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Abstract: Multi-dimensional nonlinear knapsack problems are often encountered in real-world applications
such as in resource allocation, industrial planning and reliability networks. In this paper, we propose a new
exact method for solving this class of problems . The method is based on surrogate dual search and domain
cut technique. The optimal surrogate multipliers are computed by the cutting plane method, where the
surrogate relaxation problem is solved by the 0-1 linearization method in convex cases. Numerical results
are reported for medium-size multi-dimensional nonlinear convex knapsack problems.
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1 Introduction

Consider the following multi-dimensional nonlinear knapsack problem:

(P ) max f(x) =
n∑

j=1

fj(xj)

s.t. gi(x) =
n∑

j=1

gij(xj) ≤ bi, i = 1, . . . , m,

x ∈ X = {x | 0 ≤ xj ≤ uj , xj integer, j = 1, . . . , n},

where all fj and all gij are nondecreasing functions on [0, uj ] for j = 1, . . . , n, i = 1, . . . , m,
and uj is the upper bound for xj , j = 1, . . . , n. The constraints, gi(x) ≤ bi, i = 1, . . . , m,
are called resource constraints. Problem (P ) is called convex multi-dimensional knapsack
problem if f is concave and all gi’s are convex on conv(X). Without loss of generality, we
assume that fj(0) = gij(0) = 0 for all i and j. When m = 1, problem (P ) reduces to
the classical nonlinear knapsack problem. It is noticed that the general nonlinear knapsack

∗Research supported by the National Natural Science Foundation of China under Grants 70671064 and
10571116, and by Research Grants Council of Hong Kong, Ref. No. 413606.

†Corresponding author.



64 X. SUN, S. KONG AND D. LI

problem is NP-hard since the classical linear knapsack problem is NP-hard. Therefore, de-
veloping exact method for (P ) is a computational challenge.

Nonlinear knapsack problem and its continuous version have numerous applications in
various fields, such as production planning [30], capital budgeting [21], marketing [17], strat-
ified sampling [1] and reliability networks [26, 29]. Existing methods in the literature for
(P ) have been mainly developed for nonlinear knapsack problems with a single resource
constraint, for example, continuous relaxation based branch-and-bound methods [2, 3] and
dynamic programming methods [10, 14]. In real-world applications, multiple resource con-
straints are often encountered and are always indispensable for modeling optimization prob-
lems. For example, in reliability network optimization, three types of resource constraints:
cost, volume and weight, are necessary to be considered simultaneously. However, only a
few exact methods have been proposed for solving multi-dimensional nonlinear knapsack
problems. In [4], a surrogate relaxation based method was proposed for multi-dimensional
quadratic 0-1 problem and certain optimality criteria were derived for the branch-and-bound
method. A dynamic programming method, combined with a branch-and-bound strategy,
was proposed in [18] for the general case of (P ). This method recursively generates effi-
cient feasible solutions of the problem and removes inefficient feasible solutions by certain
dominance rules. We point out that the dynamic programming method is inefficient for (P )
when there are more than two resource constraints, due to “the curse of dimensionality.”

In the context of linear knapsack problems, multi-dimensional cases have been consid-
ered by various authors. Exact methods for linear knapsack problems with two resource
constraints were proposed in [7, 20, 28]. Surrogate relaxation techniques, combined with
cutting and variable fixation, were investigated in [6, 8, 22, 23] for solving multi-dimensional
0-1 linear knapsack problems. One can refer to [12] for a survey on theory and methodologies
for general linear knapsack problems. Recently, a convergent Lagrangian and domain cut
method has been proposed in [16] for solving problem (P ). In [16], the multiple resource
constraints in (P ) were surrogated into a single constraint using the optimal Lagrangian mul-
tipliers. Domain cut technique was then used to partition the domain into subdomains, thus
reducing the duality gap and ensuring the convergence of the branch-and-bound method.

In this paper, we propose a new exact method for solving multi-dimensional nonlinear
knapsack problems. The method is of a branch-and-bound framework that computes the
upper bounds by surrogate dual search and eliminates the duality gap by a special domain
cut technique. The cutting plane method is employed to search for the optimal surrogate
multipliers, where the surrogate relaxation problems are solved by 0-1 linearization method.
Our computational results show that the proposed algorithm is capable of solving medium-
size multi-dimensional nonlinear knapsack problems. Favorable comparison results with
the subgradient Lagrangian dual search is also reported. To our knowledge, this is the first
computational implementation of the surrogate dual method for multi-dimensional nonlinear
knapsack problems.

2 Surrogate Relaxation and Dual Search

The idea of surrogate constraint was first introduced by Glover [9] for 0-1 integer pro-
gramming. We now extend the surrogate method to deal with multi-dimensional nonlinear
knapsack problems.

Let g(x) = (g1(x), g2(x), · · · , gm(x))T and b = (b1, b2, · · · , bm)T . The surrogate relax-
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ation of (P ) is defined as follows:

(Sµ) max f(x)
s.t. µT (g(x)− b) ≤ 0,

x ∈ X,

where µ = (µ1, µ2, · · · , µm)T ∈ Rm
+ is the surrogate multiplier vector.

Define F and F (µ) the feasible regions of (P ) and (Sµ), respectively.

F = {x ∈ X | g(x) ≤ b},
F (µ) = {x ∈ X | µT (g(x)− b) ≤ 0}.

Obviously, we have F ⊆ F (µ). Thus, (Sµ) is a relaxation of (P ). Denote by v(·) the optimal
value of problem (·). Then

v(Sµ) ≥ v(P ), ∀µ ∈ Rm
+ .

The surrogate dual is to search for the minimum upper bound generated by (Sµ):

(DS) min v(Sµ)
s.t. µ ∈ Rm

+ .

Recall that the conventional Lagrangian dual problem of (P ) is

(DL) min v(Lµ)
s.t. µ ∈ Rm

+ ,

where the Lagrangian relaxation problem is defined as

(Lµ) max
x∈X

f(x) +
m∑

i=1

µi(gi(x)− bi).

The following theorem shows that the surrogate dual problem (DS) provides a tighter
bound than the Lagrangian dual problem (DL).

Theorem 2.1 ([15, 24]). v(DS) ≤ v(DL).

Various surrogate dual search procedures have been proposed for solving (DS) where the
original problem is linear (see [5, 11, 13, 25]). In the following, we will discuss a cutting
plane method for solving the surrogate dual problem. It is clear that v(Sµ) = v(Sθµ) for any
θ > 0. Thus, the surrogate dual problem (DS) can be normalized to an equivalent problem
with a compact feasible region:

(Dn
S) min v(Sµ)

s.t. µ ∈ Λ,

where Λ = {µ ∈ Rm
+ | eT µ = 1} and e = (1, 1, · · · , 1)T .

For α ∈ Rn, let X(α) denote the level set of f(x), X(α) = {x ∈ X | f(x) ≥ α}. For any
given µ ∈ Λ and α ∈ R, v(Sµ) ≥ α if and only if

F (µ) ∩X(α) 6= ∅. (2.1)



66 X. SUN, S. KONG AND D. LI

Consider the following problem

(S(α, µ)) min µT (g(x)− b)
s.t. x ∈ X(α).

It is easy to see that (2.1) holds if and only if v(S(α, µ)) ≤ 0. Since v(Dn
S) = min{v(Sµ) |

µ ∈ Λ}, it follows that v(Dn
S) ≥ α if and only if v(S(α, µ)) ≤ 0 for all µ ∈ Λ. Define the

following dual problem:

(D(α)) max v(S(α, µ))
s.t. µ ∈ Λ.

The following theorem is evident.

Theorem 2.2 ([15, 24]). For any given α ∈ R, v(Dn
S) ≥ α if and only if v(D(α)) ≤ 0.

From the above theorem, we imply that the optimal surrogate dual value v(Dn
S) is the

maximum α ∈ R such that v(D(α)) ≤ 0. This motivates the use of a cutting plane method
to solve (D(α)). Notice that (D(α)) is equivalent to the following linear programming:

v(D(α)) = max
(β,µ)

β

s.t. β ≤ µT (g(x)− b), ∀x ∈ X(α),
µ ∈ Λ.

In general, there is a huge number of integer points in set X(α). Thus, it is impossible to
solve the above linear programming directly in practice. Nevertheless, we can replace X(α)
by a much smaller set T k and update and enlarge T k iteratively in the course of the solution
process for solving D(α). At the k-th iteration, consider the following linear programming:

(LPk) max
(β,µ)

β

s.t. β ≤ µT (g(x)− b), ∀x ∈ T k ⊂ X(α),
µ ∈ Λ.

The cutting plane method for (Dn
S) can then be described as follows.

Procedure 2.3 (Cutting Plane Procedure for (Dn
S)).

Step 0 (Initialization). Set α0 = +∞, T 0 = ∅. Choose any µ1 ∈ Λ. Set k = 1.

Step 1 (Surrogate relaxation) Solve the surrogate relaxation problem (Sµk) and obtain an
optimal solution xk. If g(xk) ≤ b, stop and xk is an optimal solution to (P ) and
v(Dn

S) = v(P ).

Step 2 (Updating upper bound). If f(xk) < αk−1, then set αk = f(xk). Otherwise, set
αk = αk−1.

Step 3 (Updating multiplier). Set T k = T k−1 ∪ {xk}. Solve the linear program (LPk) and
obtain an optimal solution (βk, µk). If βk ≤ 0, stop and αk = v(Dn

S). Otherwise, set
µk+1 = µk and k := k + 1, goto Step 1.
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Similar to the linear case, it can be shown that Procedure 2.3 finds an optimal value of
(Dn

S) within a finite number of iterations (see Theorem 4.4, [15]). In our implementation of
the procedure, the initial surrogate multiplier vector is taken as µ1 = (1/m, 1/m, · · · , 1/m)T .
Since a new point xk is added to T k at each iteration, the linear programming (LPk+1) is
formed by adding a new constraint β ≤ µT (g(xk) − b). Thus, the dual simplex method is
suitable to solve (LPk), as we did in our implementation of Procedure 2.3 in the numerical
experiments.

Since the surrogate relaxation problem (Sµk) has to be solved many times during the sur-
rogate dual search, the efficiency of Algorithm 3.1 depends on how fast the singly constrained
problem (Sµk) can be solved. In the following, we use the linearization scheme proposed in
[10] to convert the surrogated problem (Sµk) into a 0-1 linear integer programming problem.

Notice that (Sµ) can be written as

(Sµ) max f(x) =
n∑

j=1

fj(xj)

s.t.
n∑

j=1

hj(xj , µ) ≤ Bµ,

xj = 0, 1, . . . , uj , j = 1, . . . , n,

where hj(xj , µ) =
∑m

i=1 µigij(xj) and Bµ =
∑m

i=1 µibi. Let xj =
∑uj

i=1 yij , where yij ∈
{0, 1}. Define

cij = fj(i)− fj(i− 1), i = 1, . . . , uj , (2.2)
dij(µ) = hj(i, µ)− hj(i− 1, µ), i = 1, . . . , uj , j = 1, . . . , n. (2.3)

Assume that fj(xj) is concave on [0, uj ] and gij(xj) is convex on [0, uj ] for each i, j =
1, . . . , n. By assumption of (P ), fj and gij are nondecreasing functions on [0, uj ] for each j.
Thus,

c1j ≥ c2j ≥ · · · ≥ cuj ,j , j = 1, . . . , n,

d1j(µ) ≤ d2j(µ) ≤ · · · ≤ duj ,j(µ), j = 1, . . . , n.

Consider the following 0-1 linear knapsack problem:

(0-1LP ) max ψ(y) =
n∑

j=1

uj∑

i=1

cijyij

s.t. φ(y, µ) =
n∑

j=1

uj∑

i=1

dij(µ)yij ≤ Bµ,

y ∈ Y = {yij ∈ {0, 1} | i = 1, . . . , uj , j = 1, . . . , n}.

Theorem 2.4. Assume that fj(xj) is concave on [0, uj ] and gij(xj) is convex on [0, uj ] for
each i, j = 1, . . . , n. Problems (Sµ) and (0-1LP ) are equivalent under the transformation
xj =

∑uj

i=1 yij.

Proof. Notice that under transformation xj =
∑uj

i=1 yij , ψ(y) and φ(y, µ) take the same
value as f(x) and h(x, µ) on X and Y , respectively, if for each j, there is no 1 after 0′s in
the 0-1 sequence {y1j , y2j , . . . , yuj ,j}. By (2.2) and (2.3), for the optimal solution y∗ = {y∗ij}
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of (0-1LP ), taking y∗kj = 1 results in more “profit” (ckj) and less resource (dkj) than does
by taking y∗k+1,j = 1. Thus, there must be no 1 after 0’s in the sequence {y∗1j , . . . , y

∗
ujj} for

j = 1, . . . , n. Therefore, (Sµ) and (0-1LP ) are equivalent.

Various implicit enumerative methods have been proposed for solving the 0-1 linear
knapsack problem, for example, branch-and-bound method [19] and dynamic programming
[10].

3 The Main Algorithm

In this section, we develop an exact algorithm for (P ). This algorithm is based on the
cutting plane method for the surrogate dual search discussed in the previous section.

Let γ, δ ∈ Rn be integer vectors. Denote by 〈γ, δ〉 the set of integer points in [γ, δ]. We
will call 〈γ, δ〉 an integer subbox. Denote by (P (X̃)) the subproblem of (P ) with X replaced
by an integer subbox X̃ ⊆ X. For each subproblem (P (X̃)) of (P ), applying Procedure 2.3
to its surrogate dual problem gives rise to an optimal multiplier vector µ∗ and an upper
bound α = v(Dn

S). An optimal solution x∗ to the surrogate relaxation problem (Sµ∗(X̃))
can be also computed. Suppose we have an incumbent feasible solution xopt to (P ). If x∗ is
feasible to (P ), then, by the monotonicity of f and gi’s, we can cut the integer box 〈γ, x∗〉
from 〈γ, δ〉 and update the incumbent xopt if f(x∗) > f(xopt). Otherwise, we can cut the
integer box 〈x∗, δ〉 from 〈γ, δ〉 without missing any feasible solution.

The main algorithm can be described as follows.

Algorithm 3.1.

Step 0 (Initialization). If x = 0 is infeasible, then the problem has no feasible solution, or
if x = u is feasible, then u is the optimal solution, stop. Applying Procedure 2.3 to
(P ), we obtain an optimal multiplier vector µ0, upper bound α(X), and an optimal
solution to the surrogate relaxation problem (Sµ0(X)). Set xopt = 0, fopt = f(0),
Ω1 = {X}, k = 1.

Step 1 (Sub-Domain Selection). Select an integer subbox Xk = 〈γk, δk〉 from Ωk with the
maximum upper bound:

Xk ∈ arg max
X̃∈Ωk

α(X̃).

where α(X̃) is the upper bound on X̃ produced by Procedure 2.3.

Step 2 (Partition). Let xk be the optimal solution to (Sµk(Xk)), where µk is the optimal
surrogate multiplier vector to (P (Xk)).

(i) If xk is a feasible solution to (P ), then cut 〈γk, xk〉 from 〈γk, δk〉 and partition
〈γk, δk〉 \ 〈γk, xk〉 into a union of integer subboxes. Update xopt and fopt if
f(xk) > f(xopt).

(ii) If xk is an infeasible solution to (P ), then cut 〈xk, δk〉 from 〈γk, δk〉 and partition
〈γk, δk〉 \ 〈xk, δk〉 into a union of integer subboxes.

Let Y k denote the set of integer subboxes generated by the above cut-and-partition
process. Remove Xk from Ωk.
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Step 3 (Dual Search and Fathoming). For each new integer subbox X̃ = 〈ξ, η〉 ∈ Y k, do
the following:

(i) Apply Procedure 2.3 to subproblem (P (X̃)) to generate an optimal surrogate
multiplier vector µ̃, a surrogate dual bound α(X̃), and an optimal solution to
(Sµ̃(X̃)).

(ii) Update xopt and fopt if a better feasible solution to (P ) is found.

(iii) Remove X̃ from Y k if α(X̃) ≤ fopt.

Set Ωk+1 = Ωk ∪ Y k.

Step 4 (Termination). If Ωk+1 is empty, stop, and xopt is an optimal solution. Otherwise,
set k := k + 1. Go to Step 1.

In Step 2, the partition schemes proposed in [15, 27] can be used to decompose the
complement sets 〈γk, δk〉 \ 〈γk, xk〉 or 〈γk, δk〉 \ 〈xk, δk〉 into a union of integer subboxes.
Since no feasible solution better than the incumbent is removed during the cutting process
in Step 2, the incumbent solution must be an optimal solution to (P ) when the algorithm
terminates. The finite termination of the algorithm is obvious by noting that the finiteness
of X and the fact that at least one nonempty integer subbox is cut from X at each iteration.

4 Computational Results

In this section, we report some computational results of Algorithm 3.1. Three classes of
nonlinear knapsack problems with multiple constraints are tested for the proposed algorithm.

As we need to solve the singly constrained surrogated problem (Sµk) during the surrogate
dual search, we select concave objective functions for testing the algorithm so that the
surrogated problem can be solved efficiently by using 0-1 linearization technique. In our
testing, the objective functions of the tested problems are selected as follows:

• Quadratic knapsack problems (QP ): f(x) =
∑n

j=1(cjxj − djx
2
j ), where cj ∈ [100, 300],

dj ∈ (0, 10].

• Constrained redundancy problems in reliability systems (RELI): f(x) =
∏n

j=1[1−(1−
rj)xj ], where rj ∈ (0, 1).

• Optimal sample allocation in stratified sampling (SAMP ): f(x) = −∑n
j=1 dj/xj ,

dj ∈ [1, 20] for j = 1, . . . , n.

The constraints are linear functions: gi(x) =
∑n

j=1 aijxj , i = 1, . . . , m, where aij ∈ [1, 50]
for i = 1, . . . , m, j = 1, . . . , n.

All the coefficients in the test problems are randomly generated from a uniform distribu-
tion. The right-hand side b is determined last to ensure the feasibility of the test problems.
In our implementation, we take bi = 0.7×∑n

j=1 aijuj , where uj = 5, j = 1, . . . , n.
The algorithm was programmed by Fortran 90 and ran on a Pentium IV PC (2GHz and

256Mb RAM). To compare the surrogate dual with the Lagrangian dual, we also programmed
a branch-and-bound method using the subgradient Lagrangian dual search in computing the
upper bounds (see [16]). The computational results are reported in Tables 1-3, where

• n×m is the size of the problem;
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• TCPU denotes the average CPU time for 5 test problems;

• NISB denotes the average number of integer subboxes generated in the solution process
(after rounding off) for 5 test problems;

• “SUB” stands for the method using subgradient Lagrangian dual search.

• “NS” denotes the situation where 5 test problems were not solved in 10 CPU hours.

From Tables 1-3, we can conclude that Algorithm 1 can solve medium-scale multi-
dimensional nonlinear knapsack problems within reasonable computation time. Comparing
Tables 1-3, we can also conclude that the number of subproblems solved in Algorithm 1 is
significant less than the number solved by the algorithm using the subgradient Lagrangian
dual search. This is due to tighter upper bounds obtained by the surrogate dual search.
Tables 1-3 indicate that the surrogate dual search outperforms the subgradient Lagrangian
dual search both in terms of the number of subproblems solved and the CPU time consumed.
We point out that the most time-consuming part of the method is to solve the surrogate
relaxation using the 0-1 linearization procedure. Our numerical results reveal that the surro-
gate dual procedure is a promising method in solving multi-dimensional nonlinear knapsack
problems.

Table 1: Numerical results for (QP )
TCPU NISBn×m

Algorithm 1 SUB Algorithm 1 SUB
30× 5 24.5 67.9 559 5624
30× 10 116.9 871.2 3150 54419
30× 20 441.6 NS 7941 NS
40× 5 75.2 644.5 2600 42286
40× 10 654.8 NS 11955 NS
50× 5 357.0 NS 8593 NS

Table 2: Numerical results for (RELI)
TCPU NISBn×m

Algorithm 1 SUB Algorithm 1 SUB
80× 5 23.4 34.9 1054 9814
80× 10 48.5 110.2 959 12910
80× 20 127.8 1566.3 2570 117291
100× 5 242.5 944.8 5567 88273
100× 10 458.9 NS 5787 NS
100× 20 556.7 NS 6567 NS
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