asset involved. That is to say, there is a threshold, and the portfolio does not contain
any insignificant amount of asset whose value is below this threshold. This is motivated by a
practical consideration in investment, since both information and administration come with
a cost, and so it is only economical to buy or sell a financial security, once so deemed, with
a substantial quantity.

Assume that x is a portfolio with n risky assets and xf is the proportion invested in
riskless asset. We formulate this problem with the above mentioned constraints on the risky
assets, which we shall call the threshold constraint from now on. That is, for each risky stock
i, 1 ≤ i ≤ n, we assume |xi| is either 0, i.e., excluding stock i in the portfolio, or at least ai

(> 0), i.e., at least taking ai position (long or short) in asset i. Below is the mathematical
programming formulation for the investment problem with threshold constraints:

(MVt) min xT Qx
s.t. rT x + rfxf ≥ ρ,

eT x + xf = 1,

|xi| =




0,
or
≥ ai,

for i = 1, ..., n,

(3.1)

where Q is the covariance matrix for the risky assets, rf is the return rate of the riskfree
asset, and ai > 0, are given parameters, i = 1, ..., n. As we noted before, the threshold
constraints in asset selection are realistic, considering the management costs incurred in
investment, as there are always transaction costs, commission fees, etc. These costs make it
attractive to only invest with sizeable quantities in order to be efficient. It is clear that the
model (MVt) as represented in (3.1) is NP-hard from a computational complexity point of
view.

For convenience of future discussion, we rewrite the model (MVt) as:

(MVq) min xT Qx

s.t. xT Qix =





0,
or
≥ 1,

for i = 1, · · · , n,

xT Q0x ≥ 1,

(3.2)
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where Q0 = (r − rfe)(r − rfe)T /(ρ − rf )2 ∈ Sn is a semidefinite matrix, and Qi is zero
everywhere except Qi(i, i) = 1/a2

i , i = 1, ..., n.

3.1 The SDP Relaxation

In this subsection, if a minimizing SDP problem with X ∈ Sn
+ as the decision variable has

no feasible solution, then we denote its optimal value to be ∞ and its optimal solution as
∞In, where In is an n× n identity matrix. Let us consider a general nonconvex quadratic
programming problem as follows, which is to be denoted by (QA):

(QA) min xT Qx
s.t. xT Qix = 0 for i = 1, ..., s,

xT Qix =





0,
or
≥ 1,

for i = s + 1, ..., k,

xT Qix ≥ 1 for i = k + 1, ..., m,

(3.3)

where Q is positive definite matrix and Qi is symmetric positive semidefinite matrix, for
i = 1, ..., m. Clearly, (MVq) is a special case of (QA). In the subsequent analysis we shall
study the more general nonconvex quadratic problem (QA). The NP-hardness of the problem
(QA) is immediate as it is a generalization of both (MVt) and a model in Luo et al. [6].

The SDP relaxation for the above problem (QA) is (QB), as follows,

(QB) min Q •X
s.t. Qi •X = 0 for i = 1, ..., s,

Qi •X =





0,
or
≥ 1,

for i = s + 1, ..., k,

Qi •X ≥ 1 for i = k + 1, ..., m,
X º 0,

(3.4)

where X is a n× n positive semidefinite matrix. Clearly, v(QB) ≤ v(QA).
For each j ∈ {s + 1, s + 2, ..., k}, let us define an SDP problem (QCj) as follows:

(QCj) min Q •X
s.t. Qi •X = 0 for i = 1, ..., s,

Qj •X ≥ 1,
Qi •X ≥ 1 for i = k + 1, ..., m,
X º 0,

(3.5)

which is an ordinary semidefinite program.
There is a close relationship between problem (QB) and (QCj), j ∈ {s + 1, s + 2, ..., k},

as the following lemma shows.

Lemma 3.1. If X is an optimal solution for (QB), and Qj • X 6= 0, for any one j ∈
{s + 1, ..., k}, then v(QCj) ≤ v(QB).

Proof. By the definition of (QB), we know that Qj • X ≥ 1 when Qj • X 6= 0, which
automatically implies that X a feasible solution for (QCj). Because X is optimal for (QB),
we know that v(QB) = Q •X. Thus we have that v(QCj) ≤ Q •X = v(QB).

As a consequence, if v(QCj) > v(QB) (s + 1 ≤ j ≤ k) then for any optimal solution X
of (QB), it necessarily holds that Qj •X = 0.
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3.2 The Screening Algorithm

We need to find a good feasible solution for the problem (QB), since (QB) remains NP-
hard which needs to be tackled first. For this purpose we propose a method to be called a
screening algorithm, which works as follows.

Screening Algorithm for (QB)

Step 1 Set r = 1.

Step 2 Solve the following SDP problem (QDr):

(QDr) min Q •X
s.t. Qi •X = 0 for i = 1, ..., s,

Qi •X ≥ 1 for i = s + 1, ..., m,
X º 0.

Denote the optimal solution of this problem by Xr and the optimal value by νr. If the
problem (QDr) is infeasible, then set νr = ∞ and Xr = ∞In.

Step 3 If s = k, set rmax := r, then exit to Step 5; otherwise, solve problems (QCj) for all
s + 1 ≤ j ≤ k,

(QCj) min Q •X
s.t. Qi •X = 0 for i = 1, ..., s,

Qj •X ≥ 1,
Qi •X ≥ 1 for i = k + 1, ..., m,
X º 0,

and denote the optimal value of each problem (QCj) by trj and the solutions for them
by Xr

j . If any one of (QCj) is unsolvable, then set the optimal value trj to be ∞ and
the optimal solution to be ∞In. Sort and rename the indices from s+1 to k, to ensure
that trjs are in nonincreasing order. Suppose that the biggest ones among them are
trmax := trj+1 = · · · = trs′ . If there are more than one trj equal to ∞, count them all
equal and all are the maximal items.

Step 4 Set s = s′ and r = r + 1. Problem (QB) is changed to (QBr) which is:

(QBr) min Q •X
s.t. Qi •X = 0 for i = 1, ..., s,

Qi •X =





0,
or
≥ 1,

for i = s + 1, ..., k,

Qi •X ≥ 1 for i = s + 1, ..., m,
X º 0.

Go back to Step 2.

Step 5 Compare all νr in the end, and choose the smallest one among them and report the
correspondent Xr as the solution. If Xr = ∞In, then we conclude that the original
problem is infeasible.

Theorem 3.2. The above screening algorithm has an approximation ratio no more than
k − s for (QB).
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Proof. We discuss two cases separately.

(i) If we have trmax ≤ v(QB) for some iteration r, then trj ≤ v(QB) for any s + 1 ≤ j ≤ k.

Thus by setting X ′ =
k∑

j=s+1

Xr
j , we have that

Q •X ′ =
k∑

j=s+1

Q •Xr
j ≤ (k − s) v(QB),

which means that at least we have found one good feasible solution for the SDP
relaxation problem (QB). We have that Qj •X ′ ≥ Qj •Xr

j ≥ 1 for any s + 1 ≤ j ≤ k.
Also it is easy to check that X ′ satisfies the other constraints of (QDr) as well. Thus
X ′ is a feasible solution for (QDr), by the definition of Xr we know that

Q •Xr = v(QDr) ≤ Q •X ′ ≤ (k − s) v(QB).

(ii) If we have trmax > v(QB) for all iteration r, then for any index j which is removed
from the set {s + 1, ..., k} at this iteration, it holds that trj > v(QB). At the first
iteration, i.e., r = 1, it directly follows from Lemma 3.1 that Qj • X = 0 as long as
X is an optimal solution for (QB), thus v(QB1) = v(QB). Similarly, for any r ≥ 1,
we know that Qj •X = 0 for any X that is an optimal solution for (QBr+1) by using
Lemma 3.1. Thus

v(QBr+1) = v(QBr) = · · · = v(QB1) = v(QB).

Thus by induction we have v(QBrmax) = v(QB). This means that Xrmax is an optimal
solution for (QB) too, i.e., Q •Xrmax = v(QB).

As k − s ≤ m, in either case we have that Q • Xr = v(QDr) ≤ mv(QB), where Xr is a
feasible solution for (QB) obtained from Step 5 of the screening algorithm.

3.3 The Worst-case Performance Ratio

We now propose a rounding algorithm analogous to that in Luo et al. [6] for quadratic
optimization with homogeneous quadratic constraints. Upon obtaining an approximative
solution X for (QB), we construct a feasible solution for (QA) using the following randomized
procedure:

Randomized Rounding Algorithm

Step 1 Generate a random vector ξ ∈ <n from the real-valued normal distribution N(0, X);

Step 2 Let

x = ξ/
√

min{ξT Qiξ | s + 1 ≤ i ≤ m, and ξT Qiξ 6= 0}. (3.6)

At Step 2 of this randomized procedure, we denote Ψ := {i : ξT Qiξ 6= 0, s+1 ≤ i ≤ m}. We
will use x to analyze the performance of the SDP relaxation. The worst-case performance
analysis is similar to the procedure in [6]. For completeness, we will include those key
lemmas here.
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Lemma 3.3. Let Q ∈ Sn, X ∈ Sn be two symmetric positive semidefinite matrices. Assume
ξ ∈ <n and ξ ∼ N(0, X). Then, for any γ > 0,

Prob
{
ξT Qξ < γE(ξT Qξ)

} ≤ max
{√

γ,
2(r̄ − 1)γ

π − 2

}
, (3.7)

where r̄ := min{rank (Q), rank (X)}.
The above lemma is quoted from [6] (Lemma 1). Another useful lemma for our analysis

is an adopted form of Lemma 2 in [6].

Lemma 3.4. If X is a solution from Step 5 of the Screening Algorithm for the SDP re-
laxation problem (QB) and x is generated by the randomized rounding algorithm described
before. Then, with probability 1, x is well defined and feasible for (QA). Moreover, for every
γ > 0 and µ > 0,

Prob
{

min
i∈Ψ

ξT Qiξ ≥ γ, ξT Qξ ≤ µQ •X

}
≥ 1−m max{√γ,

2(r̂ − 1)γ
π − 2

} − 1
µ

, (3.8)

where r̂ := rank (X).

Proof. By re-naming the indices, we may assume without losing generality that there is s′

with s + 1 ≤ s′ ≤ k such that

Qi •X = 0 for i = 1, ..., s′,
Qi •X ≥ 1 for i = k + 1, ..., m.

Then E(ξT Qiξ) = Qi •X = 0 for 1 ≤ i ≤ s′, which means ξT Qiξ = 0 for all 1 ≤ i ≤ s′, thus
it is the same for xT Qix. Moreover, xT Qix ≥ 1 for s′ ≤ i ≤ m follows from the definition
of x (see (3.6)). The feasibility of x is easily verified.

Prob {min
i∈Ψ

ξT Qiξ ≥ γ, ξT Qξ ≤ µQ •X}
= Prob {ξT Qiξ ≥ γ,∀i ∈ Ψ, and ξT Qξ ≤ µQ ·X}
≥ Prob {ξT Qiξ ≥ γQi •X, ∀i ∈ Ψ, and ξT Qξ ≤ µQ •X}
= Prob {ξT Qiξ ≥ γE(ξT Qiξ),∀i ∈ Ψ, and ξT Qξ ≤ µE(ξT Qξ)}
= 1− Prob {ξT Qiξ < γE(ξT Qiξ) for some i ∈ Ψ or ξT Qξ > µE(ξT Qξ)}
≥ 1−

∑

i∈Ψ

Prob {ξT Qiξ < γE(ξT Qiξ)} − Prob {ξT Qξ > µE(ξT Qξ)}

> 1−m max
{√

γ,
2(r̂ − 1)γ

π − 2

}
− 1

µ
,

where in the last step we used Lemma 3.3, and also Markov’s inequality.
We now use these lemmas to bound the performance of the SDP relaxation.

Theorem 3.5. The screening algorithm and the randomized rounding algorithm provide an
O(m3) approximation with probability of at least 7.5%.

Proof. By applying a suitable rank reduction procedure if necessary, we can assume that the
rank r̂ of the optimal SDP solution X satisfies r̂(r̂ + 1)/2 ≤ m; see e.g. [9]. Thus r̂ <

√
2m.

If m ≤ 2, then r̂ = 1, implying that X = x∗(x∗)T for some x∗ ∈ <n and it is readily seen
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that x∗ is an optimal solution of (QA). Otherwise, we apply the randomized procedure to
X. We also choose

µ = 3, γ =
π

4m2

(
1− 1

µ

)2

=
π

9m2
.

Then, it is easily verified using r̂ <
√

2m that

√
γ ≥ 2(r̂ − 1)γ

π − 2
,∀m = 1, 2, . . .

Plugging these choices of γ and µ into (3.8), we see that there is a positive probability of at
least

1−m
√

γ − 1
µ

= 1−
√

π

3
− 1

3
= 0.0758 . . .

and ξ generated by the randomized procedure satisfies

min
i∈Ψ

ξT Qiξ ≥ π

9m2
, and ξT Qξ ≤ 3(Q •X).

Let ξ be any vector satisfying these two conditions. Then x is a feasible solution for (QA),
so that

xT Qx =
ξT Qξ

mini∈Ψ ξT Qiξ
≤ 3(Q •X)

π/9m2
≤ 27m3

π
v(QB),

where the last inequality uses Q •X = v(QDr) ≤ mv(QB).

4 Numerical Experiments

It remains to evaluate the practical performance of the randomization methods that we have
introduced in the previous sections. Our numerical experiments are organized as follows.
Subsections 4.1 and 4.2 are devoted to the numerical performance of (RP1) and (RP2) for
the small portfolio selection problem, while Subsection 4.3 is devoted to the clean portfolio
problem. Subsection 4.4 discusses an extension of the clean portfolio model, which is inter-
esting as an optimization model on its own. For the small portfolio selection problem, the
study boils down to comparing the optimal values of (MVs), by means of either branch and
bound or other implicit enumeration methods, and the optimal values of (RP1) and (RP2).
A further division of the study distinguishes whether or not a risk-free asset is considered,
which we shall discuss in Subsections 4.1 and 4.2 separately. All the experiments were im-
plemented on a PC with 512 megabytes RAM and a Pentium 4, 3.06GHZ processor running
Windows XP Professional.

4.1 Risky Assets Only

In this subsection, we consider the portfolio selection problem with risky assets only and the
equality constraints are considered. The problem we used for our computational experiments
are randomly generated, i.e., the mean return rate of each individual stock and the covariance
matrix of stock are randomly generated. Table 1 and Figure 1 present the comparison of the
optimal values for problems (MVs), (RP1) and (RP2) under different cardinality constraints,
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Figure 1: Cardinality vs. Variance (return = 5%)

where we assume that there are in total 10 stocks for investment. In Table 1, the first column
reports the number of stocks we selected in our portfolio, e.g. the first row is to choose 2
out of 10 stocks, and the following three columns report the minimal variance (optimum)
for different models, i.e., (MVs), (RP1) and (RP2), respectively.

Our first observation is that the optimal values of problems (RP1) and (RP2) are very
close to each other, and they are naturally larger than the optimal value of problem (MVs).
Another interesting phenomenon is that the optimal values of problems (RP1) and (RP2)
are decreasing and converging to the optimal value of (MVs) as the desired number of stocks
selected grows from 2 stocks to the entire 10 stocks. This is illustrated by Figure 1.

k (MV ) (RP1) (RP2)
2 0.4292 1.1259 1.0882
3 0.4073 0.8339 0.8062
4 0.3861 0.6808 0.6587
5 0.3731 0.5842 0.5661
6 0.3656 0.5164 0.5016
7 0.3625 0.4653 0.4535
8 0.3621 0.4248 0.4160
9 0.3620 0.3911 0.3859

10 0.3619 0.3619 0.3619

Table 1: Results on Cardinality vs. Variance.

Table 2 reports the frontier for problems (MVs), (RP1) and (RP2) respectively, and we
select 2 stocks from 10 alternative stocks. The first column presents the desired expected
return rate from 0.5% to 10% and the following three columns report the minimal variance
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(optimum) for different models, i.e., (MVs), (RP1) and (RP2) with respect to each desired
expected return rate. Figure 2 depicts that the frontiers of both problems (RP1) and (RP2)

µ (MV ) (RP1) (RP2)
0.005 0.9338 2.6239 2.8439
0.010 0.8419 2.2238 2.3849
0.015 0.6770 1.8820 1.9918
0.020 0.5567 1.5987 1.6647
0.025 0.4811 1.3738 1.4036
0.030 0.4502 1.2074 1.2085
0.035 0.4639 1.0994 1.0794
0.040 0.5222 1.0498 1.0163
0.045 0.4751 1.0586 1.0193
0.050 0.4292 1.1259 1.0882
0.055 0.4637 1.2516 1.2231
0.060 0.5984 1.4357 1.4240
0.065 0.8334 1.6783 1.6908
0.070 1.1591 1.9793 2.0237
0.075 1.3149 2.3387 2.4226
0.080 1.3705 2.7565 2.8875
0.085 1.4535 3.2328 3.4184
0.090 1.5602 3.7675 4.0153
0.095 1.6925 4.3606 4.6781
0.100 1.8503 5.0122 5.4070

Table 2: Results on efficient frontier.

are very close and higher than that of problem (MVs). The optimal values of (RP1) and
(RP2) are always within three times of the optimal value of (MVs) for all these desired
return rates.

Figure 3 presents the frontier of the stock selection problem (MVs) which has 4 frontiers,
such as MV (2), MV (3), MV (4) and MV (5), where MV (2) denotes the frontier for only
choosing 2 stocks from the whole 10 stocks to form the optimal portfolio. Naturally, the
more stocks we use in the portfolio (k), the less risk of the efficient portfolio in the frontier.
The same holds for the models (RP1) and (RP2); we refer to Figure 4 and Figure 5.

Certainly, the optimal values of (RP1) and (RP2) are the expected values of the corre-
sponding randomized samples. In reality, for each solution x we can generate a number of
random samples and pick up the one with best objective value. This substantially lowers
the objective value, as shown in Figure 6.

Finally we present Figure 7, which shows that the efficient frontiers for those models with
inequality constraints also have similar properties as the models with equality constraints,
which we tested and discussed earlier. For the problems with inequality constraints, the
frontiers naturally lie below the corresponding ones with equality constraints, since the
additional flexibility helps to reduce the risk.

4.2 Riskfree Asset Included

In this subsection, we present the computational results on the mean-variance model (MVs)
and the two randomized procedures, (RP1) and (RP2), with riskfree asset included. Figure 8
shows that the efficient frontier (with the riskfree asset included) is similar to the one without
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the riskless asset, except that the minimal variance portfolio with solely the risk free asset
is zero. We experiment with more randomized portfolio selection instances with different
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Figure 8: Frontier with riskfree asset.

cardinality constraints and/or the varying risk free return rates. We observe that the efficient
frontier moves up if the risk free rate is higher since the higher return rate of riskless asset
reduce the total variance for the corresponding portfolios exposed at the frontier. Clearly,
if more assets are allowed then the less risk (though higher management cost) there will be
in the optimal portfolio.

4.3 The Clean Portfolio Model

In the following, we mainly consider some numerical experiments on the clean portfolio
selection problem, which is (see (MVt) as represented in (3.1)):

min xT Qx

s.t. xT Qix =





0,
or
≥ 1,

for i = 1, ..., n,

xT Q0x ≥ 1,
x ∈ <n,

(4.1)

where Q0 = (r− rfe)(r− rfe)T /(ρ− rf )2 ∈ Sn is a positive semidefinite matrix and Qi is a
matrix that is zero everywhere except for Qi(i, i) = 1/a2

i , i = 1, ..., n. We solve this problem
in the following procedure:

Algorithm:

Step 1 Find a feasible solution for SDP relaxation problem (QB) by running the Screening
Algorithm described in Section 3.2;
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Step 2 Generate a feasible solution for the nonconvex quadratic programming problem
(QA) by the Randomized Rounding Algorithm in Section 3.3, which provides an upper
bound for the problem (QA);

Step 3 Run a branch-and-bound algorithm with the upper bound given in Step 2 to find
the optimal solution for (QA).

Table 3 presents some randomly generated instances for the model (MVt). All these
instances are 10 dimensional problems with 11 constraints. The first row lists the instances
names. From column 2 to 7, We summarize some numerical results for 6 randomly generated
examples as follows:

a. The second row ‘OPT’ reports the optimal value of the problem (MVt) solved by the
branch-and-bound algorithm.

b. The third row ‘Round’ shows the objective value of each instance obtained by the
randomized rounding procedure, i.e., generating 1000 normal random variable with the
covariance matrix being the SDP solution which is solved by the screening procedure
in Section 3.2.

c. The 4th and 5th row, i.e., ‘Upper’ and ‘Lower’, are the upper bound and lower bound
of the SDP relaxation problem (QB).

d. The 6th row ‘Bound’ reports the ratio of the objective value by random rounding to
the lower bound of the SDP relaxation problem (QB), which are all better than the
theoretical ratio, i.e., O(1000), where the best one is 3.77 times the lower bound and
the worst one is 70.43 times the lower bound.

e. The 7th row ‘Visit’ reports the visit ratio that we totally visit in our searching tree,
we only visit very small number of nodes in the branching tree to find the optimal
solution, in these instances, the worst one is 0.3% of the total nodes and the best one,
i.e., instances ‘q10a’ and ‘q10e’, only visits 0.03% of all the nodes in the branching
tree.

f. The 8th row ‘Cut’ lists how many nodes we have cut in view of the total nodes visited,
which we call it cut ratio. In these test examples, the cut ratios are mostly around
60%.

g. The 9th row ‘Leaf’ shows how many leaf nodes we have visited in the searching tree.
The leaf ratio is around 7% to 10%.

h. The 10th row ‘SDP’ reports the computing time in seconds to run the screening algo-
rithm.

i. The 11th row ‘BnB’ reports the computing time in seconds using branch-and-bound
algorithm with the upper bound given by the random rounding procedure in which
the covariance matrix is provided by the screening algorithm. The time to finish the
branch-and-bound are around 1 to 4 seconds.

j. The 12th row ‘BnB(na)’ reports the computing time in seconds using branch-and-
bound algorithm if we randomly select a large upper bound. In our case, we set the
upper bound to be 1010 at the beginning. This is a naive branch-and-bound algorithm
which needs more time to finish searching, i.e., almost 3-4 times slower than our
branch-and-bound method ‘BnB’.
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q10a q10b q10c q10d q10e q10f
OPT 6.4 15.1 18.4 24.0 0.092 4.7

Round 6.5 22.0 19.9 29.8 0.092 15.7
Upper 27.6 33.7 33.9 110.8 6.650 34.0
Lower 1.4 9.6 11.7 19.3 0.002 0.7
Bound 4.82 2.29 1.70 1.54 45.30 23.87

Visit 0.03% 0.17% 0.22% 0.09% 0.03% 0.30%
Cut 60.0% 59.2% 56.6% 60.7% 60.0% 59.3%
Leaf 10.0% 8.2% 10.6% 7.1% 10.0% 7.8%
SDP 44.29 45.84 47.16 43.52 42.98 47.61
BnB 1.29 2.38 3.11 1.83 1.30 3.96

BnB(na) 7.98 5.72 10.46 6.43 9.89 7.28

Table 3: Results for Branch-and-Bound (QP, 10-dim).

q50a1 q50a2 q50b1 q50b2
OPT 0.105 0.105 0.033 0.033

Round 0.430 1.249 0.071 0.779
Bound1 4.1 11.9 2.2 23.6
Bound2 29.76 86.445 4.9115 53.9
Visit 9.70E-20 1.00E-19 3.40E-20 4.60E-20
Cut 66.56% 66.49% 66.52% 65.85%
Leaf 0.11% 0.18% 0.15% 0.82%
SDP 3.46 0.82 3.72 0.96
BnB 1.50 1.59 0.54 0.99
Total 4.96 2.42 4.26 1.95

BnB(na) 3.90 - 2.68 -

Table 4: Results for Branch-and-Bound (QP, 50-dim).

In Table 4, we test some examples randomly generated with 50 dimensions. We test the
same one problem in the 2nd and 3rd column with different accuracy for SeDuMi. Similarly,
we test another problem in the 4th and 5th column with different accuracy for SeDuMi. For
‘q50a1’ and ‘q50b1’, we use the default accuracy to compute the SDP solution in SeDuMi.
For ‘q50a2’ and ‘q50b2’, we use a relaxed accuracy, i.e., we set pars.eps=0.1 in SeDuMi,
to compute the SDP solution. ‘Bound1’ is the bound ratio of the rounded value to the
optimal value, and ‘Bound2’ is the bound ratio of the rounded value to the lower bound
value of the SDP relaxation problem. All visit ratios are in the 10−20 magnitude. All
cut ratios are around 66%. No Leaf ratio is greater than 1% in all these cases. ‘Total’
is the total computation time to run the screening procedure and the branch-and-bound
algorithm. We observe that the total time is greater than that of ‘BnB(na)’ in the default
accuracy case, as in ‘q50a1’, ‘Total’ needs 4.96 hours but ‘BnB(na)’ needs only 3.90. But
if we relax the accuracy a bit more, such as to 0.1 in SeDuMi, then the time to compute
the screening procedure (mainly solve SDP problem using SeDuMi) is decreased by a large
amount, from 3.46 hours to 0.82 hours in ‘q50a1’ and ‘q50a2’. In other words, we have
saved the computational time by about 75%, although the time to complete ‘BnB’ increases
slightly. If we set the accuracy parameter to be 0.1 in SeDuMi, we only need 2.42 hours in
‘Total’ but we need 3.9 hours to complete ‘BnB(na)’ in ‘q50a’, i.e., we saved about 40%.
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For ‘q50b’, we have the same observation that the total time decreases from 2.68 hours to
1.95 hours, i.e., approximate 30% saving in computational time.

HSI33 SH49 SGIT29a SGIT29b
OPT 0.719 1.896 0.277 0.2767

Round 0.721 1.986 20.143 0.2773
Upper 0.836 63.831 3.966 3.966
Lower 0.702 0.218 0.239 0.239
Bound 1.03 9.09 84.25 1.16
Visit 6.03E-13 1.62E-19 1.13E-09 1.52E-11
Cut 66.45% 66.60% 44.21% 65.39%
Leaf 0.24% 0.07% 22.46% 1.34%
SDP 0.69 3.20 0.46 0.39
BnB 0.04 0.39 0.93 0.01

BnB(na) 0.43 43.04 0.92 0.93

Table 5: Results for asset selection.

SZB55 NASDAQ30a NASDAQ30b NASDAQ38c
OPT 0.8741 1.623 1.762 3.792

Round 0.8742 1.623 6.128 3.853
Upper 76.92 47.94 50.66 59.87
Lower 0.311 0.360 0.348 1.651
Bound 2.81 4.51 17.62 2.33
Visit 2.00E-22 2.18E-12 2.65E-10 1.09E-15
Cut 66.23% 66.37% 65.85% 66.30%
Leaf 0.44% 0.45% 0.82% 0.41%
SDP 6.61 0.33 0.36 0.91
BnB 0.33 9.57(sec) 0.39 0.01

BnB(na) 114.99* 0.51 0.78 10.13

Table 6: Results for asset selection (cont’).

In Tables 5 and 6, we test some instances from stock markets around the world, such
as, Hong Kong, Shanghai, Shenzhen, Singapore and NASDAQ stock market. In Table 5,
‘HSI33’ includes 33 component stocks of the Hang Seng Index, ‘SH49’ includes 49 stocks
from the Shanghai 50 Index, ‘SGIT29a’ and ‘SGIT29b’ include 29 stocks from the IT stocks
listed in Singapore stock market. In Table 6, ‘SZB55’ includes 55 stocks of the Shenzhen
B share, ‘NASDAQ30a’, ‘NASDAQ30b’ and ‘NASDAQ38c’ include 30, 30 and 38 different
stocks from the NASDAQ stock market respectively.

We observe from Tables 5 and 6 that the objective value given by the random rounding
procedure is very close to the optimal value except for two instances, i.e, ‘SGIT29a’ and
‘NASDAQ30b’. For ‘NASDAQ30a’, the rounding result is even equal to the optimal value.
For these data, we find that the randomized rounding procedure does provide a good feasible
solution. The bound is less than 10 times in most cases. The visit ratios are very small and
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Figure 9: upper bound on v(qp)/v(sdp) for n=33, m=34, and 900 samples.

the cut ratios are around 66% except for one instance, i.e., ‘SGIT29a’. The leaf ratio has the
same properties as the cut ratio, all ratios are lower than or around 1% except for ‘SGIT29a’.
In these two tables, ‘SDP’, ‘BnB’ and ‘BnB(na)’ report the time in hours. For all of these
examples, the computation time of the naive branch-and-bound method listed in ‘BnB(na)’
is longer than that of our branch-and-bound algorithm listed in ‘BnB’, except for ‘SGIT29a’.
The reason is the rounding result is not so good for ‘SGIT29a’. For ‘NASDAQ30b’, the visit
ratio of the naive branch-and-bound method increases by 53.58% with respect to the visit
ratio of our branch-and-bound algorithm. For ‘SZB55’, we run a naive branch-and-bound
algorithm for 114.99 hours, after which 99% of the total nodes are still not explored yet.

For ‘SGIT29a’ and ‘SGIT29b’, we observe that our branch-and-bound algorithm runs
fast if the random rounding procedure provides a good feasible solution. In ‘SGIT29a’, the
rounding procedure gives a solution with bound 84.25, but in ‘SGIT29b’, we get a rounding
solution with bound 1.16. Thus, the computational time for ‘SGIT29a’ is almost one hour,
but the computational time for ‘SGIT29b’ is less than one minute. The cut ratio increases
by 50%, from 44.21% to 65.39%. For ‘SGIT29a’, the total computational time of ‘SDP’ and
‘BnB’ is greater than that of ‘BnB(na)’. But for ‘SGIT29b’, the total computation time of
‘SDP’ and ‘BnB’ is less than half of the computation time of ‘BnB(na)’.

Figure 9 shows the randomized rounding results for problem ‘HSI33’ which is relaxed to
an SDP problem and solved efficiently by SeDuMi [10]. Then we use the random rounding
procedure to generate some feasible solutions for the quadratic program problem ‘HSI33’,
for example, we generate 900 feasible solutions for ‘HSI33’. Figure 10 shows that 97.65% of
all the realizations has the bound lower than 1.2.
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Figure 10: Histogram of the outcomes in Figure 9.

4.4 The Discrete SDP Problem

In this subsection, we shall present some experimental results about the SDP problem (QB)
as defined in (3.4). We also randomly generate some 10-dimensional instances. The first
2 instances in Table 7 show that the optimal solution by branch-and-bound is the same as
the one obtained by the SDP relaxation screening procedure. For the last 4 instances, the
branch-and-bound algorithm finds the optimal solutions of these SDP problems quickly.

In Figure 11, we observe as the accuracy requirement relaxes in the SDP subroutines
the computational time for screening procedure decreases drastically. However, the time
to complete the entire branch-and-bound algorithm increases as a result of a worsened
(inaccurate) SDP bounds.

5 Conclusions

In this paper, we examine the asset selection problem with various constraints. First we
considered the mean variance model with the constraint on the L0 norm of the portfolio.
Such portfolio is termed small in our discussion. For that model we introduced two different
types of randomization procedures to deal with the combinatorial complexity. Numerical
results show that these procedures are effective indeed. In particular, we conducted com-
putational experiments on the comparisons between the two randomization models, (RP1)
and (RP2), and compared them with (MVs), revealing the tradeoffs (the risk vs. the return)
that they offered in the context of efficient frontiers. Then we considered the mean-variance
model with another kind of combinatorial complication, however practically plausible, which
posed a minimum level of involvement once it is involved. Such portfolio is termed clean for
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s10a s10b s10c s10d s10e s10f
OPT 6.31 5.88 2.63 23.33 15.83 1.39

SDP-relax 6.31 5.88 3.68 25.16 16.33 2.33
Upper 8.25 8.08 18.04 56.35 21.69 1.64
Lower 0.33 0.84 0.14 2.4 0.23 0.11
Visit 6.16% 3.62% 2.35% 3.62% 5.08% 1.76%
Cut 47.62% 48.65% 47.92% 43.24% 47.12% 41.67%
Leaf 3.17% 2.70% 4.17% 8.11% 3.85% 11.11%
SDP 16.9 19.5 16.5 25.6 16.6 17.4
BnB 49.8 32.4 14.6 34.3 35.5 8.7

Table 7: Results for Branch-and-bound (SDP, 10-dim).
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Figure 11: Accuracy in SeDuMi.
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ease of reference. This problem is relaxed to a semidefinite program and then we applied a
screening procedure in Section 3.2 to find a good feasible solution which is bounded by O(m)
of the optimal value of the relaxation SDP problem. Similar to Luo et al. [6], we randomly
generate enough solutions for (MVt), which will give us a feasible solution with a worst-case
performance bound of O(m3). Furthermore, we conducted extensive numerical experiments
on problem (MVt) and (QA). We show that we only need to visit a small percentage of
nodes in the branching tree in order to find the optimal solution, owing to the good feasible
solution generated for the quadratic program (MVt) and the good feasible solution for the
(discrete) SDP relaxation problem (QA) by the screening procedure.
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