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Abstract: We present a polynomial interior-point algorithm for P∗(κ) Linear Complementarity Problems
(LCP) based on a class of parametric kernel functions, with parameters p ∈ [0, 1] and q ≥ 1. The same class
of kernel function was considered earlier for Linear Optimization (LO) by Bai et al. in [7].
This class is fairly general and includes the classical logarithmic function, the prototype self-regular function,
and non-self-regular kernel functions as special cases. The iteration bounds obtained in this paper are
O
ˆ
(1 + 2κ) q(p + 1)n(p+q)/q(p+1) log n

ε

˜
for large-update methods and O

ˆ
(1 + 2κ)q2√n log n

ε

˜
for small-

update methods. These bounds match the best known existing iteration bounds.
As far as we know this is the first result on interior-point methods for P∗(κ)-LCPs based on this class of
kernel functions.
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1 Introduction

In this paper, we consider a class of linear complementarity problems (LCP) formulated in
the standard form: Given a matrix M ∈ Rn×n and a vector q ∈ Rn, find (x, s) ∈ R2n such
that

s = Mx + q, xs = 0, x, s ≥ 0, (1.1)

where xs denotes the componentwise product of the vectors of x and s.
Note that (1.1) is a feasibility problem, and not an optimization problem. However, it

is well-known that it can easily be written as an optimization problem:

min
{
xT s : Mx− s = −q, x, s ≥ 0

}
.
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On the other hand, the Karush-Kuhn-Tucker (KKT) optimality conditions for Linear
Optimization (LO) and Convex Quadratic Optimization (CQO) can be written in the form
of an LCP, showing the relevance of the LCP for these important classes of optimization
problems. Moreover, LCP also has a close connection to variational inequalities: some classes
of variational inequalities can be formulated as an LCP and vice versa. In addition, many
important practical problems in economics theory (equilibrium problems), game theory,
transportation planning (assignment problems), optimal control, engineering, etc. can be
directly formulated as LCP. For a comprehensive treatment of LCP theory and practice
we refer to the monographs of Cottle et al. [9] and Kojima et al. [12], and for a recent
comprehensive treatment of variational inequalities and complementarity problems to the
monograph of Facchinei and Pang [10].

Due to the theoretical and practical importance of LCP, efficient methods for solving
LCPs are of a significant interest. The existing tradition of generalizing results for LO to
LCP dates back to the early days of the development of simplex-type algorithms (pivoting
algorithms) and it continues to this day. The Interior-Point Methods (IPMs) that has
been a great success for LO are no exception. Various IPMs for LO have been successfully
generalized to LCP. Besides the aforementioned monograph of Kojima et al. [12], and
without any attempt to be complete we mention a few other relevant references: [2, 13, 14,
21, 19, 22, 23].

The majority of IPMs for LO are based on the use of the logarithmic barrier function
in calculation of the search direction. Recently, Peng et al. designed primal-dual IPMs for
LO based on a different class of barrier functions, the class of so-called self-regular barrier
(or proximity) functions [16]. They derived the currently best known complexity bounds
for large-update methods, namely O(

√
n log n log n

ε ). Subsequently, Y.Q. Bai et al. [4]
presented primal-dual IPMs for LO based on yet another class of barrier functions that are
not self-regular and obtained the same bounds as Peng et al.

The goal of this paper is to extend the results obtained for LO by Bai et al. in [7] to
the class of P∗(κ)-LCPs whose definition is given in the next section. The outline of the
algorithm is presented in Section 3 while the definition and properties of the of the kernel
and barrier functions used in the design of the algorithm are discussed in the Section 4.
The analysis and complexity results of the algorithm are presented in the Sections 5 and 6
respectively.

Some notation used throughout the paper is as follows. We use the standard notation,
Rn, Rn

+ and Rn
++ to denote the set of (real) vectors with n components, the set of non-

negative vectors and the set of positive vectors, respectively. The 2-norm of the vector x is
denoted with ‖x‖. For any x ∈ Rn, xmin ( or xmax) denotes the smallest ( or largest) value
of the components of the vector x. The bold symbol e always denotes the all-one vector
with n components. Finally, if g(x) ≥ 0 is a real valued function of a real nonnegative
variable, the notation g(x) = O(x) means that g(x) ≤ c̄x for some positive constant c̄ and
g(x) = Θ(x) that c1x ≤ g(x) ≤ c2x for two positive constants c1 and c2.

2 The P∗(κ)-LCP

As indicated in the Introduction, in this paper we consider the LCP in the standard form
(1.1). It is known that for general matrices M the problem is NP-complete [8]. Therefore, it
is natural to look for classes of matrices M for which the corresponding LCPs can be solved
in polynomial time. Different classes of matrices have been considered. We list the most
important of these classes.
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• Skew-symmetric matrices (SS):

xT Mx = 0, ∀ x ∈ Rn.

• Positive semidefinite matrices (PSD):

xT Mx ≥ 0, ∀ x ∈ Rn.

• P -matrices: Matrices with all principal minors positive or equivalently

∀ x(6= 0) ∈ R : ∃i ∈ I : xi(Mx)i > 0.

• P0-matrices: Matrices with all principal minors nonnegative or equivalently

∀ x(6= 0) ∈ R : ∃i ∈ I : xi 6= 0 and xi(Mx)i ≥ 0.

• Column sufficient matrices (CSU)

∀x ∈ Rn : (xi(Mx)i ≤ 0, ∀i ∈ I ⇒ xi(Mx)i = 0, ∀i ∈ I.

• Row sufficient matrices (RSU): MT is column sufficient.

• Sufficient matrices (SU): M is both column sufficient and row sufficient.

• P∗(κ): κ ≥ 0 and

(1 + 4κ)
∑

i∈I+(x)

xi(Mx)i +
∑

i∈I−(x)

xi(Mx)i ≥ 0 , ∀x ∈ Rn ,

where
I+(x) = {i : xi(Mx)i > 0} , I−(x) = {i : xi(Mx)i < 0} ,

or equivalently
xT Mx ≥ −4κ

∑

i∈I+(x)

xi(Mx)i , ∀x ∈ Rn ,

and
P∗ =

⋃

κ≥0

P∗(κ) .

The class of P∗ matrices was introduced by Kojima et al. in their fundamental monograph
on IPM’s for LCP [12], while the other classes, and many additional classes not mentioned
here, were listed in the classical monograph of Cottle et al. [9]. See also [3]. The relationship
between some of the above classes is as follows:

SS ⊂ PSD ⊂ P∗ = SU ⊂ CS ⊂ P0 , P ⊂ P∗, P ∩ SS = ∅ . (2.1)

Some of these relations are obvious, like PSD= P∗(0) ⊂ P∗ or P ⊂ P∗, while others require
proof [9, 12, 18].

Most common and most studied is the class of monotone-LCPs, where matrix M is a
positive-semidefinite matrix. This is largely due to the fact that the Karush-Kuhn-Tucker
conditions (KKT) of Quadratic Optimization problem (QO) with the quadratic objective



22 Y.Q. BAI, G. LESAJA AND C. ROOS

function defined by the positive-semidefinite matrix can be formulated as monotone-LCP.
In addition, most practical problems that can be directly formulated as LCP are usually
monotone-LCP. We also recall that in the special case, that of a Linear Optimization (LO)
problem, the matrix M becomes a skew-symmetric matrix. In this paper we consider the
class of P∗(κ)-LCPs, which (as is clear from (2.1)) contains the class of monotone-LCP as a
special case.

We remark that the above classes enjoy the nice property that if matrix M belongs to
one of these classes, then every principal submatrix of M also belongs to the class. In what
follows, we state other properties that are relevant for the design of IPMs in this paper.

Lemma 2.1 (Lemma 4.1. in [12]). The matrix

M̄ =
(−M I

S X

)
(2.2)

is nonsingular for any positive diagonal matrices X, S if and only if M is P0-matrix.

Matrices of the form M̄ in (2.2) appear at each iteration of an interior-point method for
LCP. Thus, the above lemma recognizes the class P0 as the largest class which guarantees
the existence and uniqueness of the solution for a linear system with coefficient matrix M̄ .
As was observed first in [12] this property makes P0-LCPs amenable for being solved by an
interior-point method.

However, it is well known that the sequence of the iterates of IPMs may not converge
to the solution of LCP. To assure that each accumulation of the iteration sequence is a
solution, the sequence must be bounded. The question arises: Which class of matrices
implies boundedness of the sequence? In their fundamental work [12] Kojima et al. presented
an IPM for LCP and proved its global convergence under the following condition which just
formalizes the above discussion.

Condition 2.2.

(1) M is a P0-matrix;

(2) the interior-point condition (IPC) is satisfied, i.e., there exists a strictly feasible point
0 < (x0, s0) ∈ F = {(x, s) ≥ 0 : s = Mx + q};

(3) the level set Ft = {(x, s) ∈ F : xT s ≤ t} is bounded for each t ≥ 0.

Kojima et al. pointed out that, unfortunately, if M is P0-matrix, then requirement (3)
is generally not satisfied and they provided a counterexample. However, if M is a P∗-matrix,
then requirement (3) is satisfied (Lemma 4.5 in [12]). Hence, in some sense P∗ class is a
maximal class which guarantees global convergence of IPMs. This fact is, at least from the
theoretical point of view, an important reason why we consider the class of P∗(κ)-LCP in
this paper.

3 The Generic Interior-point Algorithm for the P∗(κ)-LCP

As already indicated in the previous section, in this paper we consider the P∗(κ)-LCP in
the standard form: Given a P∗(κ) matrix M ∈ Rn×n and a vector q ∈ Rn, find (x, s) ∈ R2n

such that
s = Mx + q, xs = 0, x, s ≥ 0. (3.1)

We assume that the P∗(κ)-LCP satisfy the interior-point condition (IPC), that is, there
exists a point x0 > 0 such that s0 = Mx0 + q > 0, which means that the interior of the
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feasible region is not empty. The IPC can be assumed without loss of generality. In [12,
Section 5.1] Kojima et al. presented a method of ‘reducing the LCP to an artificial LCP with
an apparent interior feasible point’. Another approach to obtaining IPC is the approach of
Andersen and Ye [1], who embed the original complementarity problem (CP) into an artificial
homogeneous CP that satisfies the IPC. However, their approach is specifically designed for
monotone CP and can not be extended to P∗(κ)-CP, see [16].

The basic idea of interior-point algorithms for LCP is to use a Newton-type method in
a such a way that it guarantees global convergence and fast local convergence. However,
direct application of the Newton-type method on the system in (3.1) will not work because
the method will most likely ‘get stuck’ on the second equation which is commonly known
as complementarity equation. The standard procedure to fix this problem is to replace the
complementarity equation in (3.1) by the parameterized equation xs = µe, with µ > 0.
Thus, we consider the system

s = Mx + q
xs = µe,
x, s > 0 .

Since we assume that IPC holds and M is a P∗(κ) matrix then according to the discussion
in the previous section (Lemma 2.1 and the Condition 2.2) the parameterized system in (3.2)
has a unique solution, for each µ > 0. This solution is denoted as (x(µ)), s(µ)) and we call it
the µ-center of LCP. The set of µ-centers (with µ running through all positive real numbers)
gives a homotopy path, which is called the central path of LCP. The relevance of the central
path for Linear Optimization (LO) was first recognized by Megiddo [11] and then extended
to LCP by Kojima et al. [12]. Under the above assumptions, if µ → 0, the limit of the
central path exists and it is an optimal solution of LCP.

The limiting property of the central path mentioned above leads naturally to the main
idea of the IPMs for solving LCP: Trace the central path while reducing µ at each iteration.
However, tracing the central path exactly would be too costly and inefficient. It has been
shown that it is sufficient to trace the central path approximately.

As already indicated, due to the result of Kojima et al. [12], we may assume that IPC
holds, that is, a strictly feasible point (x, s) exists. In addition, this point can be chosen in a
such a way that it is ‘close’ to the µ-center (x(µ), s(µ)) for some positive µ, where ’closeness’
is measured using a barrier function, as discussed later in this section. We then decrease
µ to µ+ := (1 − θ)µ, for some θ ∈ (0, 1) and, redefining µ := µ+, a direct application of
Newton’s method to (3.2) will lead to the following Newton system for the search direction
(∆x,∆s):

−M∆x + ∆s = 0,

s∆x + x∆s = µe− xs. (3.2)

Due to Lemma 2.1, this system has a unique solution for any (x, s) > 0. By taking a step
along the search direction, one constructs a new pair (x+, s+) with

x+ = x + α∆x, s+ = s + α∆s, (3.3)

where α ∈ (0, 1) denotes the step size, which has to be chosen appropriately. If necessary, we
repeat the procedure until we find iterates that are in a certain neighborhood of (x(µ), s(µ)).
Then µ is again reduced by the factor 1− θ and we apply Newton’s method targeting at the
new µ-centers, and so on. This process is repeated until µ is small enough, for example, until
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nµ ≤ ε, where ε is a small positive number. At this stage we have found an ε-approximate
solution of LCP.

For the analysis of IPMs it is convenient to associate to any pair (x, s) ≥ 0 and µ > 0,
the vector

v :=
√

xs

µ
. (3.4)

Note that the pair (x, s) coincides with the µ-center (x(µ), s(µ)) if and only if v = e. Next,
the following scaled search directions dx and ds are introduced

dx :=
v∆x

x
, ds :=

v∆s

s
, (3.5)

where the operations are componentwise product and division. Using (3.4) and (3.5) the
system (3.2) can be rewritten as

− M̄dx + ds = 0,

dx + ds = v−1 − v, (3.6)

where M̄ := µV S−1MXV −1, with V := diag (v), X := diag (x), S := diag (s).
Note that the pair (x, s) coincides with the µ-center (x(µ), s(µ)) if and only if v = e.
A crucial observation is that the right hand side v−1 − v in the second equation of (3.6)

equals minus the gradient of the function

Ψc(v) :=
n∑

i=1

(
v2

i − 1
2

− log vi

)
,

where vi represents the i-th component of the vector v. In other words,

dx + ds = −∇Ψc(v).

This equation is called the scaled centering equation. Its importance arises from the fact
that it essentially defines the search direction.

One may easily verify that ∇2Ψc(v) = diag (e + v−2). Since this matrix is positive
definite, Ψc(v) is strictly convex. Moreover, since ∇Ψc(e) = 0, it follows that Ψc(v) attains
its minimal value at ve, with Ψc(e) = 0. Thus, Ψc(v) is nonnegative everywhere and vanishes
if and only if v = e, that is, if and only if x = x(µ) and s = s(µ). Hence, we see that the
µ-center (x(µ), (µ)) can be characterized as the minimizer of the function Ψc(v). Thus, the
second important feature of the function Ψc(v) is that it essentially serves as a ’proximity’
measure of closeness for (x, s) with respect to the µ-center.

The above observations regarding the function Ψc(v) lead to an obvious generalization:
we can replace Ψc(v) by any strictly convex function Ψ(v), v ∈ Rn

++, such that Ψ(v) is
minimal at v = e and Ψ(e) = 0. Thus, the new scaled centering equation becomes

dx + ds = −∇Ψ(v). (3.7)

The function Ψ(v) is called a (scaled) barrier function. Of course, different barrier functions
lead to different Newton directions, as they are calculated from the Newton system

− M̄dx + ds = 0,

dx + ds = −∇Ψ(v). (3.8)
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Since
Ψ(v) = 0 ⇔ ∇Ψ(v) = 0 ⇔ v = e

the function Ψ(v) still may serve as a proximity measure for closeness with respect to the
µ-center (x(µ), s(µ)). In the sequel we also use norm based proximity measure, namely

δ(v) :=
1
2
‖∇Ψ(v)‖. (3.9)

The function δ(v) is often called proximity function and it is easy to see that

δ(v) = 0 ⇔ v = e. (3.10)

To simplify matters we will restrict ourselves to the case where the barrier function Ψ(v)
is separable with identical coordinate functions ψ(vi). Thus,

Ψ(v) =
n∑

i=1

ψ(vi), (3.11)

where ψ : (0,+∞) → [0,+∞) is twice differentiable and attains its minimum at t = 1, with
ψ(1) = 0. Following the terminology introduced in [15, 4, 5], we call the univariate function
ψ(t) the kernel function of the barrier function Ψ(v). Obviously, in the case

ψc(t) =
t2 − 1

2
− log t, (3.12)

and ψ(t) = ψc(t), we have Ψ(v) = Ψc(v), One may easily verify that Ψc(v) is the ’classical’
logarithmic barrier function. We call ψc(t) the classical kernel function.

It is clear from the above discussion that the closeness of (x, s) to (x(µ), s(µ)) can be
measured by the value of Ψ(v). Introducing a parameter τ > 0 as a threshold value, the
inequality Ψ(v) ≤ τ defines a τ -neighborhood of the µ-center.

The generic form of this algorithm is shown in Figure 1. In this algorithm we write
Ψ(x, s, µ) instead of Ψ(v), with v as defined in (3.4). If Ψ(v) ≥ τ we start a new inner
iteration by computing the scaled search directions dx and ds at the current iterate and
the current value of µ from (3.8). Then, we compute the search directions ∆x and ∆s
from dx and ds by using (3.5). Next, the new iterates are calculated using (3.3) with the
appropriately calculated step-size α. If necessary, the procedure is repeated until the iterate
belongs to the τ -neighborhood of the current µ-center (x(µ), s(µ)), that is until Ψ(v) ≤ τ .
Then, the outer iteration starts by reducing µ by the factor 1− θ with 0 < θ < 1. It is most
likely that after this step the barrier function value will exceed the threshold value, that is,
Ψ(v) > τ , and hence, the algorithm enters the inner iteration loop again. This process is
repeated until µ is small enough, say until nµ < ε; at this stage we have found an ε-solution
of LCP.

Note that the algorithm can be started, since, as we discussed at the beginning of this
section, we may assume that a strictly feasible point x0 is given, and this point can be chosen
such that Ψ(v0) ≤ τ which means that it is in the τ -neighborhood of the µ-center.

The parameters τ , θ and the step size α in the algorithm should be tuned in such a
way that the number of iterations required by the algorithm is as small as possible. In the
literature two types of methods are distinguished: small-update methods and large-update
methods, according to the value of the barrier-update parameter θ. Large-update methods
are characterized by the fact that θ is a fixed constant (θ ∈ (0, 1)), independent of the
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Generic Interior-Point Algorithm for LCP

Input:
A threshold parameter τ ≥ 1;
an accuracy parameter ε > 0;
a fixed barrier update parameter θ, 0 < θ < 1;
(x0, s0) and µ0 = (x0)T s0/n such that Ψ(x0, s0, µ0) ≤ τ .

begin
x := x0; s := s0; µ := µ0;
while nµ ≥ ε do
begin

µ := (1− θ)µ;
while Ψ(x, s, µ) > τ do
begin

calculate search direction (∆x,∆s) using (3.8) and (3.5);
determine a step size α;
update x := s + α∆x; s := s + α∆s;

end
end

end

Figure 1: Generic Interior-Point Algorithm for LCP

dimension n of the problem, whereas small-update methods use a value of θ that depends
of the dimension of the problem, with θ = O( 1√

n
).

The resulting iteration bound depends on a careful selection of these parameter values
and it also heavily depends on the choice of the kernel function. The question which kernel
function minimizes the iteration bound is still open. The goal in this paper is more limited.
We will show that the Generic Algorithm described in Figure 1 for the class of the kernel
functions that will be specified in the next section has the most favorable iteration bounds,
that match the bounds obtained for Linear Optimization (LO) up to the scaling with a
factor that depends affinely on κ.

4 The Kernel and Barrier Function and their Properties

As indicated above the iteration bound of the Generic Algorithm depends heavily on the
choice of the kernel function. Almost all complexity results of IPMs for LCP, monotone as
well as P∗(κ), are based on the classical logarithmic kernel (barrier) function. The iteration
bounds for large-update and small-update methods based on the classical logarithmic kernel
function are O(n log n

ε ) and O(
√

n log n
ε ), respectively for the monotone LCP. For the P∗(κ)-

LCP the results are the same, up to a factor that depends affinely on κ. This factor equals
1 in the monotone case (when κ = 0).

In the case of LO the first contribution in the design and analysis of the primal-dual
IPMs based on the use of kernel functions different than the classical logarithmic kernel
function was presented by Peng, Roos and Terlaky in [15]. The results were extended and
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generalized by the same authors in the monograph [16]. The kernel functions introduced
and analyzed in [15, 16] are so-called self-regular functions. Based upon these functions an
O(
√

n log n log n
ε ) iteration bound was obtained for large-update methods, which is currently

the best iteration bound for these methods. It is a considerable improvement over the
bound for large-update methods based on the classical logarithmic kernel function, which
is O(n log n

ε ). In [16] the authors extended these results for LO to P∗(κ)-NCP (Nonliear
Complementarity Problems), of which P∗(κ)-LCP is a special case, as well as to other
classes of problems such as semidefinite and conic programming problems. They obtained
essentially the same iteration bound as for LO, up to a factor containing κ.

Recently Bai et al. proposed kernel functions that are not necessarily self-regular [4, 5].
For some of these functions they managed to match the best known iteration bounds for LO,
as just mentioned. Also, they could extend these results to semidefinite and second-order
conic optimization ([6, 20]). This paper is a first attempt to generalize some of these results
to P∗(κ)-LCP case.

The class of parametric kernel functions considered in this paper was introduced by Bai
et al. in [7], where they managed to achieve the best known iteration bounds for LO. Our
goal is to generalize these favorable complexity results to the P∗(κ)-LCP case. The function
is given by

ψp,q(t) =





tp+1 − 1
p + 1

+
t1−q − 1

q − 1
, t > 0, p ∈ [0, 1], q > 1

tp+1 − 1
p + 1

− log t, t > 0, p ∈ [0, 1], q = 1

(4.1)

where p and q are growth and barrier parameters respectively. Note that limq↓0 ψp,q(t) =
ψp,1(t). In the sequel we restrict ourselves in the analysis to the case where q > 1. But by
continuity the results also apply to the case where q = 1.

The above class of kernel functions (4.1) contains several well-known kernel functions:

• For p = 1 and q = 1, ψ(t) = ψc(t) which is the classical logarithmic kernel function,
see (3.12).

• For p = 1 and q > 1, ψ(t) is the prototype self-regular kernel function, see [16].

• For p = 0 and q = 2, ψ(t) is the simple kernel function analyzed in [4].

Let us recall from [7] that for 0 ≤ p < 1 and q > 1, ψp,q(t) is not a self-regular function.
To simplify the notation below we denote ψp,q(t) simply as ψ(t). According to (3.11), the
corresponding scaled barrier function Ψ(v) is given by

Ψ(v) =
n∑

i=1

ψ(vi) =
n∑

i=1

(
vp+1

i − 1
p + 1

+
v1−q

i − 1
q − 1

)
, v ∈ Rn

++, 0 ≤ p ≤ 1 and q > 1.

(4.2)
We conclude this section by listing some useful properties of ψ(t) and Ψ(v) that are used

in the complexity analysis of the algorithm in Figure 1 for P∗(κ)-LCPs. For the proofs of
these results we refer to [7, Section 2], or [5].

First, we list the derivatives of the ψ(t) since they will play a crucial role in the analysis
of the algorithm.

ψ′(t) = tp − t−q, ψ′′(t) = ptp−1 + qt−q−1, ψ′′′(t) = p(p− 1)tp−2 − q(q + 1)t−q−2. (4.3)
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It is quite straightforward to verify the following

ψ(1) = ψ′(1) = 0, lim
t→0

ψ(t) = lim
t→∞

ψ(t) = +∞.

Moreover, from (4.3) we conclude that ψ(t) is strictly convex and ψ′′(t) is monotonically
decreasing on the interval t ∈ (0,+∞).

Lemma 4.1. If t1 > 0 and t2 > 0, then

ψ(
√

t1t2) ≤ 1
2
(ψ(t1) + ψ(t2)).

Lemma 4.2. Let ρ(s) : [0,∞) → (0, 1] be the inverse function of − 1
2ψ′(t) for t ≤ 1. The

following inequality holds

ρ(s) ≥ 1

(1 + 2s)
1
q

.

Lemma 4.3. Let % : [0,∞) → [1,∞) be the inverse function of ψ(t) for t ≥ 1. The following
inequalities hold

(1 + (p + 1)s)
1

p+1 ≤ %(s) ≤ 1 + s +
√

s2 + 2s.

If q ≥ 2− p, then

%(s) ≤ 1 +
√

s + s2 + s
√

s2 + 2s.

The following result gives a lower bound for δ(v) in terms of Ψ(v).

Theorem 4.4. The following inequality holds

δ(v) ≥ 1
2
ψ′(%(Ψ(v))).

Corollary 4.5. If Ψ(v) ≥ τ ≥ 1, then

δ(v) ≥ 1
6

[Ψ(v)]
p

1+p .

5 The Analysis of the Algorithm

5.1 Growth Behavior of the Barrier Function During an Outer Iteration

In this subsection we discuss the growth behavior of the barrier function. Note that at the
start of each outer iteration of the algorithm, just before the update of µ with the factor
1 − θ, we have Ψ(v) ≤ τ . Due to the update of µ the vector v is divided by the factor√

1− θ, with 0 < θ < 1, which in general leads to an increase in the value of Ψ(v). Then,
during the subsequent inner iterations, Ψ(v) decreases until it passes the threshold value
τ again. Hence, during the course of the algorithm the largest values of Ψ(v) occur just
after the updates of µ. That is why in this section we derive an estimate for the effect of a
µ-update on the value of Ψ(v). The results are stated without proofs; these can be found in
[7, Section 3.1].

Theorem 5.1. Let % : [0,∞) → [1,∞) be the inverse function of the kernel function ψ(t)
for t ≥ 1.

Then for any positive vector v and any β ≥ 1 the following inequality holds:

Ψ(βv) ≤ nψ

(
β%

(
Ψ(v)

n

))
.
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Corollary 5.2. Let 0 ≤ θ ≤ 1 and v+ =
v√

1− θ
. If Ψ(v) ≤ τ , then

Ψ(v+) ≤ nψ

(
%( τ

n )√
1− θ

)
.

From this corollary and Lemma 4.3 the following lemma can be obtained.

Lemma 5.3. We have the following upper bounds on the value of Ψ(v+) after a µ-update.

Ψ(v+) ≤ L1 := nψ


1 + τ

n +
√(

τ
n

)2 + 2τ
n√

1− θ


 , q > 1; (5.1)

and

Ψ(v+) ≤ L2 := nψ




1 +

√
τ
n + τ2

n2 + τ
n

√
τ2

n2 + 2τ
n√

1− θ


 , q ≥ 2− p. (5.2)

5.2 Determining the Default Step Size

In this subsection, we determine a default step size which not only keeps the iterations
feasible but also gives rise to a sufficiently large decrease of the barrier function defined in
(4.2) in each inner iteration. In each inner iteration we first compute the search directions
∆x and ∆s from the system (3.8). After a step-size α is determined the new iterate (x+, s+),
is calculated by (3.3).

Recall that during an inner iteration the parameter µ is fixed. Hence, after the step in
the direction (∆x, ∆s) with the step-size α the new v-vector is given by

v+ =
√

x+s+

µ
.

Since

x+ = x

(
e + α

∆x

x

)
= x

(
e + α

dx

v

)
=

x

v
(u + αdx) ,

s+ = s

(
e + α

∆s

s

)
= s

(
e + α

ds

v

)
=

s

v
(v + αds) ,

we obtain, using xs = µv2,
v+ =

√
(v + αdx)(v + αds).

Next, we consider the decrease in Ψ as a function of α. We define two functions

f(α) = Ψ(v+)−Ψ(v),

and
f1(α) :=

1
2
(Ψ(v + αdx) + Ψ(v + αds))−Ψ(v).

Lemma 4.1 implies that

Ψ(v+) = Ψ(
√

(v + αdx)(v + αds) ≤ 1
2
(Ψ(v + αdx) + Ψ(v + αds)).
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This inequality shows that f1(α) is an upper bound of f(α). Obviously,

f(0) = f1(0) = 0.

Taking the derivative with respect to α, we get

f ′1(α) =
1
2

n∑

i=1

(ψ′(vi + αdxi)dxi + ψ′(vi + αdsi)dsi).

To simplify the notation we used (and will use below) the following conventions: dxi := (dx)i

and dsi := (ds)i. From the above equation and using (3.7) we obtain

f ′1(0) =
1
2
∇Ψ(v)T (dx + ds) = −1

2
∇Ψ(v)T∇Ψ(v) = −2δ(v)2.

Differentiating once again, we get

f ′′1 (α) =
1
2

n∑

i=1

(ψ′′(vi + αdxi)d2
xi + ψ′′(vi + αdsi)d2

si) > 0, unless dxds = 0. (5.3)

During an inner iteration x and s are not both at the µ-center since Ψ(v) ≥ τ > 0, so we
may conclude that f1(α) is strictly convex in α. It is worth pointing out that in general
f(α) is not convex.

In what follows we present several lemmas that are needed to obtain a suitable default
value for the step-size α. These lemmas are variants of lemmas that occur in [5] or [7] for
the LO case. In the current LCP case there is a difficulty that does not appear in the LO
case, namely that dx and ds are not (necessarily) orthogonal. In essence, this difficulty is
dealt with in the first lemma below (Lemma 5.4). After this the other lemmas easily follow
by adapting the proofs of the corresponding lemmas for the LO case to the current case.

Lemma 5.4. The following inequality holds:

‖(dx; ds)‖ ≤ 2δ
√

1 + 2κ.

Proof. Since M is a P∗(κ)-matrix and, according to (3.2), ∆s = M∆x, it follows that

∆xT ∆s = ∆xT M∆x ≥ −4κ
∑

i∈I+(∆x)

∆xi(M∆x)i = −4κ
∑

i∈I+(∆x)

∆xi∆si.

Because of (3.4) and (3.5) we have ∆x∆s = µdxds. Hence it follows that

dT
x ds ≥ −4κ

∑

i∈I+(dx)

dxidsi (5.4)

Using the arithmetic-geometric mean inequality ab ≤ 1
4 (a + b)2 we obtain

∑

i∈I+(dx)

dxidsi ≤ 1
4

∑

i∈I+(dx)

(dxi+dsi)2 ≤ 1
4

n∑

i=1

(dxi+dsi)2 =
1
4
‖dx+ds‖2 =

1
4
‖−∇Ψ(v)‖2 = δ2,

where we used the definition (3.9) of δ and (3.8). Substitution of this inequality into (5.4)
yields

dT
x ds ≥ −4κδ2.
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As a consequence we may now write:

‖(dx; ds)‖2 =
∑n

i=1(d
2
xi + d2

si) =
∑n

i=1((dxi + dsi)2 − 2dxidsi)

= ‖dx + ds‖2 − 2dT
x ds = 4δ2 − 2dT

x ds

≤ 4δ2 + 8κδ2 = 4(1 + 2κ)δ2.

This proves the lemma.

Immediate consequences of the above lemma are the following inequalities

‖dx‖ ≤ 2δ
√

1 + 2κ, ‖ds‖ ≤ 2δ
√

1 + 2κ. (5.5)

Let us point out that similar inequalities can be found in other papers on P∗(κ)-LCP, e.g.,
[2, 16]. Equipped with these inequalities we can deal with the lemmas that follow in the
rest of this section.

From now on we assume, without loss of generality, that the coordinates of v are ordered
such that

v1 ≤ v2 ≤ . . . ≤ vn.

As a consequence we have vmin = v1.

Lemma 5.5. The following inequality holds

f ′′1 (α) ≤ 2(1 + 2κ) δ2ψ
′′
(v1 − 2αδ

√
1 + 2κ).

Proof. Using (5.5) we obtain the following inequalities

vi + αdxi ≥ v1 − 2αδ
√

1 + 2κ, vi + αdsi ≥ v1 − 2αδ
√

1 + 2κ, 1 ≤ i ≤ n.

Substituting these inequalities into the expression (5.3) for f ′′1 (α), while using the fact that
ψ′′(t) is monotonically decreasing (due to (4.3)), we get

f ′′1 (α) ≤ 1
2
ψ′′(v1 − 2αδ

√
1 + 2κ)

n∑

i=1

(d2
xi + d2

si) =
1
2
ψ′′(v1 − 2αδ

√
1 + 2κ) ‖(dx; ds)‖2 .

Now using Lemma 5.4 we obtain the desired inequality.

Lemma 5.6. If the step size α satisfies

− ψ
′
(v1 − 2αδ

√
1 + 2κ) + ψ

′
(v1) ≤ 2δ√

1 + 2κ
, (5.6)

then f
′
1(α) ≤ 0.

Proof. Using Lemma 5.5 we have the following derivation

f ′1(α) = f ′1(0) +
∫ α

0

f ′′1 (ζ) dζ

≤ −2δ2 + 2δ2(1 + 2κ)
∫ α

0

ψ′′(v1 − 2ζδ
√

1 + 2κ) dζ

= −2δ2 − δ
√

1 + 2κ

∫ α

0

ψ′′(v1 − 2ζδ
√

1 + 2κ) d(v1 − 2ζδ
√

1 + 2κ)

= −2δ2 + δ
√

1 + 2κ
(−ψ′(v1 − 2αδ

√
1 + 2κ) + ψ′(v1)

)

≤ −2δ2 + δ
√

1 + 2κ 2δ√
1+2κ

= 0.
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which proves the lemma. The first inequality is due to Lemma 5.5, while the second inequal-
ity follows from the hypothesis (5.6) of the lemma.

Lemma 5.7. The largest possible value of the step size α satisfying (5.6) is given by

ᾱ :
1

2δ
√

1 + 2κ

[
ρ (δ)− ρ

((
1 +

1√
1 + 2κ

)
δ

)]
. (5.7)

Proof. We want to compute the step size α such that (5.6) holds, with α as large as
possible. The derivative with respect to v1 of the left-hand side in the inequality (5.6)
is −ψ′′(v1 − 2αδ

√
1 + 2κ) + ψ′′(v1). Since ψ′′(t) is decreasing, this derivative is negative.

Therefore, the left-hand side is a decreasing function of α. Hence, fixing δ, the smaller v1

is, the smaller the maximal value of α will be. We have

δ = 1
2 ‖∇Ψ(v)‖ ≥ 1

2 |ψ′ (v1)| ≥ − 1
2ψ′ (v1) .

Equality holds if and only if v1 is the only coordinate in v that differs from 1, and v1 ≤ 1 (in
which case ψ′ (v1) ≤ 0). Hence, the worst situation for the step size occurs when v1 satisfies

− 1
2ψ′ (v1) = δ. (5.8)

The derivative with respect to α of the left-hand side in (5.6) equals

2δ
√

1 + 2κ ψ′′
(
v1 − 2αδ

√
1 + 2κ

) ≥ 0,

and, hence, the left side of the inequality (5.6) is increasing in α. Thus, the largest possible
value of α satisfying (5.6), satisfies

−ψ
′
(v1 − 2αδ

√
1 + 2κ) + ψ

′
(v1) =

2δ√
1 + 2κ

.

Due to (5.8) the above equation can be written as

− 1
2ψ

′
(v1 − 2αδ

√
1 + 2κ)

(
1 +

1√
1 + 2κ

)
δ. (5.9)

By the definition of the inverse function ρ (cf. Lemma 4.2), the equations (5.8) and (5.9)
can be written as

v1 = ρ (δ) , v1 − 2αδ
√

1 + 2κ = ρ

[(
1 +

1√
1 + 2κ

)
δ

]
.

Thus, it follows that

α =
1

2δ
√

1 + 2κ

(
ρ (δ)− ρ

((
1 +

1√
1 + 2κ

)
δ

))
,

and the lemma is proved.

The term 1+ 1√
1+2κ

appears frequently in the sequel, so in order to simplify the notation
we introduce the following abbreviation:

K := 1 +
1√

1 + 2κ
. (5.10)
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Lemma 5.8. With ρ, ᾱ and K as defined above, we have

ᾱ ≥ 1
(1 + 2κ)ψ′′ (ρ (Kδ))

. (5.11)

Proof. By the definition of ρ, we have −ψ′ (ρ(δ)) = 2δ. Taking the derivative with respect
to δ, we find

−ψ′′ (ρ(δ)) ρ′(δ) = 2,

which leads to
ρ′(δ) = − 2

ψ′′ (ρ(δ))
< 0.

Hence, ρ is monotonically decreasing. Using the fundamental theorem of calculus, the
expression (5.7) for the step size ᾱ can be transformed as follows:

ᾱ =
1

2δ
√

1 + 2κ
(ρ (δ)− ρ (Kδ)) =

1
2δ
√

1 + 2κ

∫ δ

Kδ

ρ′(σ) dσ =
1

δ
√

1 + 2κ

∫ Kδ

δ

dσ

ψ′′ (ρ(σ))
.

(5.12)
To obtain a lower bound for ᾱ we want to replace the argument of the last integral by its
minimal value. Thus, we would like to know when ψ′′ (ρ(σ)) is maximal for σ ∈ (δ, Kδ).
Since ψ′′ is monotonically decreasing, ψ′′ (ρ(σ)) is maximal for σ ∈ (δ, Kδ) when ρ(σ) is
minimal. Since ρ is monotonically decreasing, this occurs when σ = Kδ. Therefore, using
(5.12) and (5.10) we obtain

ᾱ =
1

δ
√

1 + 2κ

∫ Kδ

δ

dσ

ψ′′ (ρ(σ))
≥ 1

δ
√

1 + 2κ

1
ψ′′ (ρ (Kδ))

∫ Kδ

δ

dσ =
1

1 + 2κ

1
ψ′′ (ρ (Kδ))

,

and the lemma is proved.

Theorem 5.9. If ᾱ is defined by (5.7), then the following inequality holds

ᾱ ≥ 1

(1 + 2κ)(p + q)(1 + 2Kδ)
1+q

q

.

Proof. By Lemma 4.2 we have

ρ(Kδ) ≥ (1 + 2Kδ)−
1
q .

Since ψ′′(t) is monotonically decreasing in t ∈ (0,∞), we get

ψ′′ (ρ(Kδ)) ≤ ψ′′
(

(1 + 2Kδ)−
1
q

)
.

Hence, using (5.11) and (4.3) we obtain

ᾱ ≥ 1
(1 + 2κ) ψ′′ (ρ (Kδ))

≥ 1
1 + 2κ

1

p(1 + 2Kδ)
1−p

q + q(1 + 2Kδ)
1+q

q

≥ 1

(1 + 2κ)(p + q)(1 + 2Kδ)
q+1

q

,

which is the desired inequality.

In the analysis of the Generic Algorithm described in the Figure 1 we use

α̃ :=
1

(1 + 2κ)(p + q)(1 + 2Kδ)
q+1

q

. (5.13)

as the default step size. Note that α̃ ≤ ᾱ.



34 Y.Q. BAI, G. LESAJA AND C. ROOS

5.3 Decrease of the Barrier Function During an Inner Iteration

In this section we show that the default step size (5.13) yields sufficient decrease of the
barrier function value during each inner iteration.

Lemma 5.10. If the step size α is such that α ≤ ᾱ, where ᾱ is defined by (5.7), then

f(α) ≤ −αδ2.

Proof. Let the univariate function h be such that

h(0) = f1(0) = 0, h′(0) = f ′1(0) = −2δ2, h′′(α) = 2(1 + 2κ) δ2ψ′′
(
v1 − 2αδ

√
1 + 2κ

)
.

According to Lemma 5.5 we have f ′′1 (α) ≤ h′′(α) which implies f ′1(α) ≤ h′(α) and f1(α) ≤
h(α). Taking α ≤ ᾱ, with ᾱ as defined by (5.7), and using the fundamental theorem of
calculus we get

h′(α) =
∫ α

0
h′′(ξ) dξ + h′(0)

= −2δ2 + 2(1 + 2κ)δ2
∫ α

0
ψ′′(v1 − 2ξδ

√
1 + 2κ) dξ

= −2δ2 − δ
√

1 + 2κ
(
ψ′(v1 − 2αδ

√
1 + 2κ)− ψ′(v1)

)
≤ −2δ2 − δ

√
1 + 2κ 2δ√

1+2κ
= 0.

The last inequality is due to the definition of ᾱ, which guarantees that if α ≤ ā then
inequality (5.6) in Lemma 5.6 holds. Since ψ′′′(t) < 0 for t > 0, ψ′′(t) is decreasing in t, and
therefore h′′(α) is increasing in α. Using Lemma A.2, we get

f1(α) ≤ h(α) ≤ 1
2
αh′(0) = −αδ2.

As we mentioned before, f1(α) is an upper bound of f(α), hence, the lemma is proved.

Theorem 5.11. If α̃ is the default step size, as defined by (5.13), then

f(α̃) ≤ − Ψ(v)
p(q−1)
q(p+1)

100(1 + 2κ)(p + q)
.

Proof. Since α̃ ≤ ᾱ we apply Lemma 5.10 with α = α̃. Also using the definition (5.13) of α̃
we obtain

f(α̃) ≤ −α̃δ2 = − δ2

(1 + 2κ)(p + q)(1 + 2Kδ)
q+1

q

.

Since q > 1, it can easily may be verified that the last expression above is monotonically
decreasing in δ. Hence, using this fact and Corollary 4.5 we get

f(α̃) ≤ − Ψ(v)
2p

p+1

36(1 + 2κ)(p + q)
[
1 + K

3 Ψ(v)
p

p+1

] q+1
q

. (5.14)

The rest of the proof consist of simplifying the last expression. Using the fact that 1 < τ ≤
Ψ(v) we may write

(
1 + K

3 Ψ(v)
p

p+1

) q+1
q ≤

(
Ψ(v)

p
p+1 + K

3 Ψ(v)
p

p+1

) q+1
q

=
(
1 + K

3

) q+1
q Ψ(v)

p
p+1

q+1
q .
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Since K ≤ 2 and q > 1, it follows that

(
1 + K

3 Ψ(v)
p

p+1

) q+1
q ≤ (

1 + 2
3

) q+1
q Ψ(v)

p
p+1

q+1
q ≤ (

5
3

)2 Ψ(v)
p

p+1
q+1

q = 25
9 Ψ(v)

p
p+1

q+1
q .

Substitution into (5.14) leads to

f(α̃) ≤ − Ψ(v)
p(q−1)
q(p+1)

100(1 + 2κ)(p + q)

which is the desired inequity. Thus, the theorem has been proved.

6 Complexity of the Algorithm

In this section the name Algorithm will refer to the Generic Algorithm of Figure 1 for the
specific case when the kernel function is defined by (4.1) and the step size is given by (5.13).
In the previous sections we have found all the ingredients that we need for deriving an upper
bound for the number of iterations required by the Algorithm. In the first subsection below
we derive an iteration bound for large-update methods and in the second subsection an
iteration bound for small-update methods.

6.1 Iteration Bound for the Large-Update Method

First we count how many inner iterations are required by the Algorithm to return to the
situation where Ψ(v) ≤ τ after a µ-update. We denote the value of Ψ(v) after the µ-update as
Ψ0, and the subsequent values in the same outer iteration are denoted as Ψk, k = 1, 2, ..., K̄,
where K̄ denotes the total number of inner iterations in the outer iteration. By using (5.1)
in Lemma 5.3, we have

Ψ0 ≤ nψ


1 + τ

n +
√(

τ
n

)2 + 2τ
n√

1− θ


 .

Since ψ(t) ≤ tp+1−1
p+1 when t ≥ 1

Ψ0 ≤ n
p+1




[
1+ τ

n +
q

( τ
n )2

+ 2τ
n√

1−θ

]p+1

− 1


 .

For a > 0 and p ∈ [0, 1], by using Lemma A.1, one has

ap+1 − 1 = a · (1 + (a− 1))p − 1 ≤ a (1 + p(a− 1))− 1 = (a− 1)(1 + ap)

which leads to

Ψ0 ≤ n

p + 1


1 + τ

n +
√(

τ
n

)2 + 2τ
n√

1− θ
− 1





1 +

1 + τ
n +

√(
τ
n

)2 + 2τ
n√

1− θ
p




=
n

(p + 1)(1− θ)

(
1+

τ

n
+

√( τ

n

)2

+
2τ

n
−
√

1− θ

)(
√

1− θ+

(
1 +

τ

n
+

√( τ

n

)2

+
2τ

n

)
p

)
.
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Assuming that
τ

n
+

√( τ

n

)2

+
2τ

n
≤ 2

and using the inequality 1−√1− θ ≤ θ, we obtain

Ψ0 ≤
4

(
nθ + τ +

√
τ2 + 2τn

)

(p + 1)(1− θ)
.

Due to the Theorem 5.11 we have

Ψk+1 ≤ Ψk − β(Ψk)1−γ , k = 0, 1, ..., K̄ − 1,

with
β =

1
100(1 + 2κ)(p + q)

and γ =
p + q

q(p + 1)
.

Hence, by Lemma A.3, we obtain the following upper bound for the number K̄ of inner
iterations.

K̄ ≤ 100(1 + 2κ)q(p + 1)(Ψ0)
p+q

q(p+1) (6.1)

≤ 100(1 + 2κ)q(p + 1)

(
4

(
nθ + τ +

√
τ2 + 2τn

)

(p + 1)(1− θ)

) p+q
q(p+1)

. (6.2)

Now we can derive an upper bound for the total number of iterations needed by the large-
update version of the Algorithm.

Theorem 6.1. Given that θ = Θ(1), and τ = O(n), which are characteristics of large-
update methods, the Algorithm will obtain an ε-approximate solution of P∗(κ)-LCP in at
most

O
(
(1 + 2κ) q(p + 1)n

p+q
q(p+1) log

n

ε

)
(6.3)

iterations.

Proof. It is well known that the number of outer iterations is bounded above by [17, Lemma
Π.17, page 116]

1
θ

log
n

ε
. (6.4)

By multiplying this number with the upper bound for the number of inner iterations per
outer iteration we get the upper bound for the total number of iterations, namely

100(1 + 2κ)
q(p + 1)

θ

(
4

(
nθ + τ +

√
τ2 + 2τn

)

(p + 1)(1− θ)

) p+q
q(p+1)

log
n

ε
.

One may easily verify that this agrees with the iteration bound stated in the theorem.

One also easily verifies that if p > 0 then the expression q (1 + p) n
p+q

q(p+1) is convex in q.
Moreover, it is minimal for q = p log n

p+1 and then it equals p e−1 n
1

1+p log n, where e is the base
of the natural logarithm function. Hence, if log n > p+1

p and q = p log n
p+1 then the iteration

bound (6.3) in Theorem 6.1 becomes

O
(
(1 + 2κ) p p+1

√
n (log n) log

n

ε

)
, q =

p log n

p + 1
> 1. (6.5)
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Note that the last inequality implies

p >
1

log n− 1
.

In the limiting case, when the above inequality holds with equality (which corresponds to
q = 1), the bound (6.5) becomes

O

(
(1 + 2κ)

n log n

log n− 1
log

n

ε

)
≡ O

(
(1 + 2κ)n log

n

ε

)
. (6.6)

It is interesting to apply the above bounds to some special cases of the parameters p and
q.

• p = 1, q > 1 : In this case ψ(t) is the prototype self-regular kernel function. From
(6.5) we obtain the iteration bound O

(
(1 + 2κ)

√
n log n log n

ε

)
, which is currently the

best known bound for large-update methods. This result matches the result obtained
by Peng et al. [14].

• p = 1, q = 1 : In this case ψ(t) is the classical logarithmic kernel function. The
bound in Theorem 6.1 simplifies to O((1 + 2κ)n log n

ε ) which is the usual bound for
large-update methods based on the logarithmic kernel function (see, e.g., [2, 12]).

• p = 0, q = 2 : In this case ψ(t) = t− 1
t −2 which is, from an algebraic point of view,

the simplest kernel function. Theorem 6.1 yields the same bound as for the logarithmic
barrier function.

It is worth pointing out again that the class of kernel functions ψ(t) defined in (4.1) is not
self-regular for 0 ≤ p < 1. Thus, the complexity results for 0 ≤ p < 1 are new, since up to
now all complexity results for P∗(κ)-LCP were developed for either the classical logarithmic
kernel function or for the self-regular kernel functions.

6.2 Iteration Bound for the Small-Update Method

When applying the above analysis to small-update methods the resulting iteration bound
is not as good as it can be for these types of methods. A better result is obtained by using
(5.2) in Lemma 5.3:

Ψ0 ≤ nψ




1 +

√
τ
n + τ2

n2 + τ
n

√
τ2

n2 + 2τ
n√

1− θ


 , q ≥ 2− p.

Using the fact that ψ(t) ≤ 1
2ψ′′(1)(t− 1)2 and ψ′′(1) = p + q, we get (cf. [7, Lemma 2.2])

Ψ0 ≤ (p + q)n
2




1 +

√
τ
n + τ2

n2 + τ
n

√
τ2

n2 + 2τ
n√

1− θ
− 1




2

.

Applying again the inequality 1−√1− θ ≤ θ, it follows that

Ψ0 ≤ p + q

2(1− θ)


θ
√

n +

√
τ +

τ2

n
+ τ

√
τ2

n2
+

2τ

n




2

.
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Therefore, by following the same line of arguments as for large-update methods, we get the
following upper bound for the number K̄ of inner iterations during one outer iteration:

K̄ ≤ 100(1 + 2κ)q(p + 1)


 p + q

2(1− θ)


θ
√

n +

√
τ +

τ2

n
+ τ

√
τ2

n2
+

2τ

n




2



p+q
q(p+1)

.

Using the upper bound (6.4) for the number of outer iterations we obtain the following
bound for the total number of iterations:

100(1 + 2κ)
q(p + 1)

θ


 p + q

2(1− θ)


θ
√

n +

√
τ +

τ2

n
+ τ

√
τ2

n2
+

2τ

n




2



p+q
q(p+1)

log
n

ε
.

For small-update methods we have θ = Θ( 1√
n
) and τ = O(1). Then, the term between the

square brackets in the above expression is O(1). The exponent p+q
q(p+1) is also O(1) since it

is at most 1 (which happens if q = 1). Thus, we get the bound

O
(
(1 + 2κ)q(p + 1) (p + q)

√
n log

n

ε

)
.

Since p ∈ [0, 1], we have q(p + 1) (p + q) = O(q2) (in fact q(p + 1) (p + q) = q2 if p = 0).
Hence, we have proved the following result.

Theorem 6.2. Given that θ = Θ( 1√
n
) and τ = O(1), which are characteristics of the

small-update methods, the Algorithm will obtain an ε-approximate solution in at most

O
(
(1 + 2κ)q2

√
n log

n

ε

)

iterations.

7 Conclusion

In this paper we have analyzed large- and small-update versions of the IPM for P∗(κ)-
LCP described in the Figure 1, while using the class of kernel functions (4.1) and with the
default step size (5.13). The class of kernel functions (4.1) is important because it is fairly
general and includes the classical logarithmic kernel function, the prototype self-regular
kernel function, and non-self-regular kernel functions as special cases. This class was first
introduced by Bai et al. in [7] for LO. As far as we are aware this is the first result on IPM
for P∗(κ)-LCP based on this class of kernel functions.

The generalization from LO to P∗(κ)-LCP required several new arguments. In the LO
case the orthogonality of the scaled search directions dx and ds makes it much easier to get
upper bounds for ‖dx‖ and ‖ds‖ in terms of the proximity function δ(v). In the P∗(κ)-LCP
case Lemma 5.4 serves this purpose. The new upper bounds, which depend on the parameter
κ, required careful reexamination and modification of all the subsequent results. At the end,
the iteration bound differ from the ones obtained in LO case only by a factor 1 + 2κ.

The iteration bounds obtained in this paper are as good as they can be in the current
state-of-the-art. They can be adapted to match the best known bounds for self-regular
kernel functions (see [14, 16]). They also match well-known results for the logarithmic kernel
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function (see for example [2, 12]). However, self-regular and logarithmic kernel functions are
just special members of the class considered in this paper. They occur by taking p = 1, q > 1
and p = 1, q = 1 respectively. For 0 ≤ p < 1, our kernel functions are not self-regular. Thus,
the algorithm and complexity results for 0 ≤ p < 1 are new, because up to now all complexity
results for P∗(κ)-LCP were developed for either the classical logarithmic or self-regular kernel
functions.

Possible directions for further research include numerical studies to compare the new
method with existing methods. Favorable theoretical complexity bounds in general do not
necessarily mean that the numerical behavior of this method will be competitive with other
methods. Additional, more theoretical, questions of interest include the development and
complexity analysis of algorithms based on different kernel functions. Also, it would be
interesting if our results could be generalized to nonlinear complementarity problems.

A Three Technical Lemmas

We list three simple technical lemmas because they are used in the complexity analysis of
the algorithms. The original proofs of these lemmas can be found in [4, 15, 16], respectively.

Lemma A.1 (Lemma 20 in [4]). If α ∈ [0, 1] and t ≥ −1, then (1 + t)α ≤ 1 + αt.

Lemma A.2 (Lemma 12 in [15]). Let h(t) be a twice differentiable convex function with
h(0) = 0 and h′(0) < 0, and let h(t) attain its (global) minimum at t∗ > 0. If h′′(t) is
monotonically increasing for t ∈ [0, t∗], then one has

h(t) ≤ th′(0)
2

, 0 ≤ t ≤ t∗.

Lemma A.3 (Proposition 2.2 in [16]). Let t0, t1, · · · , tK be a sequence of positive num-
bers such that

tk+1 ≤ tk − βt1−γ
k , k = 0, 1, · · · ,K − 1,

where β > 0 and 0 < γ ≤ 1. Then K ≤
⌊

tγ
0

βγ

⌋
.
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