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Abstract: We introduce a new tunnel function for finding the global minimum of a general coercive C1

function over its domain. A tunnel function is constructed at a local minimizer of the objective function such
that it achieves local maximum at the current solution. Moreover, a local minimizer of the tunnel function
leads to a new solution to the original problem with lower objective value. Iteration follows in this manner
to reach a global minimizer. Promising computational results are included and discussed.
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1 Introduction

Optimization theory and methods have been widely used with real life applications for many
years. Yet, most classical optimization techniques only find local optimizers. In the past
several decades, researchers have turned their attentions to global optimization problems
[13]. Numerous meta-heuristics and softcomputing techniques, including genetic algorithm
[10, 18], tabu search [7, 8, 9], simulated annealing [14, 19], neural networks [11, 12, 23], MARS
[17] and electromagnetism method [2], have been developed for finding a global optimal
(or near-optimal) solution to problems with nonlinear, nonconvex and discrete structure.
Classical continuous optimization methods have also been refined to invoke certain auxiliary
functions to move from one local optimal solution to a better one in search of the optimum.
The methods of “filled function” [5, 6, 16, 20, 22] and “tunnel function” [1, 4, 15, 21] belong
to the latter category.

In this paper, we propose a new tunnel function method for solving minimization prob-
lems with a general objective function over a box-constrained domain. The method iterates
from one local minimum to a better one. In each iteration, we construct a tunnel function
that attains strict local maximum at the current solution. A local minimizer of the tunnel
function then leads to a new solution of reduced objective function value. Some promising
computational results are reported by running all testing problems listed in [22].

∗The research has been supported by Grant No. 10571116 of the National Natural Science Foundation
of China, Grant No. W911NF-04-D-0003 of the US Army Research Office and Grant No. DMI-0553310 of
the US National Science Foundation.
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We introduce the new tunnel function and study its properties for global minimization
problems in Section 2. Then we propose a solution method that uses the tunnel function to
find a global minimizer in Section 3. Following that we report computational results on the
proposed method in Section 4. Concluding remarks are given in the last section.

2 A New Tunnel Function

Let f : Rn → R be a C1 function that is coercive, i.e., lim
‖x‖→+∞

f (x) = +∞. Assume

that f (x) has a global minimizer in the interior of a box B = {x ∈ Rn|a ≤ x ≤ b} for some
a, b ∈ Rn. Let X = int (B). In this paper, we are interested in finding a global optimizer of
the following minimization problem

(P ) min
x∈X

f (x) . (2.1)

Let us first recall the definition of tunnel function.

Definition 2.1. Given x? ∈ X and f : Rn → R, a function T (x;x?, r, q) is called a “tunnel
function” of f at x? if, for any x0 ∈ X with r > 0 and q > 0, T

(
x0;x?, r, q

)
= 0 if and only

if f
(
x0

)− f (x?) + r = 0.

In this paper, we define a function T (x;x?, r, q) of f at a given x? ∈ X with r > 0 and
q > 0 as follows

T (x;x?, r, q)
4
=

ln
(
1 + q (f (x)− f (x?) + r)2

)

1 + ‖x− x?‖2 ,∀x ∈ X. (2.2)

It is easy to see that T (x;x?, r, q) is a tunnel function. Moreover, this function has the
following properties:

Property 2.2.

(1) For any given x? ∈ X, r > 0, q > 0, we have T (x;x?, r, q) ≥ 0,∀x ∈ X.

(2) For any given r > 0, q > 0 and x0 ∈ X, if f
(
x0

)
= f (x?)− r, then x0 is a minimizer

of T (x;x?, r, q).

For any x ∈ X, the gradient of T (x;x?, r, q) can be calculated as

∇T (x;x?, r, q) =

(
1 + ‖x− x?‖2

)
2q(f(x)−f(x?)+r)

1+q(f(x)−f(x?)+r)2
∇f (x)

(
1 + ‖x− x?‖2

)2

−
ln

(
1 + q (f (x)− f (x?) + r)2

)
2 (x− x?)

(
1 + ‖x− x?‖2

)2 .

(2.3)

Assume that x? is a local minimizer of f , since x? is an interior point, we have ∇f (x?) = 0.
Then based on (2.3), it is not difficult to see that∇T (x?;x?, r, q) has the following properties:

Property 2.3. Let x? be a local minimizer of f , then
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(1) ∇T (x?;x?, r, q) = 0;

(2) If there exist x0 ∈ X and r > 0 such that f
(
x0

)−f (x?)+r = 0, then ∇T
(
x0;x?, r, q

)
=

0.

For a given function f ∈ C1(X), we say its gradient function ∇f satisfies the Lips-
chitz condition on X, if there exists an L > 0 such that ‖∇f (x1) − ∇f (x2) ‖ ≤ L‖x1 −
x2‖,∀x1, x2 ∈ X. The following proposition shows an important property of the tunnel
function T

(
x0;x?, r, q

)
.

Proposition 2.4. For Problem (P ), assume that (i) ∇f satisfies the Lipschitz condition,
and (ii) x? ∈ X is a local minimizer of f over a neighborhood Nbd (x?, δ). If x? is not
the global minimizer of f and r is sufficiently small such that f

(
x0

)
= f (x?)− r holds for

some x0 ∈ X, then T (x?;x?, r, q) > T (x;x?, r, q) ,∀x ∈ Nbd (x?, δ) ∩X − {x?} with q being
sufficiently large.

Proof. Notice that ∇f (x?) = 0 and

∇T (x;x?, r, q) =

(
1 + ‖x− x?‖2

)
2q(f(x)−f(x?)+r)

1+q(f(x)−f(x?)+r)2
∇f (x)

(
1 + ‖x− x?‖2

)2

−
ln

(
1 + q (f (x)− f (x?) + r)2

)
2 (x− x?)

(
1 + ‖x− x?‖2

)2 .

Now for each x ∈ Nbd (x?, δ)∩X, we have f (x) ≥ f (x?), and hence f (x)−f (x?)+r ≥ r > 0.
Let x = x? + λd, λ ≥ 0, then

dT∇T (x;x?, r, q) =

(
1 + ‖x− x?‖2

)
2q(f(x)−f(x?)+r)

1+q(f(x)−f(x?)+r)2
dT∇f (x)

(
1 + ‖x− x?‖2

)2

−
ln

(
1 + q (f (x)− f (x?) + r)2

)
2λ‖d‖2

(
1 + ‖x− x?‖2

)2

≤

(
1 + ‖x− x?‖2

)
2q(f(x)−f(x?)+r)

1+q(f(x)−f(x?)+r)2
‖d‖‖∇f (x) ‖

(
1 + ‖x− x?‖2

)2

−
ln

(
1 + q (f (x)− f (x?) + r)2

)
2λ‖d‖2

(
1 + ‖x− x?‖2

)2

=

(
1 + ‖x− x?‖2

)
2q(f(x)−f(x?)+r)

1+q(f(x)−f(x?)+r)2
‖d‖‖∇f (x)−∇f (x?) ‖

(
1 + ‖x− x?‖2

)2

−
ln

(
1 + q (f (x)− f (x?) + r)2

)
2λ‖d‖2

(
1 + ‖x− x?‖2

)2
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≤

(
1 + ‖x− x?‖2

)
2q(f(x)−f(x?)+r)

1+q(f(x)−f(x?)+r)2
Lλ‖d‖2

(
1 + ‖x− x?‖2

)2

−
ln

(
1 + q (f (x)− f (x?) + r)2

)
2λ‖d‖2

(
1 + ‖x− x?‖2

)2 .

The term of
(
1 + ‖x− x?‖2

)
2q(f(x)−f(x?)+r)

1+q(f(x)−f(x?)+r)2
L is bounded by

(
1 + ‖b− a‖2) 2

r L. But

when q becomes sufficiently large, 2 ln
(
1 + q (f (x)− f (x?) + r)2

)
goes to infinity. There-

fore, if q is sufficiently large such that 2 ln
(
1 + qr2

)
>

(
1 + ‖b− a‖2) 2

r L, then

(
1 + ‖x− x?‖2

) 2q (f (x)− f (x?) + r)
1 + q (f (x)− f (x?) + r)2

L

−2 ln
(
1 + q (f (x)− f (x?) + r)2

)
< 0, ∀x ∈ Nbd (x?, δ) ∩X.

Thus dT∇T (x;x?, r, q) < 0. Since d is chosen arbitrarily, and q, which is chosen to satisfy
2 ln

(
1 + qr2

)
>

(
1 + ‖b− a‖2) 2

r L, is independent of x, we conclude that starting from x?,
any direction is a descent direction of T (·).

Without loss of generality, we can modify the set Nbd (x?, δ) ∩ X such that ∀x̄ ∈
Nbd (x?, δ) ∩ X, x = x? + λ (x̄− x?) ∈ Nbd (x?, δ) ∩ X, for 0 ≤ λ ≤ 1. Suppose ∃x̄ ∈
Nbd (x?, δ)∩X such that T (x?;x?, r, q) ≤ T (x̄;x?, r, q), let us consider the direction vector
d = x̄ − x? over a straight line. There must exist x̃ = x? + λd with 0 < λ < 1 such that
the directional derivative T ′ (x̃;x?, r, q; d) = T (x̄;x?, r, q)−T (x?;x?, r, q) ≥ 0. On the other
hand, T ′ (x̃;x?, r, q; d) = dT∇T (x̃, x?, r, q) < 0, which causes a contradiction. Therefore, x?

is a strict local maximizer of T (·) on Nbd (x?, δ) ∩X.

From the proof of the above proposition, it is straightforward to have the following
proposition:

Proposition 2.5. The x? in Proposition 2.4 is a strict local maximizer of T (x;x?, r, q).
Moreover, starting from x?, any direction is a descent direction and T (x;x?, r, q) is mono-
tone along this direction within Nbd (x?, δ) ∩X.

It is interesting to note that a function satisfying the properties stated in the above
proposition is known as a “filled function” [5]. Therefore, our new tunnel function T (·) is
also a “filled function” of f (·).

For the problem (P ), we can show that the function T (x;x?, r, q) holds the property of
Proposition 2.5 not only on Nbd (x?, δ) ∩ X, but also on a larger area for some proper q.
Denote Nbd (x?, ε) with r > ε > 0, the level set such that ∀x ∈ Nbd (x?, ε), f (x)−f (x?)+r ≥
ε. Then the following proposition holds:

Proposition 2.6. For Problem (P ) with f , T as defined before, we have T (x?;x?, r, q) >
T (x;x?, r, q) ,∀x ∈ Nbd (x?, ε) ∩X with q being sufficiently large. Moreover, T (·) is mono-
tone along any direction starting from x? within the area of Nbd (x?, ε) ∩X.

Proof. This proof is similar to that of Proposition 2.4. Here we only need to use a sufficiently
large q such that 2 ln

(
1 + qε2

)
>

(
1 + ‖b− a‖2) 2

ε L.
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From Propositions 2.5 and 2.6, one can see that by selecting a proper q, the function
T (x;x?, r, q) has no local minimizer within the range that x? is a local minimizer of f (x),
say, Nbd (x?, δ)∩X. Furthermore, by using a proper q, T (x;x?, r, q) has no local minimizer
within a larger range Nbd (x?, ε) ∩X.

Proposition 2.6 also indicates that if q is sufficiently large such that 2 ln
(
1 + qε2

)
>(

1 + ‖b− a‖2) 2
ε L, then starting from x? and moving along any direction d, we have

dT∇T (x;x?, r, q) < 0,∀x = x? + λd ∈ Nbd (x?, ε) ∩ X, λ > 0. Moreover, T (x;x?, r, q) is
monotone along d within Nbd (x?, ε) ∩X.

Proposition 2.7. If there exists an x̃ ∈ Nbd (x?, ε)∩X such that x̃ 6= x? and ∇T (x̃;x?, r, q) =
0, then f (x̃) < f (x?)− r + ε with 0 < ε < r, and hence f (x̃) < f (x?).

Proof. Suppose the statement is not true, then we have f (x̃) ≥ f (x?)−r+ε with 0 < ε < r.
From the proof of Proposition 2.6 we know that in this case, dT∇T (x̃;x?, r, q) < 0 where
d = x̃− x?. This is a contradiction. Hence f (x̃) < f (x?)− r + ε < f (x?). Notice that such
x̃ does exist, since for any x0 such that f

(
x0

)
= f (x?) − r, we have ∇T

(
x0;x?, r, q

)
= 0

and hence dT∇T
(
x0;x?, r, q

)
= 0.

Proposition 2.8. Given any r > 0, r1 > 0, r2 > 0, q > 0, for any x1, x2 ∈ X, if ‖x1−x?‖ >
‖x2 − x?‖ > 0 with f (x1) = f (x?) − r1 and f (x2) = f (x?) − r2 where r ≥ r1 > r2 > 0,
then T (x1;x?, r, q) < T (x2;x?, r, q).

Proof. For x1, x2 ∈ X where ‖x1 − x?‖ > ‖x2 − x?‖ > 0, we have 1
1+‖x1−x?‖2 < 1

1+‖x2−x?‖2 .
Since 0 ≤ f (x1) − f (x?) + r = r − r1 < f (x2) − f (x?) + r = r − r2, we have ln

(
1 +

q (f (x1)− f (x?) + r)2
)

< ln
(
1 + q (f (x2)− f (x?) + r)2

)
. Consequently, T (x1;x?, r, q) <

T (x2;x?, r, q).

To illustrate the properties of the proposed tunnel function, we consider an example of
f(x) = 1

10x sin(x). This function has a local minimum at x? = 0 with f(x?) = 0. For
r = 0.1 and q = 103, the corresponding T (x;x?, r, q) monotonically decreases to a minimum
at x̃ = 3.4368 with ∇T (x̃;x?, r, q) = 0. The figures of f(x) and T (x;x?, r, q) are plotted in
Figure 1(a) and Figure 1(b), respectively. Notice that at x = x̃, f(x̃) = −0.1, which equals
f(x?) − r as stated in Proposition 2.7. The tunnel function T of f(x) with r = 1, q = 103

and r = 0.1, q = 108 are plotted in Figure 1(c) and Figure 1(d), respectively. Comparing
these figures with Figure 1(b), one can see that a larger q results in a tunnel function with
larger amplitude and a larger r leads to farther local minimizers of the tunnel function from
x?.

3 Solution Method

Assume x? ∈ X is a local minimizer of f(x). Based on the properties of the tunnel function
proposed in the previous section, if one can find a local minimizer of T (x;x?, r, q) in an
appropriate neighborhood of x? for some r and q, then a solution with lower objective value
than f(x?) can be obtained. If no such r and q exist, the current local minimizer is the
global solution of Problem (P ).

For f (x) and T (x;x?, r, q) as defined in (2.1) and (2.2), we propose the following algo-
rithm to find a global minimizer of Problem (P ):

Algorithm 3.1. Tunnel function method.
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Figure 1: f(x) and T (x;x?, r, q) with x0 = 0 and different r’s, q’s

Step 0 : Choose ε0 > 0, r > ε0, ε = r
2 and an integer K > 0.

Step 1 : Pick any initial point x0 ∈ X and use a direction search algorithm
to find a local minimizer x? of f (x).

Step 2 : Choose a sufficiently large q > 0 such that 2 ln
(
1 + qε2

)
>(

1 + ‖b− a‖2) 2
ε L and construct the function T (x;x?, r, q) at x?.

Pick K different directions dk, k = 1, . . . , K.
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Step 3 : For k = 1 to K do:
Starting from x? and moving along the direction dk, use a one
dimensional search algorithm to find the first local minimizer x̃
of T (x;x?, r, q) or f(x̃) < f(x?). If dT

k∇T (x̃;x?, r, q) = 0 or
f(x̃) < f(x?), then go to Step 4. Otherwise go to Step 5.

Step 4 : Starting from x̃, use a direction search algorithm to find a local
minimizer x? of f (x). Go to Step 6.

Step 5 : Update r ← r
2 , ε ← ε

2 .

Step 6 : If ε > ε0, then go to Step 2. Otherwise, terminate algorithm with
an ε0 optimal solution.

Remarks:

1) When there is no a priori knowledge on the location of the next better local minimizer,
a common way to generate the K directions in Step 2 is to use the K different directions
that evenly partition the solution space.

2) The proposed algorithm faces with a point x? and K directions dk, k = 1, . . . , K.
Starting from x? and for all x = x? + λdk, x ∈ X, λ > 0, we have f (x) > f (x?)− ε0.
Thus, when ε0 → 0 and K is sufficiently large, we have f (x) ≥ f (x?) ,∀x ∈ X.

4 Computational Results

In this section, we run the proposed algorithm on eight test problems used in [22]. The
algorithm is implemented using Matlab. The Matlab function “fmincon” is used in the
algorithm to find local minimizers of the objective function. All the experiments are con-
ducted on a computer with a Pentium M 1.60GHz processor and 512MB memory. In the
implementation, we select K directions so that they evenly partition the solution space by
using the following n-dimensional spherical coordinates [3],

d =

(
cos (φ1) , cos (φ2) sin (φ1) , · · · , cos (φj)

j−1∏

l=1

sin (φl) , · · · ,

cos (φn−2)
n−3∏

l=1

sin (φl) , sin (θ)
n−2∏

l=1

sin (φl) , cos (θ)
n−2∏

l=1

sin (φl)

)
,

(4.1)

where φl ∈ { iπ
κ : i = 0, · · · , κ}, l = 1, · · · , n− 2; θ ∈ { 2π

κ : i = 0, · · · , κ} and K = κn−1.

Problem 4.1 (Two dimensional function [24]).

min f(x) = [1− 2x2 + c sin(4πx2)− x1]2 + [x2 − 0.5 sin(2πx1)]2

s.t. 0 ≤ x1 ≤ 10, −10 ≤ x2 ≤ 0,

with c = 0.2, 0.5, 0.05. The proposed method successfully finds the global minimum solutions
with f(x?) = 0 for all c. The computational results are reported in Tables 1, 2 and 3,
respectively.

Problem 4.2 (Three-hump back camel function [5]).

min f(x) = 2x2
1 − 1.05x4

1 + 1
6x6

1 − x1x2 + x2
2

s.t. −3 ≤ x1 ≤ 3, −3 ≤ x2 ≤ 3.
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Starting from two initial points x0 = (−2,−1) and (2, 1), the proposed method successfully
finds the global minimum solution x? = (0, 0) with f(x?) = 0. The computational results
are reported in Tables 4 and 5, respectively.

Problem 4.3 (Six-hump back camel function [5]).

min f(x) = 4x2
1 − 2.1x4

1 + 1
3x6

1 − x1x2 − 4x2
2 + 4x4

2

s.t. −3 ≤ x1 ≤ 3, −3 ≤ x2 ≤ 3.

Starting from three initial points x0 = (−2, 1), (2,−1), and (−2,−1), the proposed method
successfully finds the global minimum solutions x? = (0.0898, 0.7127) or (−0.0898,−0.7127)
with f(x?) = −1.0316. The computational results are reported in Tables 6, 7 and 8, respec-
tively.

Problem 4.4 (Treccani function [5]).

min f(x) = x4
1 + 4x3

1 + 4x2
1 + x2

2

s.t. −3 ≤ x1 ≤ 3, −3 ≤ x2 ≤ 3.

The proposed method successfully finds the global minimum solutions x? = (0, 0) with
f(x?) = 0. The computational results are reported in Table 9.

Problem 4.5 (Goldstein and Price function [5]).

min f(x) = g(x)h(x)
s.t. −3 ≤ x1 ≤ 3, −3 ≤ x2 ≤ 3.

where

g(x) = 1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2),
h(x) = 30 + (2x1 − 3x2)2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2).

The proposed method successfully finds the global minimum solutions x? = (0, 0) with
f(x?) = 3. The computational results are reported in Table 10.

Problem 4.6 (Two-dimensional Shubert function [5]).

min f(x) =
{∑5

i=1 i cos [(i + 1)x1 + i]
}{∑5

i=1 i cos [(i + 1)x2 + i]
}

s.t. 0 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 10.

The proposed method successfully finds the global minimum solution x? = (5.4829, 4.8581)
or (4.8581, 5.4829) with f(x?) = −186.7309. The computational results are reported in
Table 11.

Problem 4.7 (Shekel’s function [17]).

min f(x) = −∑5
i=1

[∑4
j=1(xj − ai,j)2 + ci

]−1

s.t. 0 ≤ xj ≤ 10, j = 1, 2, 3, 4,

where the coefficients ai,j , ci, i = 1, 2, 3, 4, 5, j = 1, 2, 3, 4 are given in the following:
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i ai,1 ai,2 ai,3 ai,4 ci

1 4.0 4.0 4.0 4.0 0.1
2 1.0 1.0 1.0 1.0 0.2
3 8.0 8.0 8.0 8.0 0.3
4 6.0 6.0 6.0 6.0 0.4
5 3.0 7.0 3.0 7.0 0.5

Starting from two initial points x = (1, 1, 1, 1) and (6, 6, 6, 6), the proposed method success-
fully finds the global minimum solution x? = (4.0000, 4.0001, 4.0000, 4.0001) with f(x?) =
−10.153. The computational results are reported in Tables 12 and 13, respectively.

Problem 4.8 (n-dimensional function [5]).

min f(x) = π
n

[
10 sin2 πx1 + g(x) + (xn − 1)2

]
s.t. −10 ≤ xi ≤ 10, i = 1, 2, . . . , n,

where

g(x) =
n−1∑

i=1

[
(xi − 1)2(1 + 10 sin2 πxi+1)

]
.

For n = 2, 3, 5, 7, 10, the proposed method successfully finds the global minimum solution
x? = (1, 1, . . . , 1) with f(x?) = 0 for all n. The computational results are reported in Tables
14 to 18, respectively.

5 Concluding Remarks

In this paper, we have proposed a new tunnel function method for solving a class of global
minimization problems. In our computational experiments, the proposed method success-
fully finds the optimal solution in an effective manner for all testing problems listed in [22].
However, some implementation issues deserve extra attentions to guarantee the performance
of Algorithm 3.1.

(1) At a current solution x?, although it is a strict local maximizer of the tunnel function
T (x;x?, r, q) and any direction is a descent direction, but not every direction can lead
to a point x̃ such that f (x̃) < f (x?). More sophisticated methods than searching K
different directions may greatly improve the efficiency of the proposed method.

(2) In Step 4, the accuracy of finding an exact local minimizer x? of f(x) may influence the
construction of the corresponding tunnel function T (x;x?, r, q) at x? and consequently
affects the performance of the proposed method.

(3) When we hit a global minimizer x? of f (·), then in theory for any q and r, we cannot
find x ∈ X such that x 6= x?,∇T (x;x?, r, q) = 0. Therefore, designing a quick stopping
criterion becomes interesting.
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iter x0 p r x? f(x?)
1 (6,−2) 1.0e17 0.01 (1.4513, 0) 0.2264
2 (1.1593, 0) 1.0e17 0.01 (0.9932,−0.0205) 1.0669e− 5
3 (0.9999, 0) 1.0e17 0.001 (1, 0) 0

Table 1: Computational results of Problem 4.1 with c = 0.2 and K = 40

iter x0 p r x? f(x?)
1 (0, 0) 1.0e17 0.01 (0.5524,−0.1037) 0.0332
2 (1.7936,−0.5069) 1.0e17 0.001 (1.7681,−0.5558) 0.0039
3 (1.0117,−0.0062) 1.0e17 0.0001 (1, 0) 0

Table 2: Computational results of Problem 4.1 with c = 0.5 and K = 40

iter x0 p r x? f(x?)
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Table 3: Computational results of Problem 4.1 with c = 0.05 and K = 40
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Table 6: Computational results of Problem 4.3 with initial point x0 = (−2, 1) and K = 20

iter x0 p r x? f(x?)
1 (2,−1) 1.0e17 0.01 (0.0898, 0.7127) −1.0316

Table 7: Computational results of Problem 4.3 with initial point x0 = (2,−1) and K = 20

iter x0 p r x? f(x?)
1 (−2,−1) 1.0e17 0.01 (0.0898, 0.7127) −1.0316

Table 8: Computational results of Problem 4.3 with initial point x0 = (−2,−1) and K = 20
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iter x0 p r x? f(x?)
1 (−1, 0) 1.0e17 0.01 (−1, 0) 1
2 (−0.9770, 0) 1.0e17 0.01 (0, 0) 0

Table 9: Computational results of Problem 4.4 and K = 20

iter x0 p r x? f(x?)
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iter x0 p r x? f(x?)
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Table 14: Computational results of Problem 4.8 with initial point x0 = (−4,−4) and K = 9
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iter x0 p r x? f(x?)
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