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1 Introduction

The trust region method is an important technique for solving optimization problems, due
to its strong convergence and robustness (e.g. [4, 5, 7, 8, 9, 12, 13, 16, 18, 27]). The
trust region method for unconstrained optimization problems defines each iterate as the
approximate minimizer of a relatively simple model function within a region in which the
algorithm trusts that the model function behaves like f(x) at the current iterate (e.g. [3,
6, 15, 17, 19, 25, 26]). Unlike line search methods in which the search direction is to be
chosen firstly at each iteration, the trust region method not only avoids the line search
procedure, but also produces the new iterates by solving some subproblems and has strong
global convergence (e.g. [14, 15, 20]). In trust region methods, the direction and step size
are chosen simultaneously. In general, the direction changes whenever the size of the trust
region is altered ([2, 23, 24, 28]).

The advantages of the trust region method are strong global convergence and robustness.
In order to analyze the convergence, one often uses the Cauchy point to obtain some useful
convergence properties ([3, 10, 12]). Can we generalize the Cauchy point to a general form
to obtain some new convergence properties? The answer is yes.

In this paper, we develop some new properties of the trust region method for uncon-
strained optimization problems by generalizing the Cauchy point to a general form. These
new extensions enable us to design some new and effective trust region methods. We pro-
pose several simple and implementable trust region algorithms in which the subproblem is
easy to solve. Preliminary numerical results show that the new trust region algorithms are
available and efficient in practical computation.

∗The work was supported in part by NSF DMI DMI-0514900 and NSF CNS-0521142, USA.
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The rest of this paper is organized as follows. In the next section, we give some pre-
liminary results on trust region methods. In Section 3, we develop some new properties of
the trust region method. In Section 4, we propose several simple and implementable trust
region methods. Some conclusions are summarized in Section 5.

2 Trust Region Method

Trust-region methods produce a trial step by minimizing a quadratic model of the objective
function subject to a ball constraint. Because of this restriction, trust-region methods are
sometimes known as restricted-step methods. In this section, we summarize some properties
of trust-region methods. For an in-depth overview of trust-region methods, see Conn, Gould,
and Toint’s book ([3]) and Nocedal and Wright’s book [12].

Consider an unconstrained optimization problem

min
x∈Rn

f(x), (2.1)

where Rn is an n-dimensional Euclidean space and f : Rn → R1 is a continuously dif-
ferentiable function. Denote g(x) = ∇f(x), G(x) = ∇2f(x). If xk (k=0,1,2,...) is the
current iterate, then we denote fk = f(xk), gk = ∇f(xk) and Gk = ∇2f(xk). Suppose x∗

is a solution or a stationary point of the unconstrained optimization problem, we denote
f∗ = f(x∗), g∗ = ∇f(x∗) and G∗ = ∇2f(x∗).

In trust region method, we need to seek a solution to the subproblem

min
p∈Rn

mk(p) = fk + gT
k p +

1
2
pT Bkp, s.t. ‖p‖ ≤ ∆k, (2.2)

where ∆k is a trust region radius and Bk is an approximation to Gk. We define ‖ · ‖ to be
the Euclidean norm, and let the solution p∗k to (2.2) be a minimizer of mk(p) in the ball with
the radius ∆k. Thus, the trust region method requires us to solve a sequence of subproblems
(2.2) in which the objective function and constraint (which can be written as pT p ≤ ∆2

k)
are both quadratic.

The first issue to arise in defining a trust region method is the strategy for choosing
the trust region radius ∆k at each iteration. We should make a choice on the agreement
between the model mk and the objective function f at the previous iterate. Given a step
pk we define the ratio

ρk =
fk − f(xk + pk)
mk(0)−mk(pk)

, (2.3)

where the numerator and the denominator are respectively called actual reduction and
predicted reduction. Note that since the step pk is obtained by minimizing the model
mk over a region that includes the step p = 0, the predicted reduction will always be
nonnegative. Thus if ρk is negative, the new objective value f(xk + pk) is greater than the
current value fk, so the step must be rejected.

On the other hand, if ρk is close to 1, there is good agreement between the model mk and
the function f over this step, so it is safe to expand the trust region for the next iteration.
If ρk is positive but not close to 1, we do not alter the trust region. But if it is close to zero
or negative, we shrink the trust region. The following algorithm describes the process [12].

Algorithm 2.1 (Trust Region Algorithm).

Given ∆ > 0, ∆0 ∈ (0,∆), and η ∈ [0, 1
4 );
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For k = 0, 1, 2, ...
Obtain pk by (or approximately) solving (2.2);
Evaluate ρk from (2.3);
if ρk < 1

4 then
∆k+1 = 1

4‖pk‖
else

if ρk > 3
4 and ‖pk‖ = ∆k then

∆k+1 = min(2∆k,∆)
else

∆k+1 = ∆k;
if ρk > η then

xk+1 = xk + pk

else
xk+1 = xk;

end(for).

To turn Algorithm 2.1 into a practical algorithm, we need to focus on solving (2.2). We
expect some approximate solutions of (2.2) to achieve at least as much reduction in mk as
the reduction achieved by the so-called Cauchy point. This point is simply a minimizer
of mk along the steepest descent direction −gk, subject to the trust region bound. It is
enough to find an approximate solution pk to (2.2) that lies within the trust region and get
a sufficient reduction in the model. The sufficient reduction can be quantified in terms of the
Cauchy point, which we denote by pc

k and define in terms of the following simple procedure.

Algorithm 2.2 (Cauchy Point Calculation).

Find the vector ps
k that solves a linear version of (2.2), i.e.,

ps
k = arg min

p∈Rn
(fk + gT

k p), s.t. ‖p‖ ≤ ∆k; (2.4)

Calculate the scalar τk > 0 that minimizes mk(τps
k) subject to ‖τps

k‖ ≤ ∆k and set pc
k =

τkps
k.

In fact,

ps
k = − ∆k

‖gk‖gk,

and

pc
k = −τk

∆k

‖gk‖gk,

where

τk =
{

1, if gT
k Bkgk ≤ 0;

min(‖gk‖3/(∆kgT
k Bkgk), 1), otherwise. (2.5)

If Algorithm 2.1 produces an approximate solution pk to the subproblem (2.2) that satisfies
the estimate

mk(0)−mk(pk) ≥ c1‖gk‖min
(
∆k,

‖gk‖
‖Bk‖

)
, (2.6)

for some constant c1 ∈ (0, 1], then we can show that the Cauchy point pc
k satisfies (2.6) with

c1 = 1
2 , see ([12]).
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Lemma 2.3. The Cauchy point pc
k satisfies (2.6) with c1 = 1

2 , that is

mk(0)−mk(pk) ≥ 1
2
‖gk‖min

(
∆k,

‖gk‖
‖Bk‖

)
. (2.7)

Theorem 2.4. Let pk be any vector such that ‖pk‖ ≤ ∆k and mk(0)−mk(pk) ≥ c2(mk(0)−
mk(pc

k)). Then pk satisfies (2.6) with c1 = c2
2 . In particular, if pk is the exact solution p∗k

of (2.2), then it satisfies (2.6) with c1 = 1
2 .

For generality, we allow the length of the approximate solution pk of (2.2) to exceed the
trust region bound, i.e.,

‖pk‖ ≤ γ∆k, (2.8)

where γ ∈ [1,+∞).

Theorem 2.5. Let η = 0 in Algorithm 2.1. Suppose that ‖Bk‖ ≤ β for some constant β,
f is continuously differentiable and bounded below on the level set {x ∈ Rn| f(x) ≤ f(x0)}.
Then, for all approximate solutions of (2.2) satisfying the inequalities (2.6) and (2.8), we
have

lim inf
k→∞

‖gk‖ = 0. (2.9)

Theorem 2.6. Let η ∈ (0, 1
4 ) in Algorithm 2.1. Suppose that ‖Bk‖ ≤ β for some constant β,

f is Lipschitz continuously differentiable and bounded below on the level set {x ∈ Rn| f(x) ≤
f(x0)}. Then, for all approximate solutions of (2.2) satisfying the inequalities (2.6) and
(2.8), we have

lim
k→∞

‖gk‖ = 0. (2.10)

Moré and Sorensen described a safeguarded version of the root-finding Newton method
([10]) in which the approximate solution p satisfies the conditions (2.8) and

mk(0)−mk(p) ≥ c1(mk(0)−mk(p∗k)) (2.11)

for c1 ∈ (0, 1] and γ ≥ 1, where p∗k is the exact solution to (2.2).

3 New Properties of Trust Region Method

In line search methods, we first choose a search direction dk and then find a new iterate along
the direction at each step. The distance to move along dk can be found by approximately
solving the one-dimensional minimization problem

αk = arg min
α>0

f(xk + αdk).

Set
xk+1 = xk + αkdk, (3.1)

and complete one iteration.
The search direction dk is generally required to satisfy

gT
k dk < 0, (3.2)

which guarantees that dk is a descent direction of f(x) at xk. In order to guarantee the
global convergence, we sometimes require dk to satisfy the sufficient descent condition

gT
k dk ≤ −c‖gk‖2, (3.3)
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where c > 0 is a constant. Moreover, the angle property

cos〈−gk, dk〉 = − gT
k dk

‖gk‖ · ‖dk‖ ≥ τ0 (3.4)

with τ0 : 1 ≥ τ0 > 0 is commonly used in proving the global convergence.
In the trust region method, we choose a search direction dk to satisfy (3.2), (3.3) or (3.4)

and solve the following subproblem

minmk(τdk), s.t. ‖τdk‖ ≤ ∆k (3.5)

to obtain a solution pl
k = τkdk, where

τk =
{

∆k/‖dk‖, if dT
k Bkdk ≤ 0;

min(−gT
k dk/dT

k Bkdk,∆k/‖dk‖), otherwise. (3.6)

Obviously, pl
k reduces to the Cauchy point whenever dk = −gk. We can use pl

k to obtain
some new convergence properties of trust region method. As we can see that the point pl

k

is the minimizer of mk along the direction dk, subject to the trust region bound. For global
convergence, it is enough to find an approximate solution pk that lies within the trust region
and obtain a sufficient reduction in the model. The sufficient reduction can be quantified in
terms of the point pl

k.
If the approximate solution pk to the subproblem (2.2) satisfies (2.8) and

mk(0)−mk(pk) ≥ −c1
gT

k dk

‖dk‖ min
(
∆k,− gT

k dk

‖dk‖ · ‖Bk‖
)

(3.7)

for c1 ∈ (0, 1], then we can obtain some generalized convergence theorems.

Lemma 3.1. The point pl
k satisfies (3.7) with c1 = 1

2 , i.e.,

mk(0)−mk(pl
k) ≥ −1

2
gT

k dk

‖dk‖ min
(
∆k,− gT

k dk

‖dk‖ · ‖Bk‖
)
. (3.8)

Proof. We first consider the case of dT
k Bkdk ≤ 0. Since

mk(pl
k)−mk(0) = mk(τkdk)−mk(0)

= τkgT
k dk +

1
2
τ2
kdkBkdk

≤ τkgT
k dk = ∆k

gT
k dk

‖dk‖

≤ 1
2

gT
k dk

‖dk‖ min
(
∆k,− gT

k dk

‖dk‖ · ‖Bk‖
)
,

we obtain that (3.8) holds in this case.
For the next case of dT

k Bkdk > 0 and − gT
k dk

dT
k Bkdk

≤ ∆k

‖dk‖ , we have τk = − gT
k dk

dT
k Bkdk

, and thus

mk(pl
k)−mk(0) = mk(τkdk)−mk(0)

= τkgT
k dk +

1
2
τ2
kdkBkdk

= −1
2

(gT
k dk)2

dT
k Bkdk

≤ −1
2

(gT
k dk)2

‖dk‖2‖Bk‖

≤ 1
2

gT
k dk

‖dk‖ min
(
∆k,− gT

k dk

‖dk‖ · ‖Bk‖
)
.
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Therefore (3.8) also holds.

In the remaining case, we have − gT
k dk

dT
k Bkdk

> ∆k

‖dk‖ . Therefore, dT
k Bkdk < −‖dk‖gT

k dk

∆k
,

τk = ∆k

‖dk‖ , and consequently

mk(pl
k)−mk(0) =

∆k

‖dk‖gT
k dk +

1
2

( ∆k

‖dk‖
)2

dT
k Bkdk

≤ 1
2

gT
k dk

‖dk‖∆k

≤ 1
2

gT
k dk

‖dk‖ min
(
∆k,− gT

k dk

‖dk‖ · ‖Bk‖
)
,

yielding the desired result. The proof is finished.

It is obvious that Lemma 2.3 is a corollary of Lemma 3.1 whenever dk = −gk.

Theorem 3.2. Let pk be any vector such that ‖pk‖ ≤ ∆k and mk(0)−mk(pk) ≥ c2(mk(0)−
mk(pl

k)). Then pk satisfies (3.7) with c1 = c2
2 . In particular, if pk is the exact solution p∗k

to (2.2), then it satisfies (3.7) with c1 = 1
2 .

Proof. Since ‖pk‖ ≤ ∆k, we have from (3.8) that

mk(0)−mk(pk) ≥ c2(mk(0)−mk(pl
k))

≥ −c2

2
gT

k dk

‖dk‖ min
(
∆k,− gT

k dk

‖dk‖ · ‖Bk‖
)
,

giving the result.

Remark 3.3. Let S(dk) denote the set of all p satisfying (3.7), S(−gk) denote the set of
all p satisfying (2.6), and c1 in (2.6) and (3.7) is the same constant. Then

S(−gk) ⊆ S(dk).

In fact, since

−gT
k dk

‖dk‖ ≤ ‖gk‖,

by (2.6) and (3.7), we have
∀p ∈ Sk(−gk) ⇒ p ∈ S(dk).

This shows that (3.7) has a wider scope for p at the kth iteration. Moreover, Theorem 2.4
is a corollary of Theorem 3.2 whenever dk = −gk.

Theorem 3.4. Let η = 0 in Algorithm 2.1. Suppose that ‖Bk‖ ≤ β for some constant β,
f is continuously differentiable and bounded below on the level set {x ∈ Rn| f(x) ≤ f(x0)}.
Then, for all approximate solutions of (2.2) satisfying inequalities (2.8) and (3.7) with dk

satisfying (3.2), we have

lim inf
k→∞

(−gT
k dk

‖dk‖
)

= 0. (3.9)
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Proof. We first perform some technical manipulation with the ratio ρk from (2.3),

|ρk − 1| =
∣∣∣ (fk − f(xk + pk))− (mk(0)−mk(pk))

mk(0)−mk(pk)

∣∣∣

=
∣∣∣mk(pk)− f(xk + pk)

mk(0)−mk(pk)

∣∣∣.

By Taylor theorem we have

f(xk + pk) = fk + gT
k pk +

∫ 1

0

[g(xk + tpk)− gk]T pkdt.

It follows from the definition of mk that

|mk(pk)− f(xk + pk)| =
∣∣∣1
2
pT

k Bkpk −
∫ 1

0

[g(xk + pk)− gk]T pkdt
∣∣∣

≤ (β/2)‖pk‖2 + C4(pk)‖pk‖,

where we can make the scalar C4(pk) arbitrarily small by restricting the size of pk.
Suppose for contradiction that (3.9) doesn’t hold. Then there exists an ε > 0 such that

−gT
k dk

‖dk‖ ≥ ε, ∀k. (3.10)

From (3.7), we have

mk(0)−mk(pk) ≥ c1ε min
(
∆k,

ε

β

)
. (3.11)

Using (3.11) and (2.8), we have

|ρk − 1| ≤ γ∆k(βγ∆k/2 + C4(pk))
c1ε min(∆k, ε/β)

. (3.12)

By choosing ∆ to be small enough and noting that ‖pk‖ ≤ γ∆k ≤ γ∆, we can ensure that
the term in parentheses in the numerator of (3.12) satisfies the bound

βγ∆k/2 + C4(pk) <
c1ε

4γ
. (3.13)

By choosing ∆ even smaller, if necessary, to ensure that ∆k ≤ ∆ ≤ ε/β, it follows from
(3.12) that

|ρk − 1| < γ∆kc1ε/(4γ)
c1ε∆k

=
1
4
.

Therefore, ρk > 3
4 , and by the use of Algorithm 2.1, we have ∆k+1 ≥ ∆k whenever ∆k falls

below the threshold ∆. It follows that reduction of ∆k (by a factor of 1
4 ) can occur in the

algorithm only if
∆k ≥ ∆,

and therefore we conclude that

∆k ≥ min(∆K ,∆/4), ∀k ≥ K (3.14)
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for sufficiently large K. Suppose that there is an infinite subsequence N such that ρk ≥ 1
4

for k ∈ N . If k ∈ N and k ≥ K, it follows from (3.11) that

fk − fk+1 = fk − f(xk + pk)

≥ 1
4
[mk(0)−mk(pk)]

≥ 1
4
c1ε min(∆k, ε/β).

Since f is bounded from below, it follows from this inequality that

lim
k∈N,k→∞

∆k = 0,

contradicting (3.14). Hence no such infinite subsequence N can exist, and we must have
ρk < 1

4 for all sufficiently large k. In this case, ∆k will eventually be reduced by a factor of
1
4 at every iteration, and we have limk→∞∆k = 0, which again contradicts (3.14). Hence,
our original assertion (3.10) must be false, resulting in (3.9).

Corollary 3.5. Let η = 0 in Algorithm 2.1. Suppose that ‖Bk‖ ≤ β for some constant β,
f is continuously differentiable and bounded below on the level set {x ∈ Rn| f(x) ≤ f(x0)}.
Then, for all approximate solutions of (2.2) satisfying inequalities (2.8) and (3.7) with dk

satisfying (3.4), we have
lim inf
k→∞

‖gk‖ = 0. (3.15)

It is apparent that Corollary 3.5 can be proved from Theorem 2.5.

Theorem 3.6. Let η ∈ (0, 1
4 ) in Algorithm 2.1. Suppose that ‖Bk‖ ≤ β for some constant β,

f is Lipschitz continuously differentiable and bounded below on the level set {x ∈ Rn| f(x) ≤
f(x0)}. Then, for all approximate solutions of (2.2) satisfying inequalities (2.8) and (3.7)
with dk satisfying (3.4), we have

lim
k→∞

‖gk‖ = 0. (3.16)

Proof. Consider any index m such that ‖gm‖ 6= 0. If we use β1 to denote the Lipschitz
constant for g(x) on the level set {x| f(x) ≤ f(x0)}, we have

‖g(x)− gm‖ ≤ β1‖x− xm‖,
for all x in the level set. Hence, by defining the scalars

ε =
‖gm‖

2
, R =

‖gm‖
2β1

=
ε

β1
,

and the ball
B(xm, R) = {x| ‖x− xm‖ ≤ R},

for x ∈ B(xm, R), we have

‖g(x)‖ ≥ ‖gm‖ − ‖gm − g(x)‖
≥ ‖gm‖ − β1‖x− xm‖
≥ β1R = ε.

If the entire sequence {xk}k≥m stays inside the ball B(xm, R), we would have ‖gk‖ ≥ ε > 0
for all k ≥ m. The reasoning in the proof of Theorem 3.4 can be used to show that this
scenario does not occur. Therefore, the sequence {xk}k≥m eventually leaves B(xm, R).
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Let the index l ≥ m be such that xl+1 is the first iterate outside B(xm, R) after xm.
Since

‖gk‖ ≥ −gT
k dk

‖dk‖ ≥ τ0‖gk‖ ≥ τ0ε

for k = m,m + 1, ..., l, we can use (3.11) to write

fm − fl+1 =
l∑

k=m

(fk − fk+1)

≥
l∑

k=m,xk 6=xk+1

η[mk(0)−mk(pk)]

≥
l∑

k=m,xk 6=xk+1

ηc1τ0ε min
(
∆k,

τ0ε

β

)
.

If ∆k ≤ τ0ε/β for all k = m,m + 1, ..., l, we have

fm − fl+1 ≥ ηc1τ0ε
∑

k=m,xk 6=xk+1

∆k ≥ ηc1τ0εR = ηc1τ0ε
2/β1. (3.17)

Otherwise, we have ∆k > τ0ε/β for some k = m,m + 1, ..., l, and consequently

fm − fl+1 ≥ ηc1τ
2
0 ε2/β. (3.18)

Since the sequence {fk}∞k=0 is decreasing and bounded from below, we have

fk ↘ f∗ (3.19)

for some f∗ > −∞. Therefore, using (3.17) and (3.18), we can write

fm − f∗ ≥ fm − fl+1

≥ ηc1τ0ε
2 min

(τ0

β
,

1
β1

)

=
1
4
ηc1τ0 min

(τ0

β
,

1
β1

)
‖gm‖2.

By rearranging this expression, we obtain

‖gm‖2 ≤
(1

4
ηc1τ0 min

(τ0

β
,

1
β1

))−1

(fm − f∗),

so from (3.19) we conclude that ‖gm‖ → 0(m →∞)), giving the result.

It is worthy to note that Theorem 2.6 is a special case of Theorem 3.6.

4 Some New Trust Region Methods

In this section we propose several computable trust region methods which have global con-
vergence. From the previous section, we can summarize the conclusion as follows.
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(a) For pk = pl
k = τkdk with dk satisfying (3.4) and τk satisfying (3.6), we have for η = 0

that
lim inf
k→∞

‖gk‖ = 0, (4.1)

and for η ∈ (0, 1
4 ) that

lim
k→∞

‖gk‖ = 0. (4.2)

(b) If the approximate solution pk of (2.2) satisfies (2.8) and (3.7), and dk satisfies (3.4),
then, for η = 0, (4.1) holds; for η ∈ (0, 1

4 ), (4.2) holds.
According to the above conclusion, we have two ways to establish some new trust region

methods. One way is to find a descent direction dk satisfying (3.4) and use conclusion (a)
to construct some new trust region methods. The other way is to construct some subspace
trust region methods.

As we know, the key to using trust region methods is how to solve the subproblem. If
dk satisfies (3.4) then we may obtain a simple trust region method by solving the following
simple subproblem

minmk(τdk) = fk + τgT
k dk +

1
2
τ2dT

k Bkdk, s.t. ‖τdk‖ ≤ ∆k,

and letting pk = τkdk with τk satisfying (3.6).
In Algorithm 2.1, the trust region subproblem is replaced by the above subproblem,

we can obtain a simple trust region algorithm, denoted by LTR (means Line-search Trust
Region method).

Furthermore, given a positive integer m, when k ≥ m, let

Zk = [dk, q
(k)
1 , q

(k)
2 , ..., q

(k)
m−1],

where dk, q
(k)
1 , q

(k)
2 , ..., q

(k)
m−1 are m vectors in Rn with dk satisfying (3.4). Set d = Zky with

y ∈ Rm. Then we can obtain a subproblem

minmk(Zky) = fk + gT
k Zky +

1
2
yT ZT

k BkZky, s.t. ‖Zky‖ ≤ ∆k, (4.3)

where m is substantially smaller than n. This is to say that (4.3) is easier to be solved than
(2.2). If yk is a solution to the above subproblem, then we take pk = Zkyk. We can obtain
a new trust region method.

We call the corresponding algorithm the subspace trust region method. The matrix Zk

has many special forms, for example, whenever k ≥ m,
(i) Zk = [−gk, pk−1, ..., pk−m+1];
(ii) Zk = [−gk, γk−1, ..., γk−m+1], or
(iii) Zk = [−gk, sk−1, ..., sk−m+1], where γk = gk−i+1−gk−i and sk = xk−i+1−xk−i with

i = 1, 2, ..., m.
(iv) Zk = [dk, gk−1, gk−2, ..., gk−m+1] with dk satisfying (3.4).
We denote the subspace trust region method by STR (Subspace Trust Region method)

in the paper.

Theorem 4.1. In Algorithm 2.1, pk = Zkyk and yk is a solution to (4.3). Suppose that
‖Bk‖ ≤ β for some constant β, f is Lipschitz continuously differentiable and bounded below
on the level set {x ∈ Rn| f(x) ≤ f(x0)}. Then, for η = 0, (4.1) holds; for η ∈ (0, 1

4 ), (4.2)
holds.
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Proof. It suffices to show that pk satisfies (2.8) and (3.7). Then, using Theorems 3.4 and
3.6 we can draw the conclusion. It is certain that pk satisfies (2.8). It needs only to prove
that pk satisfies (3.7).

Construct a vector ŷ = (ŷ1, 0, ..., 0)T ∈ Rm and solve the following subproblem

minmk(Zkŷ) = fk + gT
k Zkŷ +

1
2
ŷT ZT

k BkZkŷ, s.t. ‖Zkŷ‖ ≤ ∆k.

Since Zkŷ = ŷ1dk, the subproblem can be changed as

minmk(ŷ1dk) = fk + ŷ1g
T
k dk +

1
2
ŷ2
1dT

k Bkdk, s.t. ‖ŷ1dk‖ ≤ ∆k. (4.4)

The problem is completely equivalent to (3.5). By Lemma 3.1 we have

mk(0)−mk(ŷ1dk) ≥ −1
2

gT
k dk

‖dk‖ min
(
∆k,− gT

k dk

‖dk‖ · ‖Bk‖
)
,

where ŷ1 is a solution to (4.4). Noting that

mk(0)−mk(ŷ1dk) ≤ mk(0)−mk(Zkyk) = mk(0)−mk(pk),

in which yk is a solution to (4.3), we have

mk(0)−mk(pk) ≥ −c1
gT

k dk

‖dk‖ min
(
∆k,− gT

k dk

‖dk‖ · ‖Bk‖
)

with c1 = 1
2 . This shows that pk also satisfies (3.7). Thus, Theorems 3.4 and 3.6 hold. The

proof is completed.

Moreover, we can simplify the subproblem (4.3) into the following subproblem

minmk(Zky) = fk + gT
k Zky +

1
2
yT ZT

k BkZky, s.t. ‖y‖ ≤ ∆k

‖dk‖ , (4.5)

Theorem 4.2. In Algorithm 2.1, pk = Zkyk and yk is a solution to (4.5). Suppose that
‖Bk‖ ≤ β for some constant β, f is Lipschitz continuously differentiable and bounded below
on the level set {x ∈ Rn| f(x) ≤ f(x0)}. Then, for η = 0, (4.1) holds; for η ∈ (0, 1

4 ), (4.2)
holds.

Proof. The proof is similar to that of Theorem 4.1 and omitted here.

The subproblem (4.5) is easier to be solved than (4.3) because m is far smaller than n.
In order to solve large scale optimization problems by using the trust region method, we

need to avoid the storage and calculation of some matrices such as Bk. The subproblem of
trust region method can be changed into

minmk(p) = fk + gT
k p +

1
2
Lk‖p‖2, s.t. ‖p‖ ≤ ∆k, (4.6)

where Lk is a parameter that approximates to the Lipschitz constant of the gradient of
objective functions f(x). The subproblem is simple and easy to be solved in practical
computation. Generally, we require Lk to satisfy

0 < Lk ≤ β. (4.7)
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In fact, we can solve (4.6) and obtain

pk =
{ −(1/Lk)gk, if ‖gk‖

Lk
≤ ∆k;

−(∆k/(Lk‖gk‖))gk, otherwise.
(4.8)

The corresponding trust region algorithm is denoted by STR(4.6).
In practical computation, we can obtain some estimations of Lk. Firstly, for k ≥ 2, we

can take

Lk =
‖gk − gk−1‖
‖xk − xk−1‖ . (4.9)

Secondly, we may take Lk to be a solution to the following minimization problem

min
L∈R1

‖Lsk−1 − γk−1‖,

where sk−1 = xk − xk−1 and γk−1 = gk − gk−1, so the solution is

Lk =
sT

k−1γk−1

‖sk−1‖2 ; (4.10)

or by solving

min
L∈R1

‖ 1
L

sk−1 − γk−1‖
we obtain

Lk =
‖γk−1‖2
sT

k−1γk−1
. (4.11)

Furthermore, let Dk ∈ Rn×n be a diagonal matrix or a Hessenberg matrix that is an
approximation to the Hessian G(xk) of f(x) at the point xk, we may consider the subproblem

minmk(p) = fk + gT
k p +

1
2
pT Dkp, s.t. ‖p‖ ≤ ∆k. (4.12)

Denote Dk = diag(d(k)
11 , d

(k)
22 , ..., d

(k)
nn ) or denote Dk = (d(k)

ij )n×n, where d
(k)
ij = 0 whenever

|i− j| > l (we call it a Hessenberg matrix with band l; if l = 0 then the Hessenberg matrix
reduces to a diagonal matrix). We can estimate Dk for k ≥ 2 by solving the following
minimization problem

min ‖Dsk−1 − γk−1‖, s.t. |d(k)
ii | ≤ β, i = 1, 2, ..., n, (4.13)

where δk−1 = xk − xk−1 and yk−1 = gk − gk−1.
The subproblem (4.12) should be easier to be solved than (2.2) in some sense. We denote

the algorithm with subproblem (4.12) by STR(4.12).
In the following, we shall choose some test problems to implement the new versions

of trust region method, LTR, STR(4.6) and STR(4.12). The problems and their initial
iterative points are from the literature ([11]) and denote test problems 1-18 as the same
in the literature. The BFGS formula is used to modify the matrix sequence {Bk} and
dk = −B−1

k gk in LTR if B−1
k is available.

We use ∆ = 106, δ0 = 0.5, η = 0.12, L0 = 0.01, β = 1000 and Lk defined by (4.9), (4.10)
or (4.11) (denote Algorithms STR(4.9), STR(4.10) and STR(4.11)) in the implementation
of STR(4.6) and the stopping criteria is ‖gk‖ ≤ 10−11. The number of iterations and total
CPU time are listed in Table 1. In Algorithms STR(4.9), STR(4.10) and STR(4.11), if
Lk ∈ [L0, β] then we take Lk = Lk otherwise we take Lk = L0 when Lk < L0 and Lk = β
when Lk > β.
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Table 1: The number of iterations and total CPU time

P n LTR STR(4.9) STR(4.10) STR(4.11) STR(4.12)
1 2 26 52 28 54 36
2 2 18 42 27 46 35
3 2 12 22 16 25 20
4 2 15 34 17 33 28
5 2 21 37 26 38 32
6 2 15 35 25 39 28
7 3 36 81 42 83 48
8 3 45 84 57 89 73
9 3 37 76 64 82 65
10 3 23 46 38 56 45
11 3 39 69 51 73 62
12 3 37 67 62 65 63
13 4 47 84 63 86 81
14 4 28 123 74 108 112
15 4 69 127 87 131 116
16 4 19 67 46 69 53
17 5 79 135 84 123 121
18 6 31 57 55 59 43

CPU - 46s 84s 75s 88s 82s

Numerical results in Table 1 show that some modified trust region methods are effective in
practical computation. Specifically, the best modification seems to be LTR because it uses
less total CPU time than other similar methods mentioned in this paper. However, LTR
needs to memorize and compute some matrices in its implementation. STR(4.10) seems to
be the best one in STR methods because it takes only 75 seconds for solving 18 problems.

Moreover, the subproblems of the modified trust region methods are easier to be solved
than those of the original trust region methods. This makes the modified trust region
methods implementable, available, and effective in practical computation.

5 Conclusions

In this paper, we developed some new properties of the trust region method for unconstrained
optimization by generalizing Cauchy point to a general form. These new properties enable us
to design some new and effective trust region methods. Moreover, we proposed several simple
and implementable trust region algorithms in which the subproblem was simple and easy
to be solved. Preliminary numerical results showed that some new trust region algorithms
were available and efficient in practical computation. In particular, the subspace trust region
method should be a promising algorithm because it may be closely related to line search
methods.

For future research we should choose different dk to construct new trust region methods
and make the new subproblems easier to be solved than the original subproblems. Further-
more, by using the idea proposed in this paper, we can investigate the relationship between
the line search method and the trust region method and design some new hybrid and robust
optimization methods.
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