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1 Introduction

Consider the following finite integer programming problem:

(P ) min{f(x) | g(x) ≤ b, x ∈ X}, (1.1)

where X ⊂ Rn is a finite integer set, f : Rn → R, g = (g1, ..., gm)T : Rn → Rm and
b = (b1, ..., bm)T ≥ 0. Without loss of generality, f and gi, i = 1, ..., m, are assumed to be
strictly positive for all x ∈ X. Define F to be the feasible region of the problem (P),

F = {x ∈ X | g(x) ≤ b}. (1.2)

Denote by v(Q) the optimal value of an optimization problem (Q). Thus, the optimal value
of (P) is v(P ).

The concept of duality plays a significant role in integer optimization. Incorporating the
set of constraints into the objective function yields a Lagrangian relaxation, e.g., Geoffrion
(1974), Fisher (1981), and Shapiro (1979). Duality theory and methods have been further
investigated in linear integer programming by various authors, e.g., Guignard and Kim
(1993), Llewellyn and Ryan (1993), and Williams (1996). Lagrangian dual methods have also
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been used in some special classes of nonlinear integer programming problems, for instance,
Michelon and Maculan (1991,1993). Mathematically, an augmented Lagrangian relaxation
problem is defined by

(Rλ,r) min
x∈X

L(x, λ, r) = f(x) + λT (g(x)− b) +
m∑

i=1

ri max{0, gi(x)− bi}, (1.3)

where λ ∈ Rm
+ is the multiplier and r ∈ Rm

+ is the penalty parameter. The Lagrangian dual
is an optimization problem in λ,

(D) max
λ∈Rm

+

v(Rλ,r).

The Lagrangian method searches for an optimal solution of (P) via maximizing the dual
function v(Rλ,r). If x̂ solves both (P) and (Rλ̂,r̂) with λ̂, r̂ ∈ Rm

+ and λ̂ solves the dual
problem (D), then λ̂ is said to be an optimal generating Lagrangian multiplier vector, (x̂, λ̂)
to be an optimal primal-dual pair of (P).

While the Lagrangian method is a powerful constructive dual search method, it often
fails to identify an optimal solution of the primal integer optimization problem. There are
two situations that would prevent the Lagrangian method from success in the dual search.
Firstly, the optimal solution of (P) may not even be generated by solving (Rλ,r) for any
λ ≥ 0. Secondly, the optimal solution to (Rλ∗,r), with λ∗ being a solution to the dual
problem (D), is not necessarily an optimal solution to (P), or even infeasible. The first
situation is associated with the existence of an optimal generating Lagrangian multiplier
vector. The second situation is related to the existence of an optimal primal-dual pair. To
guarantee the successful dual search, Li and Sun (2000) developed the pth power Lagrangian
method, which gives a revised version of the t-norm surrogate formulation and then makes a
pth power transformation both to the objective function and the single-constraint. Further-
more, Sun and Li (2000) proposed a logarithmic-exponential dual formulation for problem
(P), which possesses an asymptotically strong duality and guarantees the identification of
an optimal solution of problem (P) by using a nonlinear Lagrangian function. Although
these approaches are effective to guarantee the success of dual searches, they may destroy
some good structures of the primal integer optimization problem. Li, Wang and Sun (2007)
introduced the idea of using objective cuts in reducing duality gap in integer programming
where dynamic programming method is employed to solve the Lagrangian relaxation sub-
problems

In this paper, we develop a method to guarantee the success of dual search without de-
stroying the structure of the objective function and constraints in problem (P). The idea is
to construct an auxiliary integer programming which is the combination of original problem
(P) and the objective function cuts. By solving the augmented Lagrangian relaxation of the
auxiliary problem and corresponding dual problem, we obtain the optimal solution of (P).
Since the augmented Lagrangian function can be linearized by Cohen and Zhu (1984), this
method can be used to solve large scale problem and some problems with special structures.
In each iteration of the method, we solve the augmented Lagrangian relaxation problem of
this auxiliary problem. Then the parameters, upper cuts, lower cuts, Lagrangian multipliers
and penalty parameters are updated according to whether or not the solution of the relax-
ation problem is feasible, g-infeasible or b-infeasible. We prove that the optimal solution of
problem (P) can be obtained after finite iterations. Numerical results also illustrate that
the proposed algorithms are successful in guaranteeing the dual search.

This paper is organized as follows. In section 2, we introduce the auxiliary problem
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associated with the original problem (P), its augmented Lagrangian relaxation and their
perturbation functions. In section 3, we present three algorithms based on cut and discuss
the convergence of these algorithms. Finally in section 4, we show the method is effective
via some numerical testes .

2 Auxiliary Problem

Let us introduce an auxiliary problem (P(l,u)) with respect to problem (P):

(P(l,u)) min{f(x) | g(x) ≤ b, x ∈ X(l,u)}, (2.1)

where
X(l,u) = {x ∈ X | l < f(x) < u}.

The problem (P(l,u)) is called an auxiliary problem with cuts. l is called the lower cut and
u the upper cut. The augmented Lagrangian relaxation problem associated with (P(l,u)) is
defined as:

(Rλ,r,(l,u)) min
x∈X(l,u)

L(x, λ, r) = f(x) + λT (g(x)− b) +
m∑

i=1

ri max{0, gi(x)− bi}. (2.2)

The perturbation function and the augmented perturbation function of problem (P(l,u)),
denoted by φ(l,u)(·) and φ′(l,u)(·) respectively, are defined as:

φ(l,u)(y) =
{

inf{f(x) | g(x) ≤ y, x ∈ X(l,u)}, y ∈ F(l,u),
+∞, otherwise

(2.3)

and

φ′(l,u)(y) =
{

inf{fr(x) | g(x) ≤ y, x ∈ X(l,u)}, y ∈ F(l,u),
+∞, otherwise,

(2.4)

where fr(x) = f(x) +
∑m

i=1 ri max{0, gi(x) − bi} and F(l,u) = {y ∈ Rm
+ | φ(l,u)(y) < +∞}.

From geometry, the graph of perturbation function φ(l,u)(·) is

Gφ(l,u) = {(y, y0) | y ∈ F(l,u), y0 = φ(l,u)(y)} (2.5)

and the epi-graph of φ(l,u)(·) is

Epiφ(l,u)
= {(y, y0) | y ∈ F(l,u), y0 ≥ φ(l,u)(y)}. (2.6)

For simplicity, we denote φ(0,+∞), X(0,+∞) and F(0,+∞) by φ,X and F respectively. A point
(y, y0) ∈ Epiφ is called a noninferior point if and only if (y′, y0) 6∈ Epiφ for any y′ < y. The
set of all noninferior points of Epiφ is denoted by E0.

It is easy to see that following properties for perturbation function φ(l,u)(·) and the
augmented perturbation function φ′(l,u)(·) are true:

φ(l,u)(·), φ′(l,u)(·) are nonincreasing piecewise-constant functions.

φ(l,u)(·), φ′(l,u)(·) are continuous from right.

φ(l,u)(·) ≤ φ′(l,u)(·) and φ(l,u)(·) = φ′(l,u)(·) for y ≤ b.
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Lemma 2.1. For any y ∈ F , there exists x̂ ∈ X such that g(x̂) ≤ y, φ(y) = φ(g(x̂)) and
(g(x̂), f(x̂)) ∈ E0.

Proof. From the finiteness of X, we assume X ′ = {xi | xi ∈ X, g(xi) ≤ y} = {x1, ..., xN}
and let g = (g1, ..., gm)T , where gi = max{gi(x1), ..., gi(xN )} for i = 1, ..., m. We search
x̂ ∈ X ′ in following way.

Firstly, we look for a point x′ ∈ X which satisfies g(x′) ≤ y and φ(y) = φ(g(x′)). If
there exists xj ∈ X ′ such that g(xj) = g, then set x′ = xj , which meets φ(y) = φ(g(x′)).
Otherwise, suppose that there are i 6= j such that gi = gi(xN ), gj = gj(xN−1) and xN 6=
xN−1. If f(xN ) ≥ f(xN−1), we delete xN from X ′, i.e., we set X ′ = {x1, ..., xN−1}.
Repeating this process, we can find x′ in k ≤ N steps.

Furthermore, if there exists another point x′′ ∈ {x ∈ X : g(x) ≤ y} such that f(x′′) <
f(x′), then, from the way that x′ is obtained, we have 0 < g(x′′) < g(x′) and x′′ ∈
{x1, ..., xN−k}. By the same method searching for x′, we finally can obtain such x̂ which
satisfies φ(y) = φ(g(x̂)) = f(x̂) and (g(x̂), f(x̂)) ∈ E0. We finish the proof.

Lemma 2.2 (Li and Sun (2000)).
(i) For any y ∈ F , if x̂ is the solution of (2.3), then (g(x̂), f(x̂)) ∈ Gφ.
(ii) For any (a′, c′) ∈ E0, there exists x∗ ∈ X such that (a′, c′) = (g(x∗), f(x∗)).

In view of Lemma 2.1 and Lemma 2.2, we know that there exists x∗ ∈ {x ∈ X| g(x) ≤ b}
which solves problem (P) and (g(x∗), f(x∗)) ∈ E0. Since there is no convexity assumption
in problem (P), when we solve the augmented Lagrangian relaxation method, the tangent
plane can not guarantee to touch the optimal solution of problem (P). Hence, we need the
method to expose the point (f(x∗), g(x∗)).

Lemma 2.3. Suppose that x̂ is the solution of problem (Rλ,r) with λ ≥ 0 and r > 0.
(i) If g(x̂) ≤ b, then (g(x̂), f(x̂)) ∈ E0.
(ii) If g(x̂) > b, then f(x̂) < f(x∗), where x∗ is the optimal solution of (P).

Proof. For the first part, suppose that (g(x̂), f(x̂)) ∈ Epiφ, but (g(x̂), f(x̂)) 6∈ E0. Then,
by (2.3), (2.4) and (2.5), there exists an x′ ∈ X such that f(x′) ≤ f(x̂) and g(x′) < g(x̂).
Hence, by g(x̂) ≤ b and λ > 0, we have L(x′, λ, r) < L(x̂, λ, r). It is a contradiction to x̂
being the solution of (2.2).

For the second part, suppose x∗ be the solution of (P). Then, since x̂ solve problem
(Rλ,r) for λ > 0, r > 0 and , we have

f(x̂) + λT (g(x̂)− b) +
m∑

i=1

ri max{0, gi(x̂)− bi)} ≤ f(x∗) + λT (g(x∗)− b).

By g(x̂) > b and g(x∗)− b ≤ 0, we have

f(x̂) < f(x∗),

which ends the proof.

Lemma 2.4. There is a r̂ > 0 such that for any r ≥ r̂, if x̂ solves (Rλ,r) for given λ, x̂ is
a feasible solution of (P).

Proof. In view of the finiteness of X, let

f− = max{f(x)| x ∈ X, g(x) ≤ b},
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f− = min{f(x)| x ∈ X, g(x) 6≤ b},
α = min

i=1,...,m
{gi(x)− bi > 0| x ∈ X, g(x) 6≤ b}

and
β = min

x∈X
λT (g(x)− b).

Then, we only need to take r̂ = (r̂1, ..., r̂m), where r̂i, i = 1, ..., m, satisfies

f− + β + r̂iα > f−,

or

r̂i >
f− − f− − β

α
.

We finish the proof.

When we solve the augmented Lagrangian relaxation problem, the solution obtained may
be feasible or infeasible for problem (P), in particular, g-infeasible (x ∈ X, g(x) > b) or b-
infeasible (x ∈ X, g(x) 6≤ b, g(x) 6> b). From Lemma 2.3 and Lemma 2.4, we can observe that
if x̂, the solution of (Rλ,r), is feasible, then the optimal solution of (P) is in {x ∈ X| f(x) ≤
f(x̂)}; if x̂ is g-infeasible, then the optimal solution of (P) is in {x ∈ X| f(x) > f(x̂)}; last if
x̂ is b-infeasible, then we can increase parameter r to push the solution of (Rλ,r) back into
the feasible domain of (P).

Lemma 2.5. Suppose x∗ is the optimal solution of (P). Then,
(i) there exists u > f(x∗) such that, for any z ∈ (f(x∗), u) and suitable r , Epiφ′(0,z)

has
a supporting plane at (g(x∗), f(x∗)) or

(ii) there exists l < f(x∗) such that, for any z ∈ (l, f(x∗)) and suitable r, Epiφ′(z,+∞)

has a supporting plane at (g(x∗), f(x∗)).

Proof. By the finiteness of X, {x ∈ X | f(x) > f(x∗)} is finite. Thus, there exists u > f(x∗)
such that {x ∈ X | f(x∗) < f(x) < u} = ∅. We can observe that for given k > 1,
there exists sufficiently large r such that the plane Π with normal vector (1, λT )T , where
λi = f(x∗)/(kbi − gi(x∗)), i = 1, ..., m, supports Epiφ(0,z) at (f(x∗), g(x∗)). Now we show
such r is existing. From the finiteness of X again, we have min{gj(x) − bj |gj(x) > bj , j =
1, 2, ..., m, x ∈ X} > 0. So, for sufficiently large r, point (g(x), fr(x)) where x ∈ {X|g(x) 6≤
b} locates over the plane Π. we finish the proof for (i). The proof for (ii) is similar with
those for (i).

Lemma 2.6. Suppose x∗ is the optimal solution of (P) and l, u and r are defined as those
in Lemma 2.5. Then,

(i) for any z ∈ (f(x∗), u), there exists λ such that x∗ is an optimal solution of (Rλ,r,(0,z)).
(ii) For any z ∈ (l, f(x∗)), there exists λ such that x∗ is an optimal solution of

(Rλ,r,(z,+∞)).

Proof. From Lemma 2.5, there exists plane

Π = {(ξ, y) | ξ = f(x∗)− λT (y − g(x∗))},

which is a supporting hyperplane of Epiφ′(0,u)
at (f(x∗), g(x∗)). Therefore, from (2.4), we

have
φ′(0,u)(y) ≥ ξ(y) = f(x∗)− λT (y − g(x∗)), ∀y,
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or in other words,

φ′(0,u)(y) + λ(y − b) ≥ f(x∗) + λ(g(x∗)− b), ∀y.

For arbitrary x ∈ X(0,u), setting y = g(x), we have g(x) ∈ F(0,u) and φ′(0,u)(g(x)) ≤ fr(x).
So,

f(x) + λT (g(x)− b) +
m∑

i=1

ri{0, gi(x)− bi} ≥ f(x∗) + λT (g(x∗)− b)

holds for all x ∈ X(0,u), which implies that x∗ solves problem (Rλ,r,(0,z)). The proof for (ii)
is similar to those for (i). We finish the proof.

3 Algorithms with Cuts

In this section, we present three algorithms with cuts, feasible cuts, infeasible cuts and both
feasible and infeasible cuts, for problem (P) and discuss their convergence. Firstly, we state
the algorithm with cuts in feasible domain.

Algorithm 3.1 (feasible cuts).

0. Select λ0, r0 ∈ Rm
+ , µ > 0, σ > 0. Set k := 0, x∗ = ∅, u = +∞.

1. Solve

xk+1 ∈ arg min
x∈X(0,u)

L(x, λk, rk). (3.1)

2. If

L(xk+1, λk, rk) ≥ u, (3.2)

Stop. Otherwise, if g(xk+1) ≤ b, set x∗ = xk+1 and u = f(xk+1), and update λk and
rk by rk+1 = rk and λk+1

i = max{0, λk
i +µ(gi(xk+1)−bi)} for i = 1, ..., m. Otherwise,

update λk and rk by λk+1 = λk and

rk+1
i =

{
rk
i + σ, gi(xk+1)− bi > 0,

rk
i , otherwise,

i = 1, ..., m.

3. Set k = k + 1 and go to step 1.

Remark 3.2. In order to avoid X(0,u) = ∅ in Algorithm 3.1, we need to assume that there
exists at least a x ∈ X satisfying g(x) 6≤ b and f(x) < f(x̂), where x̂ is the optimal solution
of (P).

Lemma 3.3. In Algorithm 3.1, if

L(xk+1, λk, rk) ≥ u

holds, then x∗ is an optimal solution of (P).
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Proof. Suppose x̂ is an optimal solution of (P). It is clear that

f(x̂) ≤ f(x∗)

holds for any feasible solution x∗. Since xk+1 solves (3.1), we have

f(x∗) ≤ L(xk+1, λk, rk)
≤ f(x̂) + (λk)T (g(x̂)− b)
≤ f(x̂).

We finish the proof.

Theorem 3.4. Under the assumption of Remark 3.2, Algorithm 3.1 stops at an optimal
solution of (P) within finite iterations.

Proof. If algorithm stops at k-th iteration, then from Lemma 3.3, x∗ is an optimal solution.
Suppose {xk} be the iterative sequence produced by Algorithm A. Then, there exists N > 0
such that for any k > N , xk is infeasible for (P). Otherwise, it will be a contradiction to
the facts, {x ∈ X| g(x) ≤ b} is finite and sequence {uk} is decreasing. For each k > N , all
components of rk corresponding to {j| gj(xk) − bj > 0} will increase σ. Thus, rk will be
large enough for sufficient large k . In other words, f(x∗) is bounded and min{gj(x)− bj >
0| x ∈ X, g(x) 6≤ b} is bounded away from zero. Therefore, there certainly exists N such
that xN satisfies (3.2). We finish the proof.

In Algorithm 3.1, cuts act on the objective function in feasible domain. They are the
decreasing upper bounds for the optimal value of (P). However, the defective of Algorithm
A is the assumption in Remark 3.2. In the following, we introduce another cut which acts
on the objective function on infeasible domain and no longer needs such assumption. It is a
lower bound of the optimal value of problem (P).

Algorithm 3.5 (infeasible cuts).

0. Select λ0, r0 ∈ Rm
+ , µ > 0, σ > 0, ε > 0. Set k := 0, x∗ = ∅, l = 0.

1. Solve

xk+1 ∈ arg min
x∈X(l,+∞)

L(x, λk, rk). (3.3)

2. If

L(xk+1, λk, rk) ≥ f(x∗)− ε, (3.4)

stop. Otherwise, if g(xk+1) ≤ b and f(xk+1) ≤ f(x∗), set x∗ = xk+1; if g(xk+1) > b,
set l = frk(xk+1). In above two cases, update λk+1, rk+1 by λk+1

i = max{0, λk
i +

µ(gi(xk+1)− bi)} for i = 1, ..., m and rk+1 = rk. Otherwise, update λk+1 and rk+1 by
λk+1 = λk and

rk+1
i =

{
rk
i + σ, gi(xk+1)− bi > 0,

rk
i , otherwise,

i = 1, ..., m.

3. Set k = k + 1 and go to step 1.
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Before prove the convergence of Algorithm 3.5, we state the definition of ε-optimal solu-
tion of problem.

Definition 3.6. Suppose x̂ is the optimal solution of (P). If x∗, a feasible solution of (P),
satisfies |f(x∗)− f(x̂)| ≤ ε, then x∗ is called an ε-optimal solution of (P).

Lemma 3.7. In Algorithm 3.5, if

L(xk+1, λk, rk) ≥ f(x∗)− ε

holds, then x∗ is an ε-optimal solution of (P).

Proof. The proof is similar to those for Lemma 3.3.

Theorem 3.8. Algorithm 3.5 would stop at the ε-optimal solution of problem (P) within
finite iterations.

Proof. If algorithm stop at k-th iteration, then from Lemma 3.3, x∗ is an ε-optimal solution.
Suppose {xk} be the iterative sequence produced by Algorithm B. Then, there exists N such
that for all k > N , xk is feasible for (P). The reason is that X is finite and lower cuts lk and
parameter rk are increasing for each g-infeasible or b-infeasible point xk. This would make
the g-infeasible set be empty and the objective value at b-infeasible point be sufficiently large
when k large enough. Corresponding to the feasible solutions sequence {xk}, the multiplier
sequence {λk} is increasing and trends to zero, which means the supporting plane trends to
horizon. So, there is a N such that (3.4) holds. We finish the proof.

Now we introduce another algorithm which is the combination of Algorithm 3.1 and
Algorithm 3.5.

Algorithm 3.9 (feasible and infeasible cuts).

0. Select λ0, r0 ∈ Rm
+ , ε > 0, µ > 0, σ > 0. Set k = 0, x∗ = ∅, l = 0, u = +∞.

1. Solve
xk+1 ∈ arg min

x∈X(l,u)

L(x, λk, rk).

2. If g(xk+1) ≤ b, set x∗ = xk+1, u = f(xk+1); if g(xk+1) > b, set l = frk(xk+1). In
above two cases, update λk+1 and rk+1 by λk+1

i = max{0, λk
i + µ(gi(xk+1)− bi)} for

i = 1, ..., m and rk+1 = rk. Otherwise, update λk+1 and rk+1 by λk+1 = λk and

rk+1
i =

{
rk
i + σ, gi(xk+1)− bi > 0,

rk
i , otherwise,

i = 1, ..., m.

3. Set k = k + 1 and go to step 1.

Remark 3.10. In Algorithm 3.9, we do not present stop criterion. However, we can take

u− l ≤ ε, L(xk+1) ≥ f(x∗)− ε, {x ∈ X| g(x) ≤ b} = ∅ (3.5)

as terminal criterion of Algorithm 3.9.

Theorem 3.11. If Algorithm 3.9 takes (3.5) as terminal criterions, then it would stop at
the ε-optimal solution of (P) within finite iterations.

Proof. It is clear from proofs for Theorem 3.1 and Theorem 3.2.



ELIMINATING DUALITY GAP IN INTEGER PROGRAMMING VIA OBJECTIVE CUTS 83

4 Illustrative Examples

In this section, we present some numerical examples to illustrate the algorithm process of
the proposed methods. In the test, Algorithm A is used and different initial parameters for
each example is chosen.

Example 4.1. As an illustrative example, let us consider Example 5.12 in Parker and
Rardin (1988):

min f(x) = 3x1 + 2x2

s.t. g1(x) = 10− 5x1 − 2x2 ≤ 7,
g2(x) = 15− 2x1 − 5x2 ≤ 12,

x ∈ X =





integer
0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 2

8x1 + 8x2 ≥ 1



 .

The optimal solution of Example 4.1 is x∗ = (0, 2)T and the corresponding objective
function is f∗ = 4. The iterative results of Algorithm 3.1, 3.5 and 3.9 for given µ = σ = 1
and four different kinds of λ0 and r0 are listed in table 1. In the table, ITER denotes the
number of iterations and u, l the final values of u, l at algorithm termination.

Table 1
Algorithm (λ0)T (r0)T x∗ u l ITER

A (1,1) (1,1) (0,2) 4 5
B (1,1) (1,1) (0,2) 0 5
C (1,1) (1,1) (0,2) 4 0 5
A (10,10) (10,10) (0,2) 4 4
B (10,10) (10,10) (0,2) 0 4
C (10,10) (10,10) (0,2) 0 0 4
A (50,50) (100,100) (0,2) 4 4
B (50,50) (100,100) (0,2) 0 4
C (50,50) (100,100) (0,2) 4 0 4
A (50,50) (50,50) (0,2) 4 9
B (50,50) (50,50) (0,2) 0 9
C (50,50) (50,50) (0,2) 4 0 9

Example 4.2.

min f(x) = 33− (5x1 + 9x2 + 2x3 + 7x4 + 4x5 + 6x6)
s.t. g1(x) = 2x1 + 7x2 − 2x3 + 4x4 − x5 + 6x6 ≤ 12

g2(x) = 2x1 + 6x2 + 2x3 + 5x4 + 5x5 ≤ 14
g3(x) = 3x1 + 3x2 − x3 + 2x4 + 5x6 ≤ 8
x ∈ X = {x|xj = 0, 1; j = 1, 2, ..., 6}

The optimal solution of Example 4.2 is x∗ = (0, 1, 1, 0, 1, 1)T and the corresponding ob-
jective function is y∗ = 12. The iterative results of Algorithm 3.1, 3.5 and 3.9 for parameters
µ = σ = 1 and three different kinds of λ0 and r0 are listed in table 2 as follows. In the
table, ITER denotes the number of iterations, and u, l the final values of u, l at algorithm
termination.
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Table 2
Algorithm (λ0)T (r0)T x∗ u l ITER

A (1,1,1) (1,1,1) (0,1,1,0,1,1) 12 6
B (1,1,1) (1,1,1) (0,1,1,0,1,1) 0 6
C (1,1,1) (1,1,1) (0,1,1,0,1,1) 12 0 6
A (50,50,50) (1,1,1) (0,1,1,0,1,1) 12 13
B (50,50,50) (1,1,1) (0,1,1,0,1,1) 0 13
C (50,50,50) (1,1,1) (0,1,1,0,1,1) 12 0 13
A (100,100,100) (100,100,100) (0,1,1,0,1,1) 12 15
B (100,100,100) (100,100,100) (0,1,1,0,1,1) 0 15
C (100,100,100) (100,100,100) (0,1,1,0,1,1) 12 0 15

Example 4.3.

min f(x) = 60− 2x1− 3x2− 10x3
s.t. g1(x) = −x1 + 4x2 + 7x3 ≤ 10

g2(x) = 5x1 − 2x2 + 6x3 ≤ 10
x ∈ X = {x|0 ≤ xj ≤ 4, integer, j = 1, 2, 3}

The optimal solutions of Example 4.3 are x∗ = (1, 1, 1)T , (3, 3, 0)T and optimal value
is y∗ = 45. The testing results of Algorithm 3.1, 3.5 and 3.9 for parameters µ = σ = 1
and three different kinds of λ0 and r0 are listed in table 3. In the table, ITER denotes the
number of iterations, and u, l the final values of u, l at algorithm termination.

Table 3
Algorithm (λ0)T (r0)T x∗ u l ITER

A (10,10) (10,10) (1,1,1) 45 3
B (10,10) (10,10) (1,1,1) 0 3
C (10,10) (10,10) (1,1,1) 45 0 3
A (25,25) (10,10) (1,1,1) 45 6
B (25,25) (10,10) (1,1,1) 0 6
C (25,25) (10,10) (1,1,1) 45 0 6
A (50,50) (50,50) (3,3,0) 45 24
B (50,50) (50,50) (3,3,0) 0 24
C (50,50) (50,50) (3,3,0) 45 0 24

As witnessed from the above three examples, the proceeding of objective cuts provide
a valuable way which transfers an integer programming problem with multiple constraints
into an augmented Lagrangian problem. We also observe that how to choose the initial
parameters and how to adjust parameters in iterations for different problems is infective to
the rate of convergence.
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