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Abstract: This paper deals with a viscosity-like method for approximating a specific solution of the following
fixed-point problem: find x̃ ∈ H; x̃ = (projFix(T ) ◦ P )x̃, where H is a Hilbert space, P and T are two
nonexpansive mappings on a closed convex subset D and projFix(T ) denotes the metric projection on the
set of fixed-points of T . This amounts to saying that x̃ is the fixed-point of T which satisfies a variational
inequality depending on a given criterion P , namely: find x̃ ∈ H; 0 ∈ (I − P )x̃ + NFix(T )x̃, where NFix(T )

denotes the normal cone to the set of fixed-points of T . Strong convergence results for the viscosity-like
method are proved. It should be noticed that the proposed method can be regarded, for instance, as a
generalized version of Halpern’s algorithm.
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1 Introduction

In nonlinear analysis a common approach to solving a problem with multiple solutions
is to replace it by a family of perturbed problems admitting a unique solution, and to
obtain a particular solution as the limit of these perturbed solutions when the perturbation
vanishes. In this paper, we introduce a more general approach which consists in finding a
particular part of the solution set of a given fixed-point problem, i.e. fixed-points which
solve a variational inequality criterion. More precisely, the goal of this paper is to present
a method for finding hierarchically a fixed-point of a nonexpansive mapping T with respect
to a nonexpansive mapping P , namely

Find x̃ ∈ Fix(T ) such that 〈x̃− P (x̃), x− x̃〉 ≥ 0 ∀x ∈ Fix(T ), (1.1)

i.e., 0 ∈ (I−P )x̃+NFix(T )(x̃), where Fix(T ) = {x̄ ∈ D; x̄ = T (x̄)} is the set of fixed-points
of T and D is a closed convex subset of a real Hilbert space H.

It is not hard to check that solving (1.1) is equivalent to the fixed-point problem

Find x̃ ∈ D such that x̃ = projFix(T ) ◦ P (x̃), (1.2)

where projFix(T ) stands for the metric projection on the closed convex set Fix(T ).
It is worth mentioning that when the solution set S of (1.1) is a singleton (which is the

case for example where Q is a contraction), the problem reduces to the viscosity fixed-point
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solution introduced in [15] and further developed in [18].

Throughout, H is a real Hilbert space, 〈·, ·〉 denotes the associated scalar product and
‖ · ‖ stands for the corresponding norm. To begin with, let us recall the following concepts
which are of common use in the context of convex and nonlinear analysis, see for example
Brézis [3]. An operator, A : H → 2H, is said to be monotone if

〈u− v, x− y〉 ≥ 0 whenever u ∈ A(x), v ∈ A(y).

It is said to be maximal monotone if, in addition, the graph, graphA := {(x, y) ∈ H ×H :
y ∈ A(x)}, is not properly contained in the graph of any other monotone operator. It is
well-known that for each x ∈ H and λ > 0 there is a unique z ∈ H such that x ∈ (I + λA)z.
The single-valued operator JA

λ := (I+λA)−1 is called the resolvent of A of parameter λ. It is
a nonexpansive mapping which is everywhere defined. Let us also recall that a mapping P is
nonexpansive if for all x, y ∈ H, one has ‖P (x)−P (y)‖ ≤ ‖x−y‖, and finally that an operator
sequence An is said to be graph convergent to A if (graph(An)) converges to graph(A) in
the Kuratowski-Painlevé’s sense, i.e. lim supn graph(An) ⊂ graph(A) ⊂ lim infn graph(An).

From now on, we assume that

S :=
{
x̃ ∈ D | x̃ = (projFix(T ) ◦ P )x̃

} 6= ∅. (1.3)

Indeed in a large number of variational or optimization problems the solution fails to be
unique, for example when considering problems arising in plasticity theory, phase transi-
tions and linear mathematical programming. In such a situation it is important, both for
theoretical and numerical reasons, to describe methods which allow us to reach some par-
ticular solutions.

To this end, given a contraction C : D → D, namely ||Cx − Cy|| ≤ %||x − y|| for all
x, y ∈ D, where % ∈ [0, 1), to approximate a point in S, we propose the following viscosity
algorithm:

xn+1 = λnCxn + (1− λn) (αnPxn + (1− αn)Txn) , for n ≥ 0, (1.4)

where x0 ∈ D, (λn) and (αn) ⊂ (0, 1).

Our main purpose is to study the asymptotic convergence of the sequence (xn) generated
by scheme (1.4). Under suitable conditions on the parameters, we establish the convergence
in norm of (xn) to the unique fixed-point of the mapping projS ◦C. It is worth noting that
when αn ≡ 0, scheme (1.4) reduces to the well-known viscosity method for finding fixed
points of nonexpansive mappings initially proposed in [7, 19, 2] and further studied in a
general context in [15, 18]. We would also like to emphasize that when T = I, problem
(1.1) reduces to the problem of finding fixed-points of the mapping P and algorithm (1.4)
is nothing but a regularized version of the Mann iteration method. Moreover, it should
be noticed that the same scheme has been investigated in [9] in the case where Fix(P ) ∩
Fix(T ) 6= ∅ with several control conditions on the parameters (αn) and (λn). It turns out in
all cases that the iteration converges strongly to an element in Fix(P )∩Fix(T ), which has
become a classical result. Our approach is completely different and our interest is in finding
a part of the fixed-point set of T satisfying a variational criterion. So, in our analysis, no
assumption is required on the intersection of the fixed-point sets of the maps P and T .
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2 Preliminaries

Before going over some preliminary results, we wish to point out the link with some monotone
inclusions and convex programming problems. In these contexts the proposed algorithm
looks like a generalized viscosity Mann iteration method:

Example 2.1 (Monotone inclusions). By setting P = I−γF , where F is κ-Lipschitzian
and η-strongly monotone with γ ∈ (0, 2κ/η], (1.1) reduces to

find x̃ ∈ Fix(T ) such that 〈x− x̃,F(x̃)〉 ≥ 0 ∀ x ∈ Fix(T ),

a variational inequality studied in Yamada [20].

Example 2.2 (Convex programming). Let ϕ be a lower semicontinuous convex function,
by setting T = proxλϕ := argmin{ϕ(y)+ 1

2λ‖·−y‖2}, and P = I−γ∇ψ, ψ a convex function
such that ∇ψ is κ-strongly monotone and η-Lipschitzian (which is equivalent to the fact
that ∇ψ is η−1 cocoercive) with γ ∈ (0, 2/η], and thanks to the fact that Fix(proxλϕ) =
(∂ϕ)−1(0) = Argminϕ, (1.1) reduces to the hierarchical minimization problem:

min
x∈Argminϕ

ψ(x),

a problem considered in Cabot [5].

Example 2.3 (Minimization on a fixed-point set). Let T be a nonexpansive mapping,
by setting P = I−γ∇ϕ, ϕ a convex function; ∇ϕ is κ-strongly monotone and η-Lipschitzian
(thus η−1 cocoercive) with γ ∈ (0, 2/η], (1.1) reduces to min

x∈Fix(T )
ϕ(x), a problem studied

in Yamada [20]. On the other hand, when P = I − γ̃(A − γf), A being a linear bounded
γ̄-strongly monotone operator, f a given α-contraction and γ > 0 with γ̃ ∈ (0, 1/‖A‖ + γ̄],
(1.1) reduces to the problem of minimizing a quadratic function over the set of fixed-points
of a nonexpansive mapping studied in Marino and Xu [14], namely

〈(A− γf)x̄, x− x̄〉 ≥ 0, ∀x ∈ Fix(T ).

In these cases, our approach permits to relax the assumptions on the data.

The following lemma summarizes some properties of graph convergence which will be
needed in our analysis, see for example [3, 11].

Lemma 2.4. i) Let B be a maximal monotone operator, then (t−1
n B) graph converges to

NA−1(0) as tn → 0 provided that A−1(0) 6= ∅ and (tnB) graph converges to NdomA as
tn → 0.

ii) Let (Bn) be a sequence of maximal monotone operators. If A is a Lipschitz maximal
monotone operator, then A + Bn is maximal monotone. Furthermore, if Bn graph
converges to B, then B is maximal monotone and (A + Bn) graph converges to A + B.

Remark 2.1. It is well-known that since T is a nonexpansive mapping on D, I − T is a
Lipschitz continuous maximal monotone operator on D. Moreover, T is demiclosed on D in
the sense that, if (xn) converges weakly to x in D and (xn − Txn) strongly converges to 0,
then x is a fixed-point of T .

The following lemma will be needed in the proof of the main theorem.
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Lemma 2.5. Let (an) ⊂ (0, 1), (bn) ⊂ IR and (sn) ⊂ IR+ such that

sn+1 ≤ (1− an)sn + bn, ∀n ≥ 0. (2.1)

If the following conditions are satisfied:

lim sup
n→∞

bn

an
≤ 0, an → 0 and

∑

n≥0

an = ∞, (2.2)

then lim
n→∞

sn = 0

Proof. Given any ε > 0, by the condition lim supn→∞
bn

an
≤ 0 we know that there exists

p ∈ IN such that bn ≤ εan for n ≥ p, so that sn+1 ≤ (1 − an)sn + anε, ∀n ≥ p. Setting

cn,k =
n∏

j=k

(1− aj) for any integers n and k such that n ≥ k, by induction we deduce

sn+1 ≤ cn,psp + ε
n−1∑

k=p

akcn,k+1 + anε,

= cn,psp + ε (an + (cn,n−1 − cn,p))
= cn,psp + ε (1− cn,p) .

As a consequence, from the additional conditions an → 0 and
∑

n≥0 an = ∞, we obtain the
desired result, because cn,p → 0 as n →∞

3 The Main Results

To prove some useful lemmas related to the strong convergence of the method (1.4) to a
solution of (1.1), we need the following conditions on the sequences (λn), (αn) ∈ (0, 1):

(P1) : λn = o(αn);

(P2) :
∑

λn = ∞;

(P3) :
αn − αn−1

α2
nλn

→ 0,
λn − λn−1

αnλn
→ 0.

It is easily checked that all these conditions are satisfied, for instance, in the case when

αn =
1
nγ

and λn :=
1
nβ

provided that γ ∈ (0, 1/2) and β ∈ (γ, 1− γ).

Now, let us establish the following key preliminary results.

Lemma 3.1. Suppose in addition to λn → 0 and [(P2)-(P3)] that the sequence (xn) given
by scheme (1.4) is bounded, then

lim
n→+∞

1
αn
||xn+1 − xn|| = 0. (3.1)



HIERARCHICAL FIXED-POINT PROBLEMS 533

Proof. By relation (1.4), we have

xn+1 − xn = λnCxn − λn−1Cxn−1

+ (1− λn)(αnPxn + (1− αn)Txn)
− (1− λn−1)(αn−1Pxn−1 + (1− αn−1)Txn−1),

that is

xn+1 − xn = λn(Cxn − Cxn−1)
+ (1− λn)(αn(Pxn − Pxn−1) + (1− αn)(Txn − Txn−1))
+ (λn−1 − λn)(−Cxn−1 + αn−1Pxn−1 + (1− αn−1)Txn−1)
+ (1− λn)(αn − αn−1)(Pxn−1 − Txn),

so that

||xn+1 − xn|| ≤ λn%||xn − xn−1||+ (1− λn)||xn − xn−1||
+ |λn−1 − λn| × || − Cxn−1 + αn−1Pxn−1 + (1− αn−1)Txn−1||
+ (1− λn)|αn − αn−1| × ||Pxn−1 − Txn||.

Since (xn) is assumed to be bounded so are the sequences (Pxn), (Txn) and (Cxn). Con-
sequently, we deduce that there exists a positive constant M1 such that

||xn+1 − xn|| ≤ (1− (1− %)λn)||xn − xn−1||+ M1(|λn−1 − λn|+ |αn − αn−1|).

It is then immediate that
(

1
αn
||xn+1 − xn||

)
≤ (1− (1− %)λn)

(
1

αn−1
||xn − xn−1||

)

+M2| 1
αn

− 1
αn−1

|+ M2
1

αn
|αn−1 − αn|

+M1
1

αn
|λn − λn−1|,

where M2 is a positive constant which does not depend on n. In the light of Lemma 2.5, we
infer that 1

αn
||xn+1 − xn|| → 0 under the conditions (P2) and λn → 0, provided that

1
λn
| 1
αn

− 1
αn−1

| → 0,
1

αnλn
|αn−1 − αn| → 0 and

1
αnλn

|λn − λn−1| → 0.

Clearly, the above conditions are satisfied under assumption (P3), which completes the
proof

Throughout the rest of the paper we will assume that the following qualification condi-
tion, which will assure the additivity of the normal cones ND and NFix(T ), holds true

Fix(T ) ∩ intD 6= ∅. (3.2)

Lemma 3.2. Suppose that αn → 0 and assume in addition to the conditions [(P1)-(P3)] and
(3.2) that the sequence (xn) given by scheme (1.4) is bounded. Then every weak cluster-point
of (xn) given by (1.4) belongs to S, the solution set of (1.1).
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Proof. Consider a subsequence of (xn) (again labelled (xn)) which converges weakly to some
element x̄ inH. Under conditions (P1), (P2) and αn → 0, it is easily deduced from (1.4) that
xn+1 − Txn → 0, because (xn) is bounded by hypothesis and λn → 0 by (P1). Moreover,
by Lemma 3.1, we clearly have xn+1 − xn → 0. Consequently, we obtain xn − Txn → 0, so
that x̄ = T x̄ since T is demiclosed (see Remark 2.1). Again by (1.4), we also have

xn+1 − xn =
λn(Cxn − xn) + (1− λn) (αn(Pxn − xn) + (1− αn)(Txn − xn)) ,

(3.3)

that is
1

(1− λn)αn
(xn − xn+1) =

(
(I − P ) +

1− αn

αn
(I − T ) +

λn

(1− λn)αn
(I − C)

)
xn.

(3.4)

Lemma 2.4 assures that the operator sequence ( 1−αn

αn
(I − T )) graph converges to NFix(T )

and ( λn

(1−λn)αn
(I − C)) graph converges to ND which in the light of a result in ([1]) allows

us to deduce that the operator (I − P ) + 1−αn

αn
(I − T ) + λn

(1−λn)αn
(I − C) graph converges

to (I − P ) + ND + NFix(T ). The latter coincides with (I − P ) + NFix(T ) thanks to the
qualification condition (3.2).

Now, by passing to the limit in (3.4), as n → ∞ and by taking into account the fact
that 1

(1−λn)αn
||xn+1 − xn|| → 0 and that the graph of (I − P ) + NFix(T ) is weakly-strongly

closed, we finally obtain 0 ∈ (I − P )x̄ + NFix(T )x̄, in other words x̄ solves problem (1.1).
This completes the proof

As this work was done in the same spirit as that developed by Cabot ([5]) in the context
of minimization problems, we are going to use the same type of hypothesis which amounts
to assuming that there exist two positive constants θ and κ such that

∀x ∈ D ‖x− Tx‖ ≥ κdist(x, F ix(T ))θ, (3.5)

where dist(x, F ix(T )) := infq∈Fix(T ) ||q − x||.

This kind of hypothesis was used in ([16]) by Senter and Dotson so as to obtain a strong
convergence result for Mann iterates. Later Maiti and Ghosh ([13]), Tan and Xu ([17])
studied the approximation of fixed-points of a nonexpansive mapping T by Ishikawa iterates
under the condition introduced in ([16]) and pointed out that this assumption is weaker
than the requirement that the mapping T is demi-compact.

In view of establishing our main convergence result, we will need the following condition
on the parameters (αn) and (λn):

(P4) : α1+1/θ
n = o(λn).

In the special case when αn =
1
nγ

and λn :=
1
nβ

, (P4) is satisfied for β < γ(1 + 1
θ ). As a

consequence, one can check that conditions [(P1)-(P4)] hold true, for example, for β and γ
satisfying

β ∈ (0, γ(1 + 1/θ)) with γ ∈
(

0,
1

2 + 1/θ

]
or β ∈ (γ, 1− γ) with γ ∈

(
1

2 + 1/θ
, 1/2

)
.

Now, we are in position to state the main convergence
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Theorem 3.3. Assume that the assumptions [(P1)-(P4)], (3.2) and (3.5) hold true and
suppose that the sequence given by scheme (1.4) is bounded. Then (xn) converges strongly
to the unique fixed point, x̄, of PS◦C, where PS is the metric projection from H onto S.

Proof. Thanks to (1.4), we can write

xn+1 − x̄ = λn(Cxn − x̄) + (1− λn) (αn(Pxn − x̄) + (1− αn)(Txn − x̄))
= (λn(Cxn − Cx̄) + (1− λn) (αn(Pxn − Px̄) + (1− αn)(Txn − x̄)))
+ (λn(Cx̄− x̄) + αn(1− λn)(Px̄− x̄)) .

An elementary computation yields

||a + b||2 − 2 〈b, a + b〉 = ||a||2 − ||b||2 ∀a, b ∈ H, (3.6)

so that

||xn+1 − x̄||2 − 2 〈λn(Cx̄− x̄) + αn(1− λn)(Px̄− x̄), xn+1 − x̄〉
≤ ||λn(Cxn − Cx̄) + (1− λn) (αn(Pxn − Px̄) + (1− αn)(Txn − x̄)) ||2.

By convexity of the mapping x → ||x||2, we get

||xn+1 − x̄||2 − 2 〈λn(Cx̄− x̄) + αn(1− λn)(Px̄− x̄), xn+1 − x̄〉
≤ λn||Cxn − Cx̄||2 + (1− λn)||αn(Pxn − Px̄) + (1− αn)(Txn − x̄)||2
≤ λn||Cxn − Cx̄||2 + (1− λn)

(
αn||Pxn − Px̄||2 + (1− αn)||Txn − x̄||2) .

As a straightforward consequence, we obtain

||xn+1 − x̄||2 − 2 〈λn(Cx̄− x̄) + αn(1− λn)(Px̄− x̄), xn+1 − x̄〉
≤ λn%2||xn − x̄||2 + (1− λn)

(
αn||xn − x̄||2 + (1− αn)||xn − x̄||2)

= (1− (1− %2)λn)||xn − x̄||2,
which yields

||xn+1 − x̄||2 ≤ (1− (1− %2)λn)||xn − x̄||2
+2λn 〈Cx̄− x̄, xn+1 − x̄〉
+2αn(1− λn) 〈Px̄− x̄, xn+1 − x̄〉 .

(3.7)

On the one hand, observing that αn → 0 thanks to (P4), by Lemma 3.2 we have that any
weak cluster-point of (xn) is in S. Consequently, since x̄ = PS(Cx̄), it is easily checked that

lim sup
n→∞

〈Cx̄− x̄, xn − x̄)〉 ≤ 0. (3.8)

One the other hand, we will estimate the last term in the right hand side of the inequality
(3.7). Clearly, we have

〈Px̄− x̄, xn+1 − x̄〉 =
〈
Px̄− x̄, PFix(T )xn+1 − x̄

〉
+

〈
Px̄− x̄, xn+1 − PFix(T )xn+1

〉
.

Since PFix(T )xn+1 ∈ Fix(T ), by (1.1) we have
〈
Px̄− x̄, PFix(T )xn+1 − x̄

〉 ≤ 0

and therefore

〈Px̄− x̄, xn+1 − x̄〉 ≤ 〈
Px̄− x̄, xn+1 − PFix(T )xn+1

〉
≤ ||Px̄− x̄|| × ||xn+1 − PFix(T )xn+1||
= ||Px̄− x̄|| × dist(xn+1, F ix(T )).
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Consequently, by (3.5) we obtain

〈Px̄− x̄, xn+1 − x̄〉 ≤ κ−1/θ||Px̄− x̄|| × ||Txn+1 − xn+1||1/θ. (3.9)

Furthermore, as T is nonexpansive, we obviously have

||xn+1 − Txn+1|| ≤ ||xn+1 − Txn||+ ||xn+1 − xn||.
Then, in view of (1.4), we immediately infer the existence of a positive constant κ1 such
that, for all n ≥ 0,

||xn+1 − Txn+1|| ≤ κ1(αn + λn + ||xn+1 − xn||).
This combined with (3.9) implies that

〈Px̄− x̄, xn+1 − x̄〉 ≤ κ2(αn + λn + ||xn+1 − xn||)1/θ, (3.10)

for a positive constant κ2.

Now, in the light of assumption (P4), Lemma 3.1 and taking into account the fact that
λn/αn → 0, we obtain

lim
n→∞

αn

λn
(αn + λn + ||xn+1 − xn||)1/θ = lim

n→∞
α

1+1/θ
n

λn

(
1 +

λn

αn
+
||xn+1 − xn||

αn

)1/θ

,

= lim
n→∞

α
1+1/θ
n

λn
= 0,

which by (3.10) leads to

lim sup
n→∞

αn

λn
〈Px̄− x̄, xn+1 − x̄〉 ≤ 0. (3.11)

Finally, by (3.7), (3.8), (3.11) and using Lemma 2.5, we conclude that the sequence (xn)
converges strongly to x̄, which completes the proof

We would like to point out the following interesting remarks.

Remark 3.1. i) Since any weak-cluster point of (xn) is in Fix(T ), we would like to
emphasize that it is enough to assume that (3.5) holds true in a neighborhood of
Fix(T ).

ii) We would also like to note that, thanks to a result by Lemaire ([10]), (3.5) is in the
convex minimization setting equivalent to

∀x ∈ H ψ(x)−minψ ≥ κdist(x,Argminψ)θ+1,

which is exactly one of the assumptions used in ([5]) to obtain convergence results
(proposition 3.4 and proposition 4.3) of a proximal method for hierarchical minimiza-
tion problems. In ([5]), the convergence results are valid only in finite dimensional
case.

iii) Finally, it is worth noticing that the result of Lemma 2.5 is still valid if we replace
(2.2) by an → 0,

∑
n≥0 an = ∞ and

∑
n≥0 bn < ∞ (see for instance [12]). Through

the proof of Theorem 3.3, one may then observe that if, in addition to conditions (P2)
and (P3), we just assume that λn → 0 and

∑
n≥0 αn < ∞, then the sequence (xn)

converges strongly to the unique fixed-point of the mapping PFix(T ) ◦ C. It turns out
that in this case (i.e. (αn) is supposed to converge quickly to zero) the limit attains by
(xn) is independent of the mapping P .
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4 Conclusion

A new and promising algorithm in hierarchical fixed-point problems is presented. The
strong convergence of the corresponding sequence is investigated. The limit attained by this
sequence is the solution of a variational inequality involving fixed-point sets.
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