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Abstract: In this paper, we introduce a piecewise linear NCP function and propose a filter QP-free infeasible
method using this NCP function for constrained nonlinear optimization problems. This iterative method is
based on the solution of nonsmooth equations which are obtained by the multipliers and the NCP function
for the KKT first-order optimality conditions. Locally, each iteration of this method can be viewed as
a perturbation of a mixed Newton and quasi-Newton iteration on both the primal and dual variables for
the solution of the KKT optimality conditions. We also use the filter on line searches. This method is
implementable and globally convergent. We also prove that the method has superlinear convergence rate
under some mild conditions.
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1 Introduction

We shall study the constrained nonlinear optimization problem (NLP):

min f(x),

s.t. x ∈ D = {x ∈ Rn | G(x) ≤ 0}, (1.1)

where G(x) = (g1(x), g2(x), · · · , gm(x))T .
A Karush-Kuhn-Tucker (KKT) point (x̄, µ̄) ∈ Rn × Rm is a point that satisfies the

necessary optimality conditions for problem (NLP):

∇xL(x̄, µ̄) = 0, G(x̄) ≤ 0, µ̄ ≥ 0, µ̄igi(x̄) = 0, 1 ≤ i ≤ m, (1.2)

where L(x, µ) = f(x) + µT G(x) is the Lagrangian function, µ = (µ1, µ2, · · · , µm)T is the
multiplier vector. For simplicity, we use (x, µ) to denote the column vector (xT , µT )T .
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Natural Science Foundation of Shanghai Educational Committee (No. 05LZ05).
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Problem (1.2) is a mixed nonlinear complementarity problem (NCP). NCP has attracted
much attention due to its various applications. One method to solve the nonlinear comple-
mentarity problem (1.2) is to construct a Newton method for solving a system of nonlinear
equations:

Φ(x, µ) = 0,

which is a reformulation of (1.2).
Recently Pu, Li ad Xue [5] proposed a new QP-free infeasible method for minimizing a

smooth function subject to smooth inequality constraints. This iterative method is based on
the solution of nonsmooth equations which are obtained by the multipliers and the Fischer-
Burmeister NCP function for the KKT first-order optimality conditions. They proved that
the method has superlinear convergence rate under some mild conditions. For other QP-free
methods, see [6, 7, 8].

Consider the constraint violation function defined by

p(G(x)) =
m∑

j=1

max{0, gj(x)}.

A nonlinear programming algorithm must deal with two conflicting criteria, f and p, which
must be simultaneously minimized, with preference given to the infeasibility measure p,
which must be driven to zero. Fletcher and Leyffer have proposed to solve problem (NLP)
using filter method as an alternative to traditional merit functions approach. The underlying
concept is fairly simple. Trial points generated from solving a sequence of trust region
quadratic programming (QP) subproblems are accepted if there is a sufficient decrease in
the objective function or the constraint violation function. In addition the computational
results reported in Fletcher and Leyffer are also very encouraging (see [2, 3, 10]).

Definition 1.1. A pair (p(G(xk)), f(xk)), is said to dominate another pair (p(G(xl)), f(xl))
if and only if p(G(xk)) ≤ p(G(xl)) and f(xk) ≤ f(xl).

Definition 1.2. A filter F is a list of pair (p(G(xk)), f(xk)) such that no pair dominates
any other. A pair (p(G(xk)), f(xk)) is said to be accepted for inclusion in the filter if it is
not dominated by another pair in the filter.

In this paper, we propose a filter QP-free infeasible method using a piecewise linear
NCP function for constrained nonlinear optimization problems. This iterative method is
based on the solution of nonsmooth equations which are obtained by the multipliers and
the NCP function for the KKT first-order optimality conditions. Locally, each iteration of
this method can be viewed as a perturbation of a mixed Newton and quasi-Newton iteration
on both the primal and dual variables for the solution of the KKT optimality conditions.
The filter is also used in the line searches of the algorithm. This method is implementable
and globally convergent. We show that the method has superlinear convergence rate under
some mild conditions. Some preliminary numerical results indicate that this new QP-free
infeasible method is quite promising.

The paper is outlined as follows. In the next section, we give some preliminary results. In
Section 3, we give the algorithm. In Section 4, we show that the algorithm is implementable.
In Section 5, we discuss the convergence of the algorithm. Some numerical results are given
in Section 6.
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2 Preliminaries

Definition 2.1 (NCP pair and NCP function). We call a pair (a, b) ∈ R2 an NCP pair
if a ≥ 0, b ≥ 0 and ab = 0; a function ψ : R2 → R is called an NCP function if ψ(a, b) = 0 if
and only if (a, b) is an NCP pair.

Two most famous NCP functions are the min function and the Fischer-Burmeister NCP
function. In this paper we define a 4-l piecewise linear NCP function ψ with a parameter
k > 0 as follows.

ψ(a, b) =





k2a if b ≥ k|a|,
2kb− b2/a if a > |b|/k,
2k2a + 2kb + b2/a if a < −|b|/k,
k2a + 4kb if b ≤ −k|a| < 0.

(2.1)

We know that ψ is continuously differentiable everywhere except at the origin, but it is
strongly semismooth at the origin. i.e., if a 6= 0 or b 6= 0, then ψ is continuously differentiable
at (a, b) ∈ R2, and

∇ψ(a, b) =





(
k2

0

)
if b ≥ k|a|,

(
b2/a2

2k − 2b/a

)
if a > |b|/k,

(
2k2 − b2/a2

2k + 2b/a

)
if a < −|b|/k,

(
k2

4k

)
if b ≤ −k|a| < 0,

(2.2)

and

Aψ = ∂ψ(0, 0) =
{(

k2t2

2k(1− t)

)
∪

(
2k2(1− t2)
2k(1− t)

)
| |t| ≤ 1

}
. (2.3)

Let
φi(x, µ) = ψ(−gi(x), µi), 1 ≤ i ≤ m.

We denote Φ(x, µ) = ((∇xL(x, µ))T , (Φ1(x, µ))T )T , where Φ1(x, µ) = (φ1(x, µ), · · · φm(x, µ))T .
Clearly, the KKT optimality conditions (1.2) can be equivalently reformulated as the nons-
mooth equations Φ(x, µ) = 0.

If (gi(x), µi) 6= (0, 0), then φi is continuously differentiable at (x, µ) ∈ Rn+m. In this
case, we have

∇φi(x, µ) =



( −k2∇gi(x)
0

)
if µi ≥ k|gi(x)|,

( −µ2
i∇gi(x)/gi(x)2

(2k − 2µi/gi(x))ei

)
if − gi(x) > |µi|/k,

(
(−2k + µ2

i /gi(x)2)∇gi(x)
(2k − 2µi/gi(x))ei

)
if − gi(x) < −|µi|/k,

( −k2∇gi(x)
4kei

)
if µi ≤ −k|gi(x)| < 0.

(2.4)
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If gi(x) = 0 and µi = 0, 1 ≤ i ≤ m, then φi(x, µ) is strongly semismooth and directionally
differentiable at (x, µ). We have

∂φi(x, µ) =
{( −k2t2∇gi(x)

2k(1− t)ei

)
∪

( −2k2(1− t2)∇gi(x)
(2k − 2t)ei

)
: |t| ≤ 1

}
, (2.5)

where ei = (0, · · · , 0, 1, 0 · · · , 0)T ∈ Rm is the ith column of the n × n unit matrix. In the
sequel, we set k = 1.

Another piecewise linear NCP function was proposed in [6]. For other properties of the
NCP functions, see [1, 6, 8].

If f and gi are Lipschitz continuously differentiable, then ψ(0, 0) = 0 implies that ψ2(a, b)
is continuously differentiable at (0, 0) and ‖Φ(x, µ)‖2 is continuously differentiable. The
Newton direction of Φ(x, µ) = 0 or ‖Φ(x, µ)‖2 = 0 is a descent direction of ‖Φ(x, µ)‖ or
‖Φ(x, µ)‖2.

In this paper, in instead of using the constraint violation function p(G(x)) in the filter
F of Fletcher and Leyffer method, we use the constraint violation function p(G(x), µ) =
‖Φ1(x, µ)‖.

3 Algorithm

At the kth iteration of the algorithm, let F k denote the current filter. If (−gj(xk), µk) =
(0, 0), let ξk

j = −2, ηk
j = 2, otherwise, let

(−ξk
j , ηk

j ) = ∇ψ(−gj(xk), µk
j ).

We have
(ξk

j∇gj(xk), ηk
j ej) = ∇φj(xk, µk).

Clearly ξk
j ≤ 0 and ηk

j ≥ 0. Let

V k =
(

V k
11 V k

12

V k
21 V k

22

)
=

(
Hk ∇Gk

diag(ξk)(∇Gk)T diag(ηk + ck)

)
, (3.1)

where Hk is a symmetric positive definite matrix which may be modified by BFGS update
and ∇Gk = ∇G(xk), diag(ξk) or diag(ηk + ck) denotes the diagonal matrix whose jth
diagonal element is ξk

j or ηk
j + ck

j , respectively, and

ck
j = cmin{1, ‖Φk‖ν},

where Φk = Φk(xk, µk), c > 0 and ν > 1 are given parameters.

Algorithm 3.1.
Step 0. Initialization.
Choose an initial guess x0 ∈ Rn, τ ∈ (0, 1), µ̄ ≥ µ0 > 0, 1 > θ1 > θ > 0 c > 0, and

ν > 1, a symmetric positive definite matrix H0. Let F 0 = {(f(x0), µ0)}.
Step 1. Computation of the search direction.
If Φk 6= 0 then compute dk0 and λ̄k0 by solving the following linear system in (d, λ):

V k

(
d
λ

)
=

( −∇fk

0,

)
, (3.2)
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where ∇fk = ∇f(xk). If ηk
j 6= 0 then let λk0

j = ηk
j λ̄k0

j /(−ηk
j + ck

j ), otherwise let λk0
j = λ̄k0

j .
Compute dk1 and λ̄k1 by solving the following linear system in (d, λ):

V k

(
d
λ

)
=

( −∇Lk

−Φk
1

)
, (3.3)

where ∇Lk = ∇L(xk, µk) and Φk
1 = Φ1(xk, µk). If ηk

j 6= 0 then let λk1
j = ηk

j λ̄k1
j /(−ηk

j + ck
j ),

otherwise let λk1
j = λ̄k1

j .

Step 2. Line search with filter.
2.1. If

‖Φ(xk + dk1, µk + λk1)‖ ≤ θ1‖Φk‖ (3.4)

and (3.6) or (3.7), at least one, holds, then let xk+1 = xk + dk1 and µk+1 = µk + λk1. Go
to Step 3.

2.2. If Φk
1 = 0 then let bk = 1 and ρk = 0. Otherwise, if dk0 = 0 then let bk = 0 and

ρk = 1, else denote bk = 1− ρk and

ρk =

{
1, if (dk1)T∇fk ≤ θ(dk0)T∇fk,

(1− θ) (dk0)T∇fk

(dk0−dk1)T∇fk , otherwise,
(3.5)

and let (
dk

λk

)
= bk

(
dk0

λk0

)
+ ρk

(
dk1

λk1

)
.

Check whether (xk+1, µk+1) is acceptable for the filter test: let xk+1 = xk + αkdk and
µk+1 = µk + αkλk, where αk = τ j and j is the smallest non-negative integer satisfying

either ‖Φ1(xk+1, µk+1)‖ ≤ θ‖Φl
1‖, (3.6)

or f(xk+1)− f(xl) ≤ −αkθ‖Φk+1
1 ‖ (3.7)

for all (f(xl), ‖Φl
1‖) ∈ F k. If there is no such (xk+1, µ(k+1)) or αk is too small, use the

restoration phase to find (xk+1, µ(k+1)) so that it is acceptable by the filter F k. Go to Step
1.

Step 3 Update.
If xk+1 is a KKT point then stop. Otherwise, if µk+1

i ≤ µ̄ then µk+1
i = µk+1

i , otherwise
let µk+1

i = µ̄, give Hk+1 by BFGS update, F k+1 = F k∪(f(xk+1), ‖Φk
1‖) and delete all pairs

(f(xl), ‖Φl
1‖) which are dominated by (f(xk+1), µk+1) in F k+1. Set k := k + 1 and go to

Step 1.

4 Implementation

We suppose that the following assumptions A1-A3 hold.
A1 The level set {x|f(x) ≤ f(x0)} is bounded, and for sufficiently large k, ‖µk + λk0 +

λk1‖ < µ̄.
A2 f and gi are Lipschitz continuously differentiable, and for all y, z ∈ Rn+m,

‖∇L(y)−∇L(z)‖ ≤ m0‖y − z‖, ‖Φ(y)− Φ(z)‖ ≤ m0‖y − z‖,
where m0 > 0 is a Lipschitz constant.

A3 Hk is positive definite and there exist positive numbers m1 and m2 such that
m1‖d‖2 ≤ dT Hkd ≤ m2‖d‖2 for all d ∈ Rn and all k.
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Lemma 4.1. If Φk 6= 0 then V k is nonsingular.

Proof. Assume that Φk 6= 0. If V k(u, v) = 0 for some (u, v) ∈ Rn+m, where u =
(u1 · · · , un)T , v = (v1 · · · , vm)T and (u, v) denotes (uT , vT )T . Then

Hku +∇Gkv = 0 (4.1)

and
diag(ξk)(∇Gk)T u + diag(ηk + ck)v = 0. (4.2)

From the definitions of ξk
j and ηk

j , we know that ξk
j ≤ 0 and ηk

j + ck
j > 0 for all j. So,

diag(ηk + ck) is nonsingular. We have

v = −(diag(ηk + ck
j ))−1diag(ξk)(∇Gk)T u. (4.3)

Putting (4.3) into (4.1), we have

uT (Hku +∇Gkv)
= uT Hku− uT∇Gkdiag(ξk)(diag(ηk + ck))−1(∇Gk)T u = 0.

The fact that Hk is positive definite and −∇Gkdiag(ξk)(diag(ηk +ck))−1(∇Gk)T is positive
semidefinite imply u = 0, and then v = 0 by (4.3). Hence V k is nonsingular.

The following lemma holds (see [5, 7]).

Lemma 4.2. If dk0 6= 0, then

(dk0)T Hkdk0 ≤ −(dk0)T∇fk.

We see that if (dk1)T∇fk ≥ θ(dk0)T∇fk, then (3.5) implies

(dk)T∇fk = (1− ρk)(dk0)T∇fk + ρk(dk1)T∇fk

= (dk0)T∇fk

[
1− (1− θ)

(dk0)T∇fk

(dk0 − dk1)T∇fk
− (1− θ)

(dk1)T∇fk

(dk0 − dk1)T∇fk

]

= θ(dk1)T∇fk ≤ −θ(dk0)T Hkdk0. (4.4)

Lemma 4.3. There exists an m3 > 0 such that, for any 0 < t ≤ 1,

‖Φ1(xk + tdk0, µk + tλk0)‖2 − ‖Φk
1‖2 ≤ m3t

2.

Proof. If Φk
1 = 0, let m4 = m2

0. Then for any 0 < t ≤ 1, we have

‖Φ1(xk + tdk0, µk + tλk0)‖2 = ‖Φ1(xk + tdk0, µk + tλk0)− Φk
1‖2

≤ t2m2
0‖(dk0, λk0)‖2 = t2m4‖(dk0, λk0)‖2,

So the lemma holds for Φk
1 = 0.

We define that if (gk
i , µk

i ) 6= (0, 0) then (ξ̄k0
i , η̄k0

i ) = (ξk
i , ηk

i ), otherwise ξ̄k0
i (∇gk

i )T dk0 +
η̄k0

i λk0
i = φ′i((x

k, µk), (dk0, λk0)), where φ′i((x
k, µk), (dk0, λk0)) is the directional derivative of

φi(x, µ) at (xk, µk) in the direction (dk0, λk0). Then φi(0, 0) = 0 implies (Φk
1)T (diag(ξ̄k0)(∇Gk)T ,

diag(η̄k0)) = (Φk
1)T (diag(ξk)(∇Gk)T , diag(ηk)), and

‖Φk
1 + t(diag(ξ̄k0)(∇Gk)T dk0 + diag(η̄k0)λk0)‖2

= ‖Φk
1‖2 + t2‖diag(ξ̄k0)(∇Gk)T dk0 + diag(η̄k0)λk0‖2. (4.5)

It is clear that
‖Φ1(xk + tdk0, µk + tλk0)‖2 = ‖Φk

1‖2 + O(t2).

This completes the proof of the lemma.
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Lemma 4.4. If Φk
1 6= 0 then for any given ε > 0 there is a t̄ > 0 such that, for any 0 < t ≤ t̄,

‖Φk
1‖2 − ‖Φ1(xk + tdk1, µk + tλk1)‖2 ≥ (2− ε)t‖Φk

1‖2.

Proof. If Φk
1 6= 0, then (3.3) implies

diag(ξk)(∇Gk)T dk1 + diag(ηk + ck)λk1 = −Φk
1 . (4.6)

We define that if (gk
i , µk

i ) 6= (0, 0), then (ξ̄k1
i , η̄k1

i ) = (ξk
i , ηk

i ), otherwise ξ̄k1
i (∇gk

i )T dk1 +
η̄k1

i λk1 = φ′i((x
k, µk), (dk1, λk1)), where φ′i((x

k, µk), (dk1, λk1)) is the directional derivative
of φi(x, µ) at (xk, µk) in the direction (dk1, λk1).

Clearly, for all i,

φi(xk + tdk1, µk + tλk1)− φk
i − t(ξ̄k1

i (∇gk
i )T dk1 + (η̄k1

i )λk1) = o(t). (4.7)

Since ck
i 6= 0, it follows by the definition of ck

i , ηk
i and (4.6) that

‖Φk
1 + t(diag(ξ̄k1)(∇Gk)T dk1 + diag(η̄k1)λk1)‖2

= (1− 2t)‖Φk
1‖2 + t2‖diag(ξ̄k1)(∇Gk)T dk1 + diag(η̄k1)λk1‖2. (4.8)

It follows from (4.7) and (4.8) that, given any ε > 0, there is a t̄ > 0 such that, for any
0 < t ≤ t̄,

‖Φk
1‖2 − ‖Φ1(xk + tdk1, µk + tλk1)‖2 ≥ (2− ε)t‖Φk

1‖2.
Hence, this lemma holds.

From Lemmas 4.2-4.4 and (4.4), we know that if Φk
1 6= 0, then (dk, λk) is a descent

direction of ‖Φk‖2; if dk0 6= 0, then dk is a descent direction of fk. If Φk
1 = 0 and dk0 = 0,

then (xk, µk) is a KKT point.

5 Convergence

In this section, we discuss the global and superlinear convergence of the method.
In addition to A1-A3, we need the following assumption:

A4 For all k and some αmin > 0, αk > αmin > 0.

Lemma 5.1. Consider sequences of {‖Φ1(xk)‖} and {fk} such that {fk} is monotonically
decreasing and bounded below. Let a positive constant θ satisfy, for all k and l ∈ F k, that

either ‖Φ1(xk+1, µk+1)‖ ≤ θ‖Φ1(xl, µl)‖, (5.1)

or f(xk+1)− f(xl) ≤ −αkθ‖Φ1(xk+1, µk+1)‖, (5.2)

where αk ≥ αmin > 0 is the step length. Then Φ1(xk, µk) → 0.

Proof. Suppose the theorem is not true. Then there exists an ε > 0 and an infinite index set
K such that ‖Φ1(xk, µk)‖ ≥ ε > 0 and ‖Φ1(xk+1, µk+1)‖ ≥ θ‖Φ1(xk, µk)‖ for any k ∈ K.
We have

f(xk)− f(xk+1) ≥ αkθ‖Φ1(xk, µk)‖ > αminθε. (5.3)

Because {fk} is monotonically decreasing, (5.3) implies f(xk) → −∞ as k → +∞ which
contradicts to the assumption. This lemma holds.
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Lemma 5.2. Suppose the assumptions in Lemma 5.1 hold. Consider an infinite sequence of
iterations on which {fk, ‖Φ1(xk, µk)‖} entered the filter, where ‖Φ1(xk, µk)‖ > 0 and {fk}
is bounded below. Then Φ1(xk, µk) → 0.

Proof. Suppose the theorem is not true. Then there exist an ε > 0 and an infinite index set
K such that either ‖Φ1(xk, µk)‖ ≥ ε > 0 and ‖Φ1(xk, µk)‖ ≤ θ‖Φ1(xl, µl)‖ for any k ∈ K
and k > l, implying {‖Φ1(xk, µk)‖}k∈K → 0, or {fk} is monotonically decreasing, which,
by lemma 5.1, implies ‖Φ1(xk, µk)‖ → 0. So, this lemma holds.

The following Lemmas hold (see [5]).

Lemma 5.3. dk0 → 0.

Lemma 5.4. dk0 = 0 if and only if ∇fk = 0, and dk0 = 0 implies λ̄k0 = 0 and λk0 = 0. If
(x∗, µ∗) is an accumulation point of {(xk, µk)} then d∗0 = 0, and (d∗0, λ̄∗0) is the solution
of the following equations

V ∗
(

d
λ

)
=

( −∇f∗

0

)
, (5.4)

where ∇f∗ = ∇f(x∗) and ∇L(x∗, µ∗) = 0.

Lemmas 5.2-5.4 imply the following theorem.

Theorem 5.5. If (x∗, µ∗) is an accumulation point of {(xk, µk)} then x∗ is a KKT point
of problem (NLP).

Now we consider the superlinear convergence of the method. We need the following
assumptions.

A5 {∇gi(x∗)}i∈I(x∗) are linearly independent, where I(x∗) = {i : gi(x∗) = 0} and x∗ is
an accumulation point of {xk} and a KKT point of problem (NLP).

A6 The sequence {Hk} satisfies

‖(Hk −∇2
xL(xk, µk))dk1‖
‖dk1‖ → 0.

A7 The strict complementarity condition holds at each KKT point (x∗, µ∗).

Assumption A7 implies that Φ is continuously differentiable at each KKT point (x∗, µ∗).
Similar to Lemma 4.1 we have (see [5, 7]):

Lemma 5.6. V (x∗, µ∗) is nonsingular.

Lemma 5.7. For sufficiently large k, xk+1 = xk + dk1 and µk+1 = µk + λk1.

Theorem 5.8. Assume A1-A7 hold. Let Algorithm 3.1 be implemented to generate a se-
quence {(xk, µk)} and (x∗, µ∗) be an accumulation point of {(xk, µk)}. Then (x∗, µ∗) is an
KKT point of problem (NLP), and (xk, µk) converges to (x∗, µ∗) superlinearly.

6 Numerical Tests

In this section, we report some preliminary numerical results of Algorithm 3.1 for some
constrained optimization problems from [9].

In the implementation of the algorithm, the termination criterion is ‖φ‖ ≤ 10−5. The
parameters of the algorithm are chosen as: c = 0.1, ν = 2, τ = 0.7, θ1 = 0.8, θ = 0.6,
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Table 1: Numerical results for Algorithm 3.1
Problem Initial NIT NF NG Initial NIT NF NG

No. point points
227 (0.5, 0.5) 11 25 31 (1, 1) 12 26 32
227 (10, 10) 15 27 37 (-10, -10) 13 18 27
215 (0.5, 0.5) 10 13 24 (1.5, 1.5) 13 35 91
215 (1, 1) 7 17 28 (2, 2) 6 15 35
232 (2, 0.5) 5 7 9 (4, 1) 5 7 13
232 (4,2) 5 9 12 (6,2) 8 10 13
250 (10, 10, 10) 10 15 27 (-10, -10, -10) 10 16 28
250 (15, 15, 15) 8 13 18 (5, 5, 5) 9 17 19

µ̄ = 10000, µ0 = 1. The initial H0 = I, where I is the unit matrix. The matrices Hks are
updated by BFGS method (see [8]).

Numerical results are summarized in Table 1, where

• Problem No=the same number of the problem in [9];

• NIT =the number of iterations;

• NF= the number of evaluations of the objective and constraint functions;

• NG=the number of evaluations of Φ.

It has been found in our numerical experiments that if ‖φ‖ ≤ 10−6, then the algorithm
converges very quickly. This is due to the fact that each iteration of Algorithm 3.1 can be
viewed as a perturbation of a mixed Newton and quasi-Newton iteration locally. We also
found that the parameter c can not be chosen too small. This is because a small c may
influence the convergence rate when the strict complementarity conditions are not satisfied
at some iteration points. So, we may consider some modification to the algorithm when the
strict complementarity conditions are not satisfied near an iteration point. For example,
instead of using a constant c, we may use ck ∈ [0.001, 0.5], whose value depends on ‖Φk‖,
the strict complementarity and the termination criterion.
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