ON DUALITY FOR A CLASS OF NONDIFFERENTIABLE PROGRAMMING PROBLEMS *

Xinmin Yang ${ }^{\dagger}$ and Xiaoqi Yang
Dedicated to Professor Liansheng Zhang on the occasion of his 70th birthday.

Abstract

In this paper, first order and second order dual models for a class of nondifferentiable programming problems in which the objective function contains a support function of a compact convex set are formulated. Weak and converse duality theorems for the two dual models are established by using Fritz John necessary optimality conditions and some suitable conditions.

Key words: first and second order dual models, duality theorems, nondifferentiable programming problems, generalized convexity

Mathematics Subject Classification: 90C30, 90C46

1 Introduction

In [5], Mond first established a first order dual theorem for the following nondifferentiable programming problem

$$
\begin{array}{rll}
\left(P_{1}\right) \quad \text { minimize } & f(x)+\left(x^{T} B x\right)^{\frac{1}{2}} \\
\text { subject to } & x \in \mathbb{R}^{n}, g(x) \geq 0
\end{array}
$$

where f and g are twice differentiable functions from \mathbb{R}^{n} into \mathbb{R} and \mathbb{R}^{m}, respectively, and B is an $n \times n$ positive semi-definite (symmetric) matrix. Later, many authors gave firstorder duality theorems for nondifferentiable programming problem $\left(\mathrm{P}_{1}\right)$ using first order optimality conditions.

Second order dual models have also received extensive attentions for $\left(\mathrm{P}_{1}\right)$. Mangasarian [2] introduced a second order dual and obtained the duality result under a so-called "inclusion condition". Mond [3] proved duality theorems under the condition which is called "second-order convexity". This condition is much simpler than that used by Mangasarian [2]. Furthermore, Mond and Weir [4] reformulated a new type of second order duals. Later, second order dualities in nonlinear programming were considered by Husain and Rueda and

[^0]Jabeen [1], Yang et. al [8, 9] and Zhang and Mond [11], while Zhang and Mond [11] formulated general first order and second-order dual models for nondifferentiable programming problem (P_{1}) and established weak, strong and converse duality theorems under certain conditions. On the other hand, second-order dual models for a convex composite optimization problem have also been studied in Yang [10] under a generalized representation condition.

We note that Mond and Schechter [6] studied nondifferentiable symmetric duality, in which the objective function contains a support function. In this paper, based on Mond and Schechter's ideas in [6] and Zhang and Mond's works in [11], we replace the term $\left(x^{T} B x\right)^{\frac{1}{2}}$ in the objective function of $\left(\mathrm{P}_{1}\right)$ by a somewhat more general function, namely, the support function of a compact convex set, for which the subdifferential may be simply expressed. That is, we will consider the following nondifferentiable programming problem:

$$
\begin{array}{lll}
\text { (P) } & \text { minimize } & f(x)+s(x \mid C) \\
& \text { subject to } & x \in \mathbb{R}^{n}, g(x) \geq 0
\end{array}
$$

where f and g are twice differentiable functions from \mathbb{R}^{n} into \mathbb{R} and \mathbb{R}^{m}, respectively, and C is a compact convex set of \mathbb{R}^{n}, the support function $s(x \mid C)$ of C is defined by

$$
s(x \mid C):=\max \left\{x^{T} y, y \in C\right\}
$$

The support function $s(x \mid C)$, being convex and everywhere finite, has a subdifferential at every x in the sense of Rockafellar, that is, there exists z such that

$$
s(y \mid C) \geq s(x \mid C)+z^{T}(y-x) \text { for all } y \in C
$$

Equivalently,

$$
z^{T} x=s(x \mid C)
$$

The subdifferential of $s(x \mid C)$ is given by

$$
\partial s(x \mid C):=\left\{z \in C: z^{T} x=s(x \mid C)\right\}
$$

For any set $S \subset \mathbb{R}^{n}$, the normal cone to S at a point $x \in S$ is defined by

$$
N_{S}(x):=\left\{y \mid y^{T}(z-x) \leq 0, \text { for all } z \in S\right\}
$$

It is readily verified that for a compact convex set C, y is in $N_{C}(x)$ if and only if $s(y \mid C)=$ $x^{T} y$, or equivalently, x is in the subdifferential of s at y.

In this paper, we will construct first order and second order dual models and establish weak and converse duality theorems under suitable generalized convexity conditions.

2 First Order Duality

In this section, we introduce the following first order dual $\left(G D_{1}\right)$ to (P).

$$
\begin{align*}
\left(\mathbf{G D}_{\mathbf{1}}\right) \text { maximize } & f(u)-\sum_{i \in I_{0}} y_{i} g_{i}(u)+u^{T} w, \\
\text { subject to } \quad & \nabla f(u)+w-\nabla\left(y^{T} g(u)\right)=0, \tag{2.1}\\
& \sum_{i \in I_{\alpha}} y_{i} g_{i}(u) \leq 0, \alpha=1,2, \cdots, r, \tag{2.2}\\
& w \in C, \tag{2.3}\\
& y \geq 0, \tag{2.4}
\end{align*}
$$

where $u, w \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}, I_{\alpha} \subset M=\{1,2, \cdots, m\}, \alpha=0,1,2, \cdots, r$ with $\bigcup_{\alpha=0}^{r} I_{\alpha}=M$ and $I_{\alpha} \bigcap I_{\beta}=\emptyset$ if $\alpha \neq \beta$. We will obtain some weak and converse duality results for (P) under generalized (F, ρ)-convexity assumptions.

We begin by recalling the following definitions of the generalized (F, ρ)-convexity due to Preda [7].

Definition 2.1. A functional $F: D \times D \times \mathbb{R}^{n} \longrightarrow \mathbb{R}$ is said to be sublinear if for any $x, u \in D$,

$$
\begin{gathered}
F\left(x, u ; a_{1}+a_{2}\right) \leq F\left(x, u ; a_{1}\right)+F\left(x, u ; a_{2}\right), \forall a_{1}, a_{2} \in \mathbb{R}^{n} \quad \text { and } \\
F(x, u ; \alpha a)=\alpha F(x, u ; a), \forall \alpha \geq 0, \text { and } a \in \mathbb{R}^{n} .
\end{gathered}
$$

Let F be a sublinear functional, the function $\phi: D \longrightarrow \mathbb{R}$ be differentiable at $u \in D$, $\rho \in \mathbb{R}$, and $d(\cdot, \cdot): D \times D \longrightarrow \mathbb{R}$.

Definition 2.2. The function ϕ is said to be (F, ρ)-quasiconvex at u, if

$$
\phi(x) \leq \phi(u) \Longrightarrow F(x, u ; \nabla \phi(u)) \leq-\rho d^{2}(x, u), \quad \forall x \in D
$$

Definition 2.3. The function ϕ is said to be (F, ρ)-pseudoconvex at u, if

$$
F(x, u ; \nabla \phi(u)) \geq-\rho d^{2}(x, u) \Longrightarrow \phi(x) \geq \phi(u), \quad \forall x \in D
$$

Theorem 2.4 (Weak duality). Let x be feasible for (P) and (u, y, w) be feasible for $\left(G D_{1}\right)$. If for any feasible $(x, u, y, w), f(\cdot)-\sum_{i \in I_{0}} y_{i} g_{i}(\cdot)+(\cdot)^{T} w$ is $\left(F, \rho_{0}\right)$-pseudoconvex and $-\sum_{i \in I_{\alpha}} y_{i} g_{i}(\cdot), \alpha=1,2, \cdots, r$ is $\left(F, \rho_{\alpha}\right)$-quasiconvex, and $\sum_{\alpha=1}^{r} \rho_{\alpha}+\rho_{0} \geq 0$, then

$$
f(x)+s(x \mid C) \geq f(u)-\sum_{i \in I_{0}} y_{i} g_{i}(u)+u^{T} w
$$

Proof. As x is feasible for (P) and (u, y, w) is feasible for $\left(G D_{1}\right)$, we have

$$
\sum_{i \in I_{\alpha}} y_{i} g_{i}(x) \geq 0 \geq \sum_{i \in I_{\alpha}} y_{i} g_{i}(u), \quad \alpha=1,2, \cdots, r
$$

By the $\left(F, \rho_{\alpha}\right)$-quasiconvexity of $-\sum_{i \in I_{\alpha}} y_{i} g_{i}(\cdot), \forall \alpha=1,2, \cdots, r$, it follows that

$$
\begin{equation*}
F\left(x, u ;-\nabla \sum_{i \in I_{\alpha}} y_{i} g_{i}(u)\right) \leq-\rho_{\alpha} d^{2}(x, u), \quad \alpha=1,2, \cdots, r . \tag{2.5}
\end{equation*}
$$

On the other hand, by the sublinearity of F and (2), we have

$$
\begin{array}{r}
F\left(x, u ; \nabla f(u)-\sum_{i \in I_{0}} \nabla y_{i} g_{i}(u)+w\right)+\sum_{\alpha=1}^{r} F\left(x, u ;-\nabla \sum_{i \in I_{\alpha}} y_{i} g_{i}(u)\right) \\
\geq F\left(x, u ; \nabla f(u)+w-\nabla y^{T} g(u)\right)=0 \tag{2.6}
\end{array}
$$

Combining (2.5) and (2.6), as well as $\sum_{\alpha=1}^{r} \rho_{\alpha}+\rho_{0} \geq 0$, we get

$$
F\left(x, u ; \nabla f(u)-\sum_{i \in I_{0}} \nabla y_{i} g_{i}(u)+w\right) \geq \sum_{\alpha=1}^{r} \rho_{\alpha} d^{2}(x, u) \geq-\rho_{0} d^{2}(x, u)
$$

The $\left(F, \rho_{0}\right)$-pseudoconvexity of $f(\cdot)-\sum_{i \in I_{0}} y_{i} g_{i}(\cdot)+(\cdot)^{T} w$ then yields

$$
f(x)-\sum_{i \in I_{0}} y_{i} g_{i}(x)+x^{T} w \geq f(u)-\sum_{i \in I_{0}} y_{i} g_{i}(u)+u^{T} w .
$$

From $y \geq 0, g(x) \geq 0$ and $x^{T} w \leq s(x \mid C)$, it follows that

$$
f(x)+s(x \mid C) \geq f(u)-\sum_{i \in I_{0}} y_{i} g_{i}(u)+u^{T} w .
$$

Theorem 2.5 (Converse duality). Let $\left(x^{*}, y^{*}, w^{*}\right)$ be an optimal solution of $\left(G D_{1}\right)$ such that
(A1) the matrix $\nabla^{2} f\left(x^{*}\right)-\nabla^{2} y^{* T} g\left(x^{*}\right)$ is positive or negative definite;
(A2) the vectors $\left\{\nabla \sum_{i \in I_{\alpha}} y^{*}{ }_{i} g_{i}\left(x^{*}\right), \alpha=1,2, \cdots, r\right\}$ are linearly independent.
If, for all feasible $(x, u, y, w), f(\cdot)-\sum_{i \in I_{0}} y_{i} g_{i}(\cdot)+(\cdot)^{T} w$ is $\left(F, \rho_{0}\right)$-pseudoconvex and $-\sum_{i \in I_{\alpha}} y_{i} g_{i}(\cdot), \alpha=1,2, \cdots, r$ is $\left(F, \rho_{\alpha}\right)$-quasiconvex, and $\sum_{\alpha=1}^{r} \rho_{\alpha}+\rho_{0} \geq 0$, then x^{*} is an optimal solution to (P).

Proof. Since $\left(x^{*}, y^{*}, w^{*}\right)$ is an optimal solution of $\left(G D_{1}\right)$, by the generalized Fritz John necessary conditions $[6]$, there exist $\tau_{0} \in \mathbb{R}, v \in \mathbb{R}^{n}, \tau_{\alpha} \in \mathbb{R}, \alpha=1,2, \cdots, r, \beta \in \mathbb{R}$, $\gamma \in \mathbb{R}^{m}$, such that

$$
\begin{gather*}
\tau_{0}\left\{-\nabla f\left(x^{*}\right)+\sum_{i \in I_{0}} \nabla y^{*}{ }_{i} g_{i}\left(x^{*}\right)-w\right\} \\
+\left\{\nabla^{2} f\left(x^{*}\right)-\nabla^{2} y^{* T} g\left(x^{*}\right)\right\}^{T} v+\sum_{\alpha=1}^{r} \tau_{\alpha}\left\{\nabla \sum_{i \in I_{\alpha}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)\right\}=0, \tag{2.7}\\
\tau_{0} g_{i}\left(x^{*}\right)-v^{T} g_{i}\left(x^{*}\right)-\gamma_{i}=0, i \in I_{0}, \tag{2.8}\\
\tau_{\alpha} g_{i}\left(x^{*}\right)-v^{T} \nabla g_{i}\left(x^{*}\right)-\gamma_{i}=0, i \in I_{\alpha}, \alpha=1,2, \cdots, r \tag{2.9}\\
\tau_{0} x^{*}-v=\beta \in N_{C}\left(w^{*}\right), \tag{2.10}\\
\tau_{\alpha} \sum_{i \in I_{\alpha}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)=0, \alpha=1,2, \cdots, r, \tag{2.11}\\
\gamma^{T} y^{*}=0, \tag{2.12}\\
\left(\tau_{0}, \tau_{1}, \tau_{2}, \cdots, \tau_{r}, \beta, \gamma\right) \geq 0, \tag{2.13}\\
\left(\tau_{0}, \tau_{1}, \tau_{2}, \cdots, \tau_{r}, \beta, \gamma, v\right) \neq 0 . \tag{2.14}
\end{gather*}
$$

Right multiplying (2.9) by $y^{*}{ }_{i}, i \in I_{\alpha}, \alpha=1,2, \cdots, r$ and using (2.11), we have

$$
\tau_{\alpha} y^{*}{ }_{i} g_{i}\left(x^{*}\right)-v^{T} \nabla y^{*}{ }_{i} g\left(x^{*}\right)=0, i \in I_{\alpha}, \alpha=1,2, \cdots, r,
$$

thus

$$
\tau_{\alpha} \sum_{i \in I_{\alpha}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)-v^{T} \sum_{i \in I_{\alpha}} \nabla y^{*}{ }_{i} g\left(x^{*}\right)=0, \alpha=1,2, \cdots, r .
$$

From (2.11), it follows that

$$
\begin{equation*}
v^{T} \sum_{i \in I_{\alpha}} \nabla y^{*}{ }_{i} g\left(x^{*}\right)=0, \alpha=1,2, \cdots, r . \tag{2.15}
\end{equation*}
$$

Using (2.1) in (2.7), we have

$$
\begin{equation*}
\sum_{\alpha=1}^{r}\left(\tau_{\alpha}-\tau_{0}\right) \nabla \sum_{i \in I_{\alpha}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)+\left[\nabla^{2} f\left(x^{*}\right)-\nabla^{2} y^{T} g\left(x^{*}\right)\right]^{T} v=0 \tag{2.16}
\end{equation*}
$$

Left multiplying (2.16) by v and using (2.15), we have

$$
\begin{equation*}
v^{T}\left[\nabla^{2} f\left(x^{*}\right)-\nabla^{2} y^{* T} g\left(x^{*}\right)\right] v=0 \tag{2.17}
\end{equation*}
$$

By the assumption that $\nabla^{2} f\left(x^{*}\right)-\nabla^{2} y^{* T} g\left(x^{*}\right)$ is positive or negative definite at $\left(x^{*}, y^{*}, w^{*}\right)$, it follows that

$$
v=0
$$

Then (2.16) gives

$$
\begin{equation*}
\sum_{\alpha=1}^{r}\left(\tau_{\alpha}-\tau_{0}\right) \nabla \sum_{i \in I_{\alpha}} y_{i}^{*} g_{i}\left(x^{*}\right)=0 . \tag{2.18}
\end{equation*}
$$

Since the vectors $\left\{\nabla \sum_{i \in I_{\alpha}} y^{*}{ }_{i} g_{i}\left(x^{*}\right), \alpha=1,2, \cdots, r\right\}$ are linearly independent, (2.18) yields

$$
\begin{equation*}
\tau_{\alpha}=\tau_{0}, \quad \alpha=1,2, \cdots, r . \tag{2.19}
\end{equation*}
$$

If $\tau_{0}=0$, then $\tau_{\alpha}=0, \alpha=1,2, \cdots, r$ from (2.19), $\gamma=0$ from (2.8), (2.9) and $v=0$, and $\beta=0$ from (2.10), i.e., $\left(\tau_{0}, \tau_{1}, \tau_{2}, \cdots, \tau_{r}, \beta, \gamma, v\right)=0$, contradicts (2.14). So, $\tau_{0}>0$. This gives $\tau_{\alpha}>0, \alpha=1,2, \cdots, r$. It follows from (2.8) and (2.9) that

$$
\begin{gather*}
\tau_{0} g_{i}\left(x^{*}\right)-\gamma_{i}=0, i \in I_{0}, \tag{2.20}\\
\tau_{\alpha} g_{i}\left(x^{*}\right)-\gamma_{i}=0, i \in I_{\alpha}, \alpha=1,2, \cdots, r . \tag{2.21}
\end{gather*}
$$

Therefore $g\left(x^{*}\right) \geq 0$ since $\gamma \geq 0$ and $\tau_{\alpha}>0, \alpha=0,1,2, \cdots, r$. Thus, x^{*} is feasible for (P), and the objective functions of (P) and ($G D_{1}$) are equal.

Multiplying (2.20) by $y^{*}{ }_{i}, i \in I_{0}$ and using (2.12), we have

$$
\tau_{0} y^{*}{ }_{i} g_{i}\left(x^{*}\right)=0, i \in I_{0} .
$$

By $\tau_{0}>0$, it follows that

$$
\begin{equation*}
y^{*}{ }_{i} g_{i}\left(x^{*}\right)=0, i \in I_{0} . \tag{2.22}
\end{equation*}
$$

Also, $v=0, \tau_{0}>0$ and (9) give

$$
x^{*} \in N_{C}\left(w^{*}\right) .
$$

Hence

$$
\begin{equation*}
s\left(x^{*} \mid C\right)=x^{* T} w^{*} \tag{2.23}
\end{equation*}
$$

Therefore, from (2.22) and (2.23), we have

$$
f\left(x^{*}\right)+s\left(x^{*} \mid C\right)=f\left(x^{*}\right)-\sum_{i \in I_{0}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)+u^{* T} w^{*} .
$$

Thus, if for any feasible $(x, u, y, w), f(\cdot)-\sum_{i \in I_{0}} y_{i} g_{i}(\cdot)+(\cdot)^{T} w$ is $\left(F, \rho_{0}\right)$-pseudoconvex and $-\sum_{i \in I_{\alpha}} y_{i} g_{i}(\cdot), \alpha=1,2, \cdots, r$ is $\left(F, \rho_{\alpha}\right)$-quasiconvex, and $\sum_{\alpha=1}^{r} \rho_{\alpha}+\rho_{0} \geq 0$, by Theorem 2.4 , then x^{*} is an optimal solution to (P).

3 Second Order Duality

In this section, following Mond and Weir [4], we propose a second-order dual model for nondifferentiable programming problem (P).

$$
\begin{align*}
\left(\mathbf{G D}_{2}\right) \text { maximize } & f(u)-\sum_{i \in I_{0}} y_{i} g_{i}(u)+u^{T} w-\frac{1}{2} p^{T}\left[\nabla^{2} f(u)-\nabla^{2} \sum_{i \in I_{0}} y_{i} g_{i}(u)\right] p \\
\text { subject to } & \nabla f(u)+w-\nabla\left(y^{T} g(u)\right)+\nabla^{2} f(u) p-\nabla^{2} y^{T} g(u) p=0 \\
& \sum_{i \in I_{\alpha}} y_{i} g_{i}(u)-\frac{1}{2} p^{T} \nabla^{2} \sum_{i \in I_{\alpha}} y_{i} g_{i}(u) p \leq 0, \alpha=1,2, \cdots, r \tag{3.1}\\
& w \in C \\
& y \geq 0 \tag{3.2}
\end{align*}
$$

where $u, w, p \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}, I_{\alpha} \subset M=\{1,2, \cdots, m\}, \alpha=0,1,2, \cdots, r$ with $\bigcup_{\alpha=0}^{r} I_{\alpha}=M$ and $I_{\alpha} \bigcap I_{\beta}=\emptyset$ if $\alpha \neq \beta$. This model is a generalization of the one in Zhang and Mond [11].

Before giving weak and converse duality theorems, we introduce the following second order (F, ρ)-convex definitions.

Let F be a sublinear functional, the function $\phi: D \longrightarrow \mathbb{R}$ be twice differentiable at $u \in D, \rho \in \mathbb{R}$, and $d(\cdot, \cdot): D \times D \longrightarrow \mathbb{R}$ be a distance function.
Definition 3.1. The function ϕ is said to be second order (F, ρ)-quasiconvex at u, if for all $p \in \mathbb{R}^{n}$,

$$
\phi(x) \leq \phi(u)-\frac{1}{2} p^{T} \nabla^{2} \phi(u) p \Longrightarrow F\left(x, u ; \nabla \phi(u)+\nabla^{2} \phi(u)\right) \leq-\rho d^{2}(x, u), \quad \forall x \in D .
$$

Definition 3.2. The function ϕ is said to be second order (F, ρ)-pseudoconvex at u, if for all $p \in \mathbb{R}^{n}$,

$$
F\left(x, u ; \nabla \phi(u)+\nabla^{2} \phi(u)\right) \geq-\rho d^{2}(x, u) \Longrightarrow \phi(x) \geq \phi(u)-\frac{1}{2} p^{T} \nabla^{2} \phi(u) p, \quad \forall x \in D .
$$

Theorem 3.3 (Weak duality). Let x be feasible for (P) and (u, y, w, p) be feasible for $\left(G D_{2}\right)$. If, for any feasible $(x, u, y, w, p), f(\cdot)-\sum_{i \in I_{0}} y_{i} g_{i}(\cdot)+(\cdot)^{T} w$ is second order $\left(F, \rho_{0}\right)$ pseudoconvex and $-\sum_{i \in I_{\alpha}} y_{i} g_{i}(\cdot), \alpha=1,2, \cdots, r$ is second order $\left(F, \rho_{\alpha}\right)$-quasiconvex, and $\sum_{\alpha=1}^{r} \rho_{\alpha}+\rho_{0} \geq 0$, then

$$
f(x)+s(x \mid C) \geq f(u)-\sum_{i \in I_{0}} y_{i} g_{i}(u)+u^{T} w T w-\frac{1}{2} p^{T}\left[\nabla^{2} f(u)-\nabla^{2} \sum_{i \in I_{0}} y i g_{i}(u)\right] p .
$$

Proof. As x is feasible for (P) and (u, y, w) is feasible for $\left(G D_{1}\right)$, we have

$$
\sum_{i \in I_{\alpha}} y_{i} g_{i}(x) \geq 0 \geq \sum_{i \in I_{\alpha}} y_{i} g_{i}(u)-\frac{1}{2} p^{T} \nabla^{2} \sum_{i \in I_{\alpha}} y_{i} g_{i}(u) p, \quad \alpha=1,2, \cdots, r
$$

By the second order $\left(F, \rho_{\alpha}\right)$-quasiconvexity of $-\sum_{i \in I_{\alpha}} y_{i} g_{i}(\cdot), \forall \alpha=1,2, \cdots, r$, it follows that

$$
\begin{equation*}
F\left(x, u ;-\nabla \sum_{i \in I_{\alpha}} y_{i} g_{i}(u)-\nabla^{2} \sum_{i \in I_{\alpha}} y_{i} g_{i}(u)\right) \leq-\rho_{\alpha} d^{2}(x, u), \quad \alpha=1,2, \cdots, r \tag{3.5}
\end{equation*}
$$

On the other hand, by (3.1) and the sublinearity of F, we have

$$
\begin{align*}
F\left(x, u ; \nabla f(u)+\nabla^{2}\right. & \left.f(u) p+w-\sum_{i \in I_{0}} \nabla y_{i} g_{i}(u)-\sum_{i \in I_{0}} \nabla^{2} y_{i} g_{i}(u) p\right) \\
& \quad+\sum_{\alpha=1}^{r} F\left(x, u ;-\nabla \sum_{i \in I_{\alpha}} y_{i} g_{i}(u)-\nabla^{2} \sum_{i \in I_{\alpha}} y_{i} g_{i}(u) p\right) \\
& \geq F\left(x, u ; \nabla f(u)+\nabla^{2} f(u) p+w-\nabla y^{T} g(u)-\nabla y^{T} g(u) p\right)=0 . \tag{3.6}
\end{align*}
$$

Combining (3.5) and (3.6), as well as $\sum_{\alpha=1}^{r} \rho_{\alpha}+\rho_{0} \geq 0$, we get

$$
\begin{aligned}
& F\left(x, u ; \nabla f(u)+\nabla^{2} f(u) p+w-\sum_{i \in I_{0}} \nabla y_{i} g_{i}(u)-\sum_{i \in I_{0}} \nabla^{2} y_{i} g_{i}(u) p\right) \\
& \geq \sum_{\alpha=1}^{r} \rho_{\alpha} d^{2}(x, u) \geq-\rho_{0} d^{2}(x, u)
\end{aligned}
$$

The second order $\left(F, \rho_{0}\right)$-pseudoconvexity of $f(\cdot)-\sum_{i \in I_{0}} y_{i} g_{i}(\cdot)+(\cdot)^{T} w$ then yields $f(x)-\sum_{i \in I_{0}} y_{i} g_{i}(x)+x^{T} w \geq f(u)-\sum_{i \in I_{0}} y_{i} g_{i}(u)+u^{T} w-\frac{1}{2} p^{T} \nabla^{2}\left[f(u)-\sum_{i \in I_{0}} y_{i} g_{i}(u)+u^{T} w\right] p$.

From $y \geq 0, g(x) \geq 0$ and $x^{T} w \leq s(x \mid C)$, it follows that

$$
f(x)+s(x \mid C) \geq f(u)-\sum_{i \in I_{0}} y_{i} g_{i}(u)+u^{T} w T w-\frac{1}{2} p^{T}\left[\nabla^{2} f(u)-\nabla^{2} \sum_{i \in I_{0}} y_{i} g_{i}(u)\right] p
$$

Theorem 3.4 (Converse duality). Let $\left(x^{*}, y^{*}, w^{*}, p^{*}\right)$ be an optimal solution of ($G D_{2}$) such that
(B1) for all $\alpha=1,2, \cdots, r$, either (a) the $n \times n$ Hessian matrix $\nabla^{2} \sum_{i \in I_{\alpha}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)$ is positive definite and $p^{* T} \nabla \sum_{i \in I_{\alpha}} y^{*}{ }_{i} g_{i}\left(x^{*}\right) \geq 0$ or (b) the $n \times n$ Hessian matrix $\nabla^{2} \sum_{i \in I_{\alpha}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)$ is negative definite and $p^{* T} \nabla \sum_{i \in I_{\alpha}} y^{*}{ }_{i} g_{i}\left(x^{*}\right) \leq 0$,
(B2) the vectors $\left\{\left[\nabla^{2} f\left(x^{*}\right)-\nabla^{2} \sum_{i \in I_{0}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)\right]_{j},\left[\nabla^{2} \sum_{i \in I_{\alpha}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)\right]_{j}, \alpha=1,2, \cdots, r, j=\right.$ $1,2, \cdots, n\}$ are linearly independent, where $\left[\nabla^{2} f\left(x^{*}\right)-\nabla^{2} \sum_{i \in I_{0}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)\right]_{j}$ is the j th row of $\left[\nabla^{2} f\left(x^{*}\right)-\nabla^{2} \sum_{i \in I_{0}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)\right]$ and $\left[\nabla^{2} \sum_{i \in I_{\alpha}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)\right]_{j}$ is the $j^{\text {th }}$ row of $\left[\nabla^{2} \sum_{i \in I_{\alpha}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)\right]$,
(B3) the vectors $\left\{\nabla \sum_{i \in I_{\alpha}} y^{*}{ }_{i} g_{i}\left(x^{*}\right), \alpha=1,2, \cdots, r\right\}$ are linearly independent.
If, for all feasible $(x, u, y, w, p), f(\cdot)-\sum_{i \in I_{0}} y_{i} g_{i}(\cdot)+(\cdot)^{T} w$ is second order $\left(F, \rho_{0}\right)-$ pseudoconvex and $-\sum_{i \in I_{\alpha}} y_{i} g_{i}(\cdot), \alpha=1,2, \cdots, r$ is second order $\left(F, \rho_{\alpha}\right)$-quasiconvex, and $\sum_{\alpha=1}^{r} \rho_{\alpha}+\rho_{0} \geq 0$, then x^{*} is an optimal solution to (P).
Proof. Since $\left(x^{*}, y^{*}, w^{*}, p^{*}\right)$ is an optimal solution of $\left(G D_{2}\right)$, by the generalized Fritz John necessary conditions [6], there exist $\tau_{0} \in \mathbb{R}, v \in \mathbb{R}^{n}, \tau_{\alpha} \in \mathbb{R}, \alpha=1,2, \cdots, r, \beta \in \mathbb{R}$, $\gamma \in \mathbb{R}^{m}$, such that

$$
\begin{align*}
& \tau_{0}\left\{-\nabla f\left(x^{*}\right)+\sum_{i \in I_{0}} \nabla y^{*}{ }_{i} g_{i}\left(x^{*}\right)-w^{*}+\frac{1}{2} p^{* T} \nabla\left[\nabla^{2} f\left(x^{*}\right)-\nabla^{2} \sum_{i \in I_{0}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)\right] p^{*}\right\} \\
&+v^{T}\left\{\nabla^{2} f\left(x^{*}\right)-\nabla^{2} y^{* T} g\left(x^{*}\right)+\nabla\left[\nabla^{2} f\left(x^{*}\right) p^{*}-\nabla^{2} y^{*} T{ }^{T} g\left(x^{*}\right) p^{*}\right]\right\} r \\
& \quad+\sum_{\alpha=1}^{r} \tau_{\alpha}\left\{\nabla \sum_{i \in I_{\alpha}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)-\frac{1}{2} p^{* T} \nabla\left[\nabla^{2} \sum_{i \in I_{\alpha}} y^{*}{ }_{i} g_{i}\left(x^{*}\right) p^{*}\right]\right\}=0, \tag{3.7}
\end{align*}
$$

$$
\begin{equation*}
\tau_{0}\left\{g_{i}\left(x^{*}\right)-\frac{1}{2} p^{* T} \nabla^{2} g_{i}\left(x^{*}\right) p^{*}\right\}-v^{T}\left\{g_{i}\left(x^{*}\right)+\nabla^{2} g_{i}\left(x^{*}\right) p^{*}\right\}-\gamma_{i}=0, i \in I_{0}, \tag{3.8}
\end{equation*}
$$

$$
\begin{align*}
& \tau_{\alpha}\left\{g_{i}\left(x^{*}\right)-\frac{1}{2} p^{* T} \nabla^{2} g_{i}\left(x^{*}\right) p^{*}\right\}-v^{T}\left\{\nabla g_{i}\left(x^{*}\right)+\nabla^{2} g_{i}\left(x^{*}\right) p^{*}\right\}-\gamma_{i}=0, \tag{3.9}\\
& \quad i \in I_{\alpha}, \alpha=1,2, \cdots, r,
\end{align*}
$$

$$
\begin{equation*}
\tau_{0} x^{*}-v=\beta \in N_{C}\left(w^{*}\right) \tag{3.10}
\end{equation*}
$$

$$
\begin{equation*}
\left(\tau_{0} p^{*}+v\right)^{T}\left\{\nabla^{2} f\left(x^{*}\right)-\nabla^{2} \sum_{i \in I_{0}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)\right\}-\sum_{\alpha=1}^{r}\left(\tau_{\alpha} p^{*}+v\right)^{T}\left\{\nabla^{2} \sum_{i \in I_{\alpha}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)\right\}=0, \tag{3.11}
\end{equation*}
$$

$$
\begin{equation*}
\tau_{\alpha}\left\{\sum_{i \in I_{\alpha}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)-\frac{1}{2} p^{* T} \nabla^{2} \sum_{i \in I_{\alpha}} y^{*}{ }_{i} g_{i}\left(x^{*}\right) p^{*}\right\}=0, \alpha=1,2, \cdots, r, \tag{3.12}
\end{equation*}
$$

$$
\begin{equation*}
\gamma^{T} y^{*}=0, \tag{3.13}
\end{equation*}
$$

$$
\begin{equation*}
\left(\tau_{0}, \tau_{1}, \tau_{2}, \cdots, \tau_{r}, \beta, \gamma\right) \geq 0 \tag{3.14}
\end{equation*}
$$

$$
\begin{equation*}
\left(\tau_{0}, \tau_{1}, \tau_{2}, \cdots, \tau_{r}, \beta, \gamma, v\right) \neq 0 \tag{3.15}
\end{equation*}
$$

Because of Assumption (B2), (3.11) gives

$$
\begin{equation*}
\tau_{\alpha} p^{*}+v=0 \quad \alpha=0,1,2, \cdots, r . \tag{3.16}
\end{equation*}
$$

Multiplying (3.9) by $y^{*}{ }_{i}, i \in I_{\alpha}, \alpha=1,2, \cdots, r$ and using (3.12), we have

$$
\begin{aligned}
& \tau_{\alpha}\left\{y^{*}{ }_{i} g_{i}\left(x^{*}\right)-\frac{1}{2} p^{* T} \nabla^{2} y^{*}{ }_{i} g_{i}\left(x^{*}\right) p^{*}\right\}-v^{T}\left\{\nabla y^{*}{ }_{i} g\left(x^{*}\right)+\nabla^{2} y^{*}{ }_{i} g\left(x^{*}\right) p^{*}\right\}=0 \\
& i \in I_{\alpha}, \alpha=1,2, \cdots, r
\end{aligned}
$$

thus

$$
\begin{aligned}
\tau_{\alpha}\left\{\sum_{i \in I_{\alpha}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)-\frac{1}{2} p^{* T}\right. & \left.\sum_{i \in I_{\alpha}} \nabla^{2} y^{*}{ }_{i} g_{i}\left(x^{*}\right) p^{*}\right\} \\
& -v^{T}\left\{\sum_{i \in I_{\alpha}} \nabla y^{*}{ }_{i} g\left(x^{*}\right)+\sum_{i \in I_{\alpha}} \nabla^{2} y^{*}{ }_{i} g\left(x^{*}\right) p^{*}\right\}=0, \quad \alpha=1,2, \cdots, r .
\end{aligned}
$$

From (3.12), it follows that

$$
\begin{equation*}
v^{T}\left\{\sum_{i \in I_{\alpha}} \nabla y^{*}{ }_{i} g\left(x^{*}\right)+\sum_{i \in I_{\alpha}} \nabla^{2} y^{*}{ }_{i} g\left(x^{*}\right) p^{*}\right\}=0, \alpha=1,2, \cdots, r . \tag{3.17}
\end{equation*}
$$

Using (3.1), we may deduce from (3.7) have

$$
\begin{aligned}
& \left(\tau_{\alpha} p^{*}+v\right)^{T}\left\{\nabla^{2} f\left(x^{*}\right)-\nabla^{2} \sum_{i \in I_{0}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)+\nabla\left[\nabla^{2} f\left(x^{*}\right)-\nabla^{2} \sum_{i \in I_{0}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)\right] p^{*}\right\} \\
& -\sum_{\alpha=1}^{r}\left(\tau_{\alpha} p^{*}+v\right)^{T}\left\{\nabla^{2}\left[\sum_{i \in I_{\alpha}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)+\nabla\left[\nabla^{2} \sum_{i \in I_{\alpha}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)\right] p^{*}\right\}\right. \\
& -\tau_{0}\left\{\nabla \sum_{i \in M \backslash I_{0}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)+\nabla^{2} \sum_{i \in M \backslash I_{0}} y^{*}{ }_{i} g_{i}\left(x^{*}\right) p^{*}\right\} \\
& -\frac{1}{2} \tau_{0} p^{* T}\left\{\nabla\left[\nabla^{2} f\left(x^{*}\right)-\nabla^{2} \sum_{i \in I_{0}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)\right] p^{*}\right\} \\
& +\sum_{\alpha=1}^{r} \tau_{\alpha}\left\{\nabla \sum_{i \in I_{\alpha}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)+\nabla^{2}\left[\sum_{i \in I_{\alpha}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)\right] p^{*}\right\} \\
& +\sum_{\alpha=1}^{r} \frac{1}{2} \tau_{\alpha} p^{* T}\left\{\nabla\left[\nabla^{2} \sum_{i \in I_{\alpha}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)\right] p^{*}\right\}=0 .
\end{aligned}
$$

From (3.16), it follows that

$$
\begin{aligned}
\sum_{\alpha=1}^{r}\left(\tau_{\alpha}-\tau_{0}\right) & \left\{\nabla \sum_{i \in I_{\alpha}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)+\nabla^{2} \sum_{i \in I_{\alpha}} y^{*}{ }_{i} g_{i}\left(x^{*}\right) p^{*}\right\} \\
& \left.+\frac{1}{2} v^{T}\left\{\nabla\left[\nabla^{2} f\left(x^{*}\right)-\nabla^{2} \sum_{i \in I_{0}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)\right] p^{*}-\nabla\left[\nabla^{2} \sum_{i \in M \backslash I_{0}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)\right] p^{*}\right)\right\}=0 .
\end{aligned}
$$

That is

$$
\begin{align*}
\sum_{\alpha=1}^{r}\left(\tau_{\alpha}-\tau_{0}\right)\left\{\nabla \sum_{i \in I_{\alpha}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)+\nabla^{2} \sum_{i \in I_{\alpha}}\right. & \left.y^{*}{ }_{i} g_{i}\left(x^{*}\right) p^{*}\right\} \\
& +\frac{1}{2} v^{T}\left\{\nabla\left[\nabla^{2} f\left(x^{*}\right)-\nabla^{2} y^{* T} g\left(x^{*}\right)\right] p^{*}\right\}=0 \tag{3.18}
\end{align*}
$$

If for all $\alpha=0,1,2, \cdots, r, \tau_{\alpha}=0$, then $v=0$ from (3.16), $\gamma=0$ from (3.8) and (3.9), and $\beta=0$ from (3.10); that is, $\left(\tau_{0}, \tau_{1}, \tau_{2}, \cdots, \tau_{r}, \beta, \gamma, v\right)=0$, contradicts (3.15). Thus, there exists an $\bar{\alpha} \in\{0,1,2, \cdots, r\}$, such that $\tau_{\bar{\alpha}}>0$.

We claim that $p^{*}=0$. Indeed, if $p^{*} \neq 0$, then (3.16) gives

$$
\left(\tau_{\alpha}-\tau_{\bar{\alpha}}\right) p^{*}=0, \alpha=1,2, \cdots, r .
$$

This implies $\tau_{\alpha}=\tau_{\bar{\alpha}}>0, \alpha=1,2, \cdots, r$. So, (3.17) and (3.16) yield

$$
p^{* T}\left\{\sum_{i \in I_{\alpha}} \nabla y^{*}{ }_{i} g\left(x^{*}\right)+\sum_{i \in I_{\alpha}} \nabla^{2} y^{*}{ }_{i} g\left(x^{*}\right) p^{*}\right\}=0, \alpha=1,2, \cdots, r,
$$

which contradicts assumption (B1). Hence, $p^{*}=0$. Based on (3.17) and $p^{*}=0$, we have $v=0$. In view of (B3), (3.16), $p^{*}=0$ and $\tau_{\bar{\alpha}}>0$ for some $\bar{\alpha} \in\{0,1,2, \cdots, r\}$, (3.18) implies $\tau_{\alpha}=\tau_{\bar{\alpha}}>0$, for all $\alpha=0,1,2, \cdots, r$. Now from (3.8) and (3.9), it follows that

$$
\begin{gather*}
\tau_{0} \nabla g_{i}\left(x^{*}\right)-\gamma_{i}=0, i \in I_{0}, \tag{3.19}\\
\tau_{\alpha} \nabla g_{i}\left(x^{*}\right)-\gamma_{i}=0, i \in I_{\alpha}, \alpha=1,2, \cdots, r, \tag{3.20}
\end{gather*}
$$

Therefore $g\left(x^{*}\right) \geq 0$ since $\gamma \geq 0$ and $\tau_{\alpha}>0, \alpha=0,1,2, \cdots, r$. Thus, x^{*} is feasible for (P), and the objective functions of (P) and $\left(G D_{2}\right)$ are equal.

Multiplying (3.19) by $y^{*}{ }_{i}, i \in I_{0}$ and using (3.13), it follows that

$$
\tau_{0} y^{*}{ }_{i} g_{i}\left(x^{*}\right)=0, i \in I_{0} .
$$

By $\tau_{0}>0$, it follows that

$$
\begin{equation*}
y^{*}{ }_{i} g_{i}\left(x^{*}\right)=0, i \in I_{0} . \tag{3.21}
\end{equation*}
$$

Also, $v=0, \tau_{0}>0$ and (3.10) give

$$
x^{*} \in N_{C}\left(w^{*}\right) .
$$

Hence

$$
\begin{equation*}
s\left(x^{*} \mid C\right)=x^{* T} w^{*} \tag{3.22}
\end{equation*}
$$

Therefore, from (3.21), (3.22) and $p^{*}=0$, we have

$$
f\left(x^{*}\right)+s\left(x^{*} \mid C\right)=f\left(x^{*}\right)-\sum_{i \in I_{0}} y_{i}^{*} g_{i}\left(x^{*}\right)+u^{* T} w^{*}-\frac{1}{2} p^{* T}\left[\nabla^{2} f\left(x^{*}\right)-\nabla^{2} \sum_{i \in I_{0}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)\right] p^{*} .
$$

If, for all feasible $(x, u, y, w, p), f(\cdot)-\sum_{i \in I_{0}} y_{i} g_{i}(\cdot)+(\cdot)^{T} w$ is second order $\left(F, \rho_{0}\right)$-pseudoconvex and $-\sum_{i \in I_{\alpha}} y_{i} g_{i}(\cdot), \alpha=1,2, \cdots, r$ is second order $\left(F, \rho_{\alpha}\right)$-quasiconvex, and $\sum_{\alpha=1}^{r} \rho_{\alpha}+\rho_{0} \geq$ 0 , by Theorem 3.3, then x^{*} is an optimal solution to (P).

4 Special Cases and Some Remarks

Let us consider $C=\left\{B w: w^{T} B w \leq 1\right\}$. It is easily shown that $\left(x^{T} B x\right)^{1 / 2}=s(x \mid C)$ and that the set C is compact and convex. Then the primal problem (P) and the dual problems
$\left(G D_{1}\right)$ and $\left(G D_{2}\right)$ in this paper become the primal problem $\left(\mathrm{P}_{1}\right)$ and dual problems $(\mathrm{GP})_{1}$ and $(2 \mathrm{GP})_{1}$ by Zhang and Mond [11], respectively, where

$$
\begin{aligned}
(G D)_{1}: \text { Maximize } & f(u)+u^{T} B w-\sum_{i \in I_{0}} y_{i} g_{i}(u) \\
\text { subject to } \quad & \nabla f(u)+B w-y^{T} \nabla g(u)=0 \\
& \sum_{i \in I_{\alpha}} y_{i} g_{i}(u) \leq 0, \alpha=1,2, \cdots, r \\
& y \geq 0 \\
& w^{T} B w \leq 1
\end{aligned}
$$

and
$(2 G D)_{2}$: Maximize

$$
\begin{aligned}
& f(u)+u^{T} B w-\sum_{i \in I_{0}} y_{i} g_{i}(u)-\frac{1}{2} p^{T}\left[\nabla^{2} f(u)-\nabla^{2} \sum_{i \in I_{0}} y_{i} g_{i}(u)\right] p \\
& \nabla f(u)+B w-y^{T} \nabla g(u)+\nabla^{2} f(u) p-\nabla^{2} y^{T} g(u) p=0 \\
& \sum_{i \in I_{\alpha}} y_{i} g_{i}(u)-\frac{1}{2} p^{T} \nabla^{T} \sum_{i \in I_{\alpha}} y_{i} g_{i}(u) p \leq 0, \alpha=1,2, \cdots, r \\
& y \geq 0 \\
& w^{T} B w \leq 1
\end{aligned}
$$

subject to

It is obvious that the notations for the generalized first order and second order (F, ρ) convexity in this paper are generalizations of the notations of first order and second order invexity in Zhang and Mond [11]. So our results in this paper improve and extend the main works in [11].

In [11], Zhang and Mond obtained the following second order converse duality result:
Theorem 4.1 (see Theorem 6 in [11]). Let $\left(x^{*}, y^{*}, w^{*}, p^{*}\right)$ be an optimal solution of $\left(G D_{2}\right)$ at which
(C1) the $n \times n$ Hessian matrix $\nabla\left[\nabla^{2} f\left(x^{*}\right)-\nabla^{2}\left(y^{* T} g\left(x^{*}\right)\right)\right] p^{*}$ is positive or negative definite,
(C2) the vectors $\left\{\left[\nabla^{2} f\left(x^{*}\right)-\nabla^{2} \sum_{i \in I_{0}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)\right]_{j},\left[\nabla^{2} \sum_{i \in I_{\alpha}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)\right]_{j}, \alpha=1,2, \cdots, r\right.$, $j=1,2, \cdots, n\}$ are linearly independent, where $\left[\nabla^{2} f\left(x^{*}\right)-\nabla^{2} \sum_{i \in I_{0}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)\right]_{j}$ is the $j^{\text {th }}$ row of $\left[\nabla^{2} f\left(x^{*}\right)-\nabla^{2} \sum_{i \in I_{0}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)\right]$ and $\left[\nabla^{2} \sum_{i \in I_{\alpha}} y^{*}{ }_{i} g_{i}\left(x^{*}\right)\right]_{j}$ is the j th row of $\left[\nabla^{2} \sum_{i \in I_{\alpha}} y_{i} g_{i}\left(x^{*}\right)\right]$.

If, for all feasible $(x, u, y, w, p), f(\cdot)-\sum_{i \in I_{0}} y_{i} g_{i}(\cdot)+(\cdot)^{T} B w$ is second order pseudoinvex and $\sum_{i \in I_{\alpha}} y_{i} g_{i}(\cdot), \alpha=1,2, \cdots, r$ is second order quasincave with respect to the same η, then x^{*} is an optimal solution to (P).

We note that the matrix $\nabla\left[\nabla^{2} f\left(x^{*}\right)-\nabla^{2}\left(y^{* T} g\left(x^{*}\right)\right)\right] p^{*}$ is positive or negative definite in the assumption (C1) of Theorem 4.1, and the result of Theorem $4.1 \mathrm{implies} p^{*}=0$ (see the proof of Theorem 6 in [11]). It is obvious that the assumption and the result are inconsistent. In our paper, we give an appropriate modification for this deficiency.

References

[1] I. Husain, N.G. Rueda, Z. Jabeen, Fritz john second-order duality for nonlinear programming, Appl. Math. Lett. 14 (2001) 513-518
[2] O.L. Mangasarian, Second order and higher order duality in nonlinear programming, J. Math. Anal. Appl. 51 (1975) 607-620.
[3] B. Mond, Second order duality for nonlinear programs, Opsearch 11 (1974) 2-3, 90-99.
[4] B. Mond and T. Weir, Generalized convexity and higher order duality, J. Math. Sci. 16/ 18 (1985) 74-94.
[5] B. Mond, A class of nondifferentiable mathematical programming problems, J. Math. Anal. Appl. 46 (1974) 169-174.
[6] B. Mond and M. Schechter, Non-differentiable symmetric duality, Bull. Austral. Math. Soc. 53(1996) 177-187.
[7] V. Preda, On efficiency and duality for multiobjective programs, J. Math. Anal. Appl. 166 (1992) 365-377.
[8] X.M. Yang, X.Q. Yang and K.L. Teo, Huard type second-order converse duality for nonlinear programming, Appl. Math. Lett. 18 (2005) 205-208
[9] X.M. Yang, X.Q. Yang, K. L. Teo and S. H. Hou, Second order duality for nonlinear Programming, Indian J. Pure. Appl. Math. 35 (2004) 699-708.
[10] X.Q. Yang, Second-order global optimality conditions for convex composite optimization, Math. Program. 81 (1998) 327-347.
[11] J. Zhang and B. Mond, Duality for a nondifferentiable programming problem, Bull. Austral. Math. Soc. 55 (1997) 29-44.

Manuscript received 5 February 2007
revised 15 July 2007
accepted for publication 18 July 2007

Xinmin Yang
Department of Mathematics, Chongqing Normal University
Chongqing 400047, China
E-mail address: xmyang@cqnu.edu.cn
\section*{Xiaoqi Yang}
Department of Applied Mathematics, The Hong Kong Polytechnic University
Hong Kong, China
E-mail address: mayangxq@polyu.edu.hk

[^0]: *This research was partially supported by the National Natural Science Foundation of China (Grant 10771228) NCET, the Natural Science Foundation of Chongqing and the Research Grants Council of Hong Kong (PolyU 5303/05E).
 ${ }^{\dagger}$ Corresponding author.

