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1 Introduction

In [5], Mond first established a first order dual theorem for the following nondifferentiable
programming problem

(P1) minimize f(x) + (xT Bx)
1
2

subject to x ∈ IRn, g(x) ≥ 0,

where f and g are twice differentiable functions from IRn into IR and IRm, respectively, and
B is an n × n positive semi-definite (symmetric) matrix. Later, many authors gave first-
order duality theorems for nondifferentiable programming problem (P1) using first order
optimality conditions.

Second order dual models have also received extensive attentions for (P1). Mangasarian
[2] introduced a second order dual and obtained the duality result under a so-called “in-
clusion condition”. Mond [3] proved duality theorems under the condition which is called
“second-order convexity”. This condition is much simpler than that used by Mangasarian
[2]. Furthermore, Mond and Weir [4] reformulated a new type of second order duals. Later,
second order dualities in nonlinear programming were considered by Husain and Rueda and
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Jabeen [1], Yang et. al [8, 9] and Zhang and Mond [11], while Zhang and Mond [11] for-
mulated general first order and second-order dual models for nondifferentiable programming
problem (P1) and established weak, strong and converse duality theorems under certain con-
ditions. On the other hand, second-order dual models for a convex composite optimization
problem have also been studied in Yang [10] under a generalized representation condition.

We note that Mond and Schechter [6] studied nondifferentiable symmetric duality, in
which the objective function contains a support function. In this paper, based on Mond and
Schechter’s ideas in [6] and Zhang and Mond’s works in [11], we replace the term (xT Bx)

1
2

in the objective function of (P1) by a somewhat more general function, namely, the support
function of a compact convex set, for which the subdifferential may be simply expressed.
That is, we will consider the following nondifferentiable programming problem:

(P) minimize f(x) + s(x|C)
subject to x ∈ IRn, g(x) ≥ 0, (1.1)

where f and g are twice differentiable functions from IRn into IR and IRm, respectively, and
C is a compact convex set of IRn, the support function s(x|C) of C is defined by

s(x|C) := max{xT y, y ∈ C}.
The support function s(x|C), being convex and everywhere finite, has a subdifferential

at every x in the sense of Rockafellar, that is, there exists z such that

s(y|C) ≥ s(x|C) + zT (y − x) for all y ∈ C.

Equivalently,
zT x = s(x|C).

The subdifferential of s(x|C) is given by

∂s(x|C) := {z ∈ C : zT x = s(x|C)}.
For any set S ⊂ IRn, the normal cone to S at a point x ∈ S is defined by

NS(x) := {y|yT (z − x) ≤ 0, for all z ∈ S}.
It is readily verified that for a compact convex set C, y is in NC(x) if and only if s(y|C) =
xT y, or equivalently, x is in the subdifferential of s at y.

In this paper, we will construct first order and second order dual models and establish
weak and converse duality theorems under suitable generalized convexity conditions.

2 First Order Duality

In this section, we introduce the following first order dual (GD1) to (P ).

(GD1) maximize f(u)−
∑

i∈I0

yigi(u) + uT w,

subject to ∇f(u) + w −∇(yT g(u)) = 0, (2.1)∑

i∈Iα

yigi(u) ≤ 0, α = 1, 2, · · · , r, (2.2)

w ∈ C, (2.3)
y ≥ 0, (2.4)
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where u,w ∈ IRn, y ∈ IRm, Iα ⊂ M = {1, 2, · · · ,m}, α = 0, 1, 2, · · · , r with
r⋃

α=0
Iα = M and

Iα

⋂
Iβ = ∅ if α 6= β. We will obtain some weak and converse duality results for (P) under

generalized (F, ρ)−convexity assumptions.
We begin by recalling the following definitions of the generalized (F, ρ)-convexity due to

Preda [7].

Definition 2.1. A functional F : D × D × IRn −→ IR is said to be sublinear if for any
x, u ∈ D,

F (x, u; a1 + a2) ≤ F (x, u; a1) + F (x, u; a2),∀a1, a2 ∈ IRn and

F (x, u;αa) = αF (x, u; a),∀α ≥ 0, and a ∈ IRn.

Let F be a sublinear functional, the function φ : D −→ IR be differentiable at u ∈ D,
ρ ∈ IR, and d(·, ·) : D ×D −→ IR.

Definition 2.2. The function φ is said to be (F, ρ)-quasiconvex at u, if

φ(x) ≤ φ(u) =⇒ F (x, u;∇φ(u)) ≤ −ρd2(x, u), ∀x ∈ D.

Definition 2.3. The function φ is said to be (F, ρ)-pseudoconvex at u, if

F (x, u;∇φ(u)) ≥ −ρd2(x, u) =⇒ φ(x) ≥ φ(u), ∀x ∈ D.

Theorem 2.4 (Weak duality). Let x be feasible for (P) and (u, y, w) be feasible for
(GD1). If for any feasible (x, u, y, w), f(·) −∑

i∈I0
yigi(·) + (·)T w is (F, ρ0)-pseudoconvex

and −∑
i∈Iα

yigi(·), α = 1, 2, · · · , r is (F, ρα)-quasiconvex, and
∑r

α=1 ρα + ρ0 ≥ 0, then

f(x) + s(x|C) ≥ f(u)−
∑

i∈I0

yigi(u) + uT w.

Proof. As x is feasible for (P) and (u, y, w) is feasible for (GD1), we have
∑

i∈Iα

yigi(x) ≥ 0 ≥
∑

i∈Iα

yigi(u), α = 1, 2, · · · , r.

By the (F, ρα)-quasiconvexity of −∑
i∈Iα

yigi(·), ∀α = 1, 2, · · · , r, it follows that

F (x, u;−∇
∑

i∈Iα

yigi(u)) ≤ −ραd2(x, u), α = 1, 2, · · · , r. (2.5)

On the other hand, by the sublinearity of F and (2), we have

F (x, u;∇f(u)−
∑

i∈I0

∇yigi(u) + w) +
r∑

α=1

F (x, u;−∇
∑

i∈Iα

yigi(u))

≥ F (x, u;∇f(u) + w −∇yT g(u)) = 0. (2.6)

Combining (2.5) and (2.6), as well as
∑r

α=1 ρα + ρ0 ≥ 0, we get

F (x, u;∇f(u)−
∑

i∈I0

∇yigi(u) + w) ≥
r∑

α=1

ραd2(x, u) ≥ −ρ0d
2(x, u).
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The (F, ρ0)-pseudoconvexity of f(·)−∑
i∈I0

yigi(·) + (·)T w then yields

f(x)−
∑

i∈I0

yigi(x) + xT w ≥ f(u)−
∑

i∈I0

yigi(u) + uT w.

From y ≥ 0, g(x) ≥ 0 and xT w ≤ s(x|C), it follows that

f(x) + s(x|C) ≥ f(u)−
∑

i∈I0

yigi(u) + uT w.

Theorem 2.5 (Converse duality). Let (x∗, y∗, w∗) be an optimal solution of (GD1) such
that

(A1) the matrix ∇2f(x∗)−∇2y∗T g(x∗) is positive or negative definite;

(A2) the vectors {∇∑
i∈Iα

y∗igi(x∗), α = 1, 2, · · · , r} are linearly independent.

If, for all feasible (x, u, y, w), f(·) − ∑
i∈I0

yigi(·) + (·)T w is (F, ρ0)-pseudoconvex and
−∑

i∈Iα
yigi(·), α = 1, 2, · · · , r is (F, ρα)-quasiconvex, and

∑r
α=1 ρα + ρ0 ≥ 0, then x∗ is an

optimal solution to (P).

Proof. Since (x∗, y∗, w∗) is an optimal solution of (GD1), by the generalized Fritz John
necessary conditions [6], there exist τ0 ∈ IR, v ∈ IRn, τα ∈ IR, α = 1, 2, · · · , r, β ∈ IR,
γ ∈ IRm, such that

τ0{−∇f(x∗) +
∑

i∈I0

∇y∗igi(x∗)− w}

+ {∇2f(x∗)−∇2y∗T g(x∗)}T v +
r∑

α=1

τα{∇
∑

i∈Iα

y∗igi(x∗)} = 0, (2.7)

τ0gi(x∗)− vT gi(x∗)− γi = 0, i ∈ I0, (2.8)

ταgi(x∗)− vT∇gi(x∗)− γi = 0, i ∈ Iα, α = 1, 2, · · · , r, (2.9)

τ0x
∗ − v = β ∈ NC(w∗), (2.10)

τα

∑

i∈Iα

y∗igi(x∗) = 0, α = 1, 2, · · · , r, (2.11)

γT y∗ = 0, (2.12)

(τ0, τ1, τ2, · · · , τr, β, γ) ≥ 0, (2.13)

(τ0, τ1, τ2, · · · , τr, β, γ, v) 6= 0. (2.14)

Right multiplying (2.9) by y∗i, i ∈ Iα, α = 1, 2, · · · , r and using (2.11), we have

ταy∗igi(x∗)− vT∇y∗ig(x∗) = 0, i ∈ Iα, α = 1, 2, · · · , r,
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thus

τα

∑

i∈Iα

y∗igi(x∗)− vT
∑

i∈Iα

∇y∗ig(x∗) = 0, α = 1, 2, · · · , r.

From (2.11), it follows that

vT
∑

i∈Iα

∇y∗ig(x∗) = 0, α = 1, 2, · · · , r. (2.15)

Using (2.1) in (2.7), we have

r∑
α=1

(τα − τ0)∇
∑

i∈Iα

y∗igi(x∗) + [∇2f(x∗)−∇2yT g(x∗)]T v = 0. (2.16)

Left multiplying (2.16) by v and using (2.15), we have

vT [∇2f(x∗)−∇2y∗T g(x∗)]v = 0. (2.17)

By the assumption that ∇2f(x∗)−∇2y∗T g(x∗) is positive or negative definite at (x∗, y∗, w∗),
it follows that

v = 0.

Then (2.16) gives

r∑
α=1

(τα − τ0)∇
∑

i∈Iα

y∗igi(x∗) = 0. (2.18)

Since the vectors {∇∑
i∈Iα

y∗igi(x∗), α = 1, 2, · · · , r} are linearly independent, (2.18) yields

τα = τ0, α = 1, 2, · · · , r. (2.19)

If τ0 = 0, then τα = 0, α = 1, 2, · · · , r from (2.19), γ = 0 from (2.8), (2.9) and v = 0, and
β = 0 from (2.10), i.e., (τ0, τ1, τ2, · · · , τr, β, γ, v) = 0, contradicts (2.14). So, τ0 > 0. This
gives τα > 0, α = 1, 2, · · · , r. It follows from (2.8) and (2.9) that

τ0gi(x∗)− γi = 0, i ∈ I0, (2.20)
ταgi(x∗)− γi = 0, i ∈ Iα, α = 1, 2, · · · , r. (2.21)

Therefore g(x∗) ≥ 0 since γ ≥ 0 and τα > 0, α = 0, 1, 2, · · · , r. Thus, x∗ is feasible for (P),
and the objective functions of (P) and (GD1) are equal.

Multiplying (2.20) by y∗i, i ∈ I0 and using (2.12), we have

τ0y
∗
igi(x∗) = 0, i ∈ I0.

By τ0 > 0, it follows that

y∗igi(x∗) = 0, i ∈ I0. (2.22)

Also, v = 0, τ0 > 0 and (9) give

x∗ ∈ NC(w∗).
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Hence

s(x∗|C) = x∗T w∗. (2.23)

Therefore, from (2.22) and (2.23), we have

f(x∗) + s(x∗|C) = f(x∗)−
∑

i∈I0

y∗igi(x∗) + u∗T w∗.

Thus, if for any feasible (x, u, y, w), f(·)−∑
i∈I0

yigi(·)+ (·)T w is (F, ρ0)-pseudoconvex and
−∑

i∈Iα
yigi(·), α = 1, 2, · · · , r is (F, ρα)-quasiconvex, and

∑r
α=1 ρα + ρ0 ≥ 0, by Theorem

2.4, then x∗ is an optimal solution to (P).

3 Second Order Duality

In this section, following Mond and Weir [4], we propose a second-order dual model for
nondifferentiable programming problem (P ).

(GD2) maximize f(u)−
∑

i∈I0

yigi(u) + uT w − 1
2
pT [∇2f(u)−∇2

∑

i∈I0

yigi(u)]p,

subject to ∇f(u) + w −∇(yT g(u)) +∇2f(u)p−∇2yT g(u)p = 0, (3.1)
∑

i∈Iα

yigi(u)− 1
2
pT∇2

∑

i∈Iα

yigi(u)p ≤ 0, α = 1, 2, · · · , r, (3.2)

w ∈ C, (3.3)
y ≥ 0, (3.4)

where u,w, p ∈ IRn, y ∈ IRm, Iα ⊂ M = {1, 2, · · · ,m}, α = 0, 1, 2, · · · , r with
r⋃

α=0
Iα = M

and Iα

⋂
Iβ = ∅ if α 6= β. This model is a generalization of the one in Zhang and Mond [11].

Before giving weak and converse duality theorems, we introduce the following second
order (F, ρ)-convex definitions.

Let F be a sublinear functional, the function φ : D −→ IR be twice differentiable at
u ∈ D, ρ ∈ IR, and d(·, ·) : D ×D −→ IR be a distance function.

Definition 3.1. The function φ is said to be second order (F, ρ)-quasiconvex at u, if for all
p ∈ IRn,

φ(x) ≤ φ(u)− 1
2
pT∇2φ(u)p =⇒ F (x, u;∇φ(u) +∇2φ(u)) ≤ −ρd2(x, u), ∀x ∈ D.

Definition 3.2. The function φ is said to be second order (F, ρ)-pseudoconvex at u, if for
all p ∈ IRn,

F (x, u;∇φ(u) +∇2φ(u)) ≥ −ρd2(x, u) =⇒ φ(x) ≥ φ(u)− 1
2
pT∇2φ(u)p, ∀x ∈ D.

Theorem 3.3 (Weak duality). Let x be feasible for (P) and (u, y, w, p) be feasible for
(GD2). If, for any feasible (x, u, y, w, p), f(·)−∑

i∈I0
yigi(·)+(·)T w is second order (F, ρ0)-

pseudoconvex and −∑
i∈Iα

yigi(·), α = 1, 2, · · · , r is second order (F, ρα)-quasiconvex, and∑r
α=1 ρα + ρ0 ≥ 0, then

f(x) + s(x|C) ≥ f(u)−
∑

i∈I0

yigi(u) + uT wTw − 1
2
pT [∇2f(u)−∇2

∑

i∈I0

yigi(u)]p.
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Proof. As x is feasible for (P) and (u, y, w) is feasible for (GD1), we have

∑

i∈Iα

yigi(x) ≥ 0 ≥
∑

i∈Iα

yigi(u)− 1
2
pT∇2

∑

i∈Iα

yigi(u)p, α = 1, 2, · · · , r.

By the second order (F, ρα)-quasiconvexity of −∑
i∈Iα

yigi(·), ∀ α = 1, 2, · · · , r, it follows
that

F (x, u;−∇
∑

i∈Iα

yigi(u)−∇2
∑

i∈Iα

yigi(u)) ≤ −ραd2(x, u), α = 1, 2, · · · , r. (3.5)

On the other hand, by (3.1) and the sublinearity of F , we have

F (x, u;∇f(u) +∇2f(u)p + w −
∑

i∈I0

∇yigi(u)−
∑

i∈I0

∇2yigi(u)p)

+
r∑

α=1

F (x, u;−∇
∑

i∈Iα

yigi(u)−∇2
∑

i∈Iα

yigi(u)p)

≥ F (x, u;∇f(u) +∇2f(u)p + w −∇yT g(u)−∇yT g(u)p) = 0. (3.6)

Combining (3.5) and (3.6), as well as
∑r

α=1 ρα + ρ0 ≥ 0, we get

F (x, u;∇f(u) +∇2f(u)p + w −
∑

i∈I0

∇yigi(u)−
∑

i∈I0

∇2yigi(u)p)

≥
r∑

α=1

ραd2(x, u) ≥ −ρ0d
2(x, u).

The second order (F, ρ0)-pseudoconvexity of f(·)−∑
i∈I0

yigi(·) + (·)T w then yields

f(x)−
∑

i∈I0

yigi(x) + xT w ≥ f(u)−
∑

i∈I0

yigi(u) + uT w− 1
2
pT∇2[f(u)−

∑

i∈I0

yigi(u) + uT w]p.

From y ≥ 0,g(x) ≥ 0 and xT w ≤ s(x|C), it follows that

f(x) + s(x|C) ≥ f(u)−
∑

i∈I0

yigi(u) + uT wTw − 1
2
pT [∇2f(u)−∇2

∑

i∈I0

yigi(u)]p.

Theorem 3.4 (Converse duality). Let (x∗, y∗, w∗, p∗) be an optimal solution of (GD2)
such that

(B1) for all α = 1, 2, · · · , r, either (a) the n × n Hessian matrix ∇2
∑

i∈Iα
y∗igi(x∗) is

positive definite and p∗T∇∑
i∈Iα

y∗igi(x∗) ≥ 0 or (b) the n × n Hessian matrix
∇2

∑
i∈Iα

y∗igi(x∗) is negative definite and p∗T∇∑
i∈Iα

y∗igi(x∗) ≤ 0,

(B2) the vectors {[∇2f(x∗)−∇2
∑

i∈I0
y∗igi(x∗)]j, [∇2

∑
i∈Iα

y∗igi(x∗)]j, α = 1, 2, · · · , r, j =

1, 2, · · · , n} are linearly independent, where [∇2f(x∗)−∇2
∑

i∈I0
y∗igi(x∗)]j is the jth

row of [∇2f(x∗) − ∇2
∑

i∈I0
y∗igi(x∗)] and [∇2

∑
i∈Iα

y∗igi(x∗)]j is the jth row of
[∇2

∑
i∈Iα

y∗igi(x∗)],
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(B3) the vectors {∇∑
i∈Iα

y∗igi(x∗), α = 1, 2, · · · , r} are linearly independent.

If, for all feasible (x, u, y, w, p), f(·) − ∑
i∈I0

yigi(·) + (·)T w is second order (F, ρ0)-
pseudoconvex and −∑

i∈Iα
yigi(·), α = 1, 2, · · · , r is second order (F, ρα)-quasiconvex, and∑r

α=1 ρα + ρ0 ≥ 0, then x∗ is an optimal solution to (P).
Proof. Since (x∗, y∗, w∗, p∗) is an optimal solution of (GD2), by the generalized Fritz John
necessary conditions [6], there exist τ0 ∈ IR, v ∈ IRn, τα ∈ IR, α = 1, 2, · · · , r, β ∈ IR,
γ ∈ IRm, such that

τ0{−∇f(x∗) +
∑

i∈I0

∇y∗igi(x∗)− w∗ +
1
2
p∗T∇[∇2f(x∗)−∇2

∑

i∈I0

y∗igi(x∗)]p∗}

+ vT {∇2f(x∗)−∇2y∗T g(x∗) +∇[∇2f(x∗)p∗ −∇2y∗T g(x∗)p∗]}r

+
r∑

α=1

τα{∇
∑

i∈Iα

y∗igi(x∗)− 1
2
p∗T∇[∇2

∑

i∈Iα

y∗igi(x∗)p∗]} = 0, (3.7)

τ0{gi(x∗)− 1
2
p∗T∇2gi(x∗)p∗} − vT {gi(x∗) +∇2gi(x∗)p∗} − γi = 0, i ∈ I0, (3.8)

τα{gi(x∗)− 1
2
p∗T∇2gi(x∗)p∗} − vT {∇gi(x∗) +∇2gi(x∗)p∗} − γi = 0,

i ∈ Iα, α = 1, 2, · · · , r, (3.9)

τ0x
∗ − v = β ∈ NC(w∗), (3.10)

(τ0p
∗ + v)T {∇2f(x∗)−∇2

∑

i∈I0

y∗igi(x∗)} −
r∑

α=1

(ταp∗ + v)T {∇2
∑

i∈Iα

y∗igi(x∗)} = 0, (3.11)

τα{
∑

i∈Iα

y∗igi(x∗)− 1
2
p∗T∇2

∑

i∈Iα

y∗igi(x∗)p∗} = 0, α = 1, 2, · · · , r, (3.12)

γT y∗ = 0, (3.13)

(τ0, τ1, τ2, · · · , τr, β, γ) ≥ 0, (3.14)

(τ0, τ1, τ2, · · · , τr, β, γ, v) 6= 0. (3.15)

Because of Assumption (B2), (3.11) gives

ταp∗ + v = 0 α = 0, 1, 2, · · · , r. (3.16)

Multiplying (3.9) by y∗i, i ∈ Iα, α = 1, 2, · · · , r and using (3.12), we have

τα{y∗igi(x∗)− 1
2
p∗T∇2y∗igi(x∗)p∗} − vT {∇y∗ig(x∗) +∇2y∗ig(x∗)p∗} = 0,

i ∈ Iα, α = 1, 2, · · · , r,
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thus

τα{
∑

i∈Iα

y∗igi(x∗)− 1
2
p∗T

∑

i∈Iα

∇2y∗igi(x∗)p∗}

− vT {
∑

i∈Iα

∇y∗ig(x∗) +
∑

i∈Iα

∇2y∗ig(x∗)p∗} = 0, α = 1, 2, · · · , r.

From (3.12), it follows that

vT {
∑

i∈Iα

∇y∗ig(x∗) +
∑

i∈Iα

∇2y∗ig(x∗)p∗} = 0, α = 1, 2, · · · , r. (3.17)

Using (3.1), we may deduce from (3.7) have

(ταp∗ + v)T {∇2f(x∗)−∇2
∑

i∈I0

y∗igi(x∗) +∇[∇2f(x∗)−∇2
∑

i∈I0

y∗igi(x∗)]p∗}

−
r∑

α=1

(ταp∗ + v)T {∇2[
∑

i∈Iα

y∗igi(x∗) +∇[∇2
∑

i∈Iα

y∗igi(x∗)]p∗}

−τ0{∇
∑

i∈M\I0

y∗igi(x∗) +∇2
∑

i∈M\I0

y∗igi(x∗)p∗}

−1
2
τ0p

∗T {∇[∇2f(x∗)−∇2
∑

i∈I0

y∗igi(x∗)]p∗}

+
r∑

α=1

τα{∇
∑

i∈Iα

y∗igi(x∗) +∇2[
∑

i∈Iα

y∗igi(x∗)]p∗}

+
r∑

α=1

1
2
ταp∗T {∇[∇2

∑

i∈Iα

y∗igi(x∗)]p∗} = 0.

From (3.16), it follows that

r∑
α=1

(τα − τ0){∇
∑

i∈Iα

y∗igi(x∗) +∇2
∑

i∈Iα

y∗igi(x∗)p∗}

+
1
2
vT {∇[∇2f(x∗)−∇2

∑

i∈I0

y∗igi(x∗)]p∗ −∇[∇2
∑

i∈M\I0

y∗igi(x∗)]p∗)} = 0.

That is

r∑
α=1

(τα − τ0){∇
∑

i∈Iα

y∗igi(x∗) +∇2
∑

i∈Iα

y∗igi(x∗)p∗}

+
1
2
vT {∇[∇2f(x∗)−∇2y∗T g(x∗)]p∗} = 0. (3.18)

If for all α = 0, 1, 2, · · · , r, τα = 0, then v = 0 from (3.16), γ = 0 from (3.8) and (3.9),
and β = 0 from (3.10); that is, (τ0, τ1, τ2, · · · , τr, β, γ, v) = 0, contradicts (3.15). Thus, there
exists an α ∈ {0, 1, 2, · · · , r}, such that τα > 0.
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We claim that p∗ = 0. Indeed, if p∗ 6= 0, then (3.16) gives

(τα − τα)p∗ = 0, α = 1, 2, · · · , r.

This implies τα = τα > 0, α = 1, 2, · · · , r. So, (3.17) and (3.16) yield

p∗T {
∑

i∈Iα

∇y∗ig(x∗) +
∑

i∈Iα

∇2y∗ig(x∗)p∗} = 0, α = 1, 2, · · · , r,

which contradicts assumption (B1). Hence, p∗ = 0. Based on (3.17) and p∗ = 0, we have
v = 0. In view of (B3), (3.16), p∗ = 0 and τα > 0 for some α ∈ {0, 1, 2, · · · , r}, (3.18) implies
τα = τα > 0, for all α = 0, 1, 2, · · · , r. Now from (3.8) and (3.9), it follows that

τ0∇gi(x∗)− γi = 0, i ∈ I0, (3.19)

τα∇gi(x∗)− γi = 0, i ∈ Iα, α = 1, 2, · · · , r, (3.20)

Therefore g(x∗) ≥ 0 since γ ≥ 0 and τα > 0, α = 0, 1, 2, · · · , r. Thus, x∗ is feasible for (P),
and the objective functions of (P) and (GD2) are equal.

Multiplying (3.19) by y∗i, i ∈ I0 and using (3.13), it follows that

τ0y
∗
igi(x∗) = 0, i ∈ I0.

By τ0 > 0, it follows that

y∗igi(x∗) = 0, i ∈ I0. (3.21)

Also, v = 0, τ0 > 0 and (3.10) give

x∗ ∈ NC(w∗).

Hence

s(x∗|C) = x∗T w∗. (3.22)

Therefore, from (3.21), (3.22) and p∗ = 0, we have

f(x∗) + s(x∗|C) = f(x∗)−
∑

i∈I0

y∗igi(x∗) + u∗T w∗ − 1
2
p∗T [∇2f(x∗)−∇2

∑

i∈I0

y∗igi(x∗)]p∗.

If, for all feasible (x, u, y, w, p), f(·)−∑
i∈I0

yigi(·)+(·)T w is second order (F, ρ0)-pseudoconvex
and −∑

i∈Iα
yigi(·), α = 1, 2, · · · , r is second order (F, ρα)-quasiconvex, and

∑r
α=1 ρα+ρ0 ≥

0, by Theorem 3.3, then x∗ is an optimal solution to (P).

4 Special Cases and Some Remarks

Let us consider C = {Bw : wT Bw ≤ 1}. It is easily shown that (xT Bx)1/2 = s(x|C) and
that the set C is compact and convex. Then the primal problem (P) and the dual problems
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(GD1) and (GD2) in this paper become the primal problem (P1) and dual problems (GP)1
and (2GP)1 by Zhang and Mond [11], respectively, where

(GD)1 : Maximize f(u) + uT Bw −
∑

i∈I0

yigi(u)

subject to ∇f(u) + Bw − yT∇g(u) = 0,∑

i∈Iα

yigi(u) ≤ 0, α = 1, 2, · · · , r,

y ≥ 0,

wT Bw ≤ 1.

and

(2GD)2 : Maximize f(u) + uT Bw −
∑

i∈I0

yigi(u)− 1
2
pT [∇2f(u)−∇2

∑

i∈I0

yigi(u)]p

subject to ∇f(u) + Bw − yT∇g(u) +∇2f(u)p−∇2yT g(u)p = 0,
∑

i∈Iα

yigi(u)− 1
2
pT∇T

∑

i∈Iα

yigi(u)p ≤ 0, α = 1, 2, · · · , r,

y ≥ 0,

wT Bw ≤ 1.

It is obvious that the notations for the generalized first order and second order (F, ρ)-
convexity in this paper are generalizations of the notations of first order and second order
invexity in Zhang and Mond [11]. So our results in this paper improve and extend the main
works in [11].

In [11], Zhang and Mond obtained the following second order converse duality result:

Theorem 4.1 (see Theorem 6 in [11]). Let (x∗, y∗, w∗, p∗) be an optimal solution of
(GD2) at which

(C1) the n×n Hessian matrix ∇[∇2f(x∗)−∇2(y∗T g(x∗))]p∗ is positive or negative definite,

(C2) the vectors {[∇2f(x∗) − ∇2
∑

i∈I0
y∗igi(x∗)]j, [∇2

∑
i∈Iα

y∗igi(x∗)]j, α = 1, 2, · · · , r,
j = 1, 2, · · · , n} are linearly independent, where [∇2f(x∗)−∇2

∑
i∈I0

y∗igi(x∗)]j is the

jth row of [∇2f(x∗)−∇2
∑

i∈I0
y∗igi(x∗)] and [∇2

∑
i∈Iα

y∗igi(x∗)]j is the jth row of
[∇2

∑
i∈Iα

yigi(x∗)].

If, for all feasible (x, u, y, w, p), f(·)−∑
i∈I0

yigi(·)+(·)T Bw is second order pseudoinvex
and

∑
i∈Iα

yigi(·), α = 1, 2, · · · , r is second order quasincave with respect to the same η,
then x∗ is an optimal solution to (P).

We note that the matrix ∇[∇2f(x∗)−∇2(y∗T g(x∗))]p∗ is positive or negative definite in
the assumption (C1) of Theorem 4.1, and the result of Theorem 4.1 implies p∗ = 0 (see the
proof of Theorem 6 in [11]). It is obvious that the assumption and the result are inconsistent.
In our paper, we give an appropriate modification for this deficiency.
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