
PERFORMANCE ESTIMATIONS OF FIRST FIT ALGORITHM
FOR ONLINE BIN PACKING WITH VARIABLE BIN SIZES

AND LIB CONSTRAINTS

J.Y. Lin, P. Manyem and R.L. Sheu

Abstract: We consider the NP Hard problem of online Bin Packing while requiring that larger (or longer)
items be placed below smaller (or shorter) items — we call such a version the LIB version of problems. Bin
sizes can be uniform or variable. We provide analytical upper bounds as well as experimental results on the
asymptotic approximation ratio for the first fit algorithm.

Key words: online approximation algorithm, asymptotic worst case ratio, bin packing problem, longest
item, uniform sized bins, variable sized bins

Mathematics Subject Classification: 68W25, 68Q17, 90B05, 90C27

1 Background

In the classical one-dimensional Bin Packing problem, we are given a list L = (i : 1 ≤ i ≤ n)
of items. The size of item i is ai, where each ai ∈ (0, 1]. The problem is to pack these n
items into bins of size one such that the number of bins used is minimized. A bin is said to
be used if it contains at least one item. A feasible solution is one where the sum of the sizes
of the items in each used bin is at most equal to the bin size.

VSBP (Variable Sized Bin Packing Problem) is similar to the classical problem stated
above, except that the bin sizes can be different — we are given a collection B of distinct
bin sizes s1 through sK , and sK is the largest (or just longest, in the one-dimensional case)
bin size with sK = 1. Size s1 is the smallest. The objective is to minimize the sum of the
sizes of the bins used. The dual of Bin Packing is Bin Covering, where the item sizes in a
bin should total up to at least the bin size.

Bin Packing can be offline or online. If the sizes of all items are known in advance, this
is referred to as offline bin packing. In the online version of Bin Packing, items in L arrive
one by one. When an item i of length ai arrives, it must immediately be assigned to a bin
and this assignment cannot be changed later. There are two types of online problems. In
a completely online case, the size of item i is known ONLY AFTER item (i − 1) has been
placed in a bin. The other type, however, may be called as semi online in which all item
sizes are known in advance just like the offline version. Moreover, the instance is associated
with a certain order and items arrive one by one following this given order. In this paper,
we refer to an online problem as the second type and an explicit definition will be stated in
Section 2.
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In all versions of Bin Packing, it is assumed that there is an infinite supply of bins of
each size. Hence, running out of bins to place items is never an issue.

LIB version of Bin Packing. The bin packing problem considered in this paper is an
online version with variable bin sizes and imposes this additional requirement: In any bin,
for any pair of items i and j, if size(j) = aj > size(i) = ai, then j should be placed in the bin
below i. In other words, longer items should be placed lower in any bin than shorter items.
We call this the LIB version, for Longest Item at the Bottom. Moreover, we assume that the
length of each item in L cannot be arbitrarily small. Namely, there is a 0 < γ ≤ s1 such that
ai ∈ [γ, 1] for all i ∈ L. This assumption makes perfect sense in a practical application.

Literature Review. The exact problem studied in this paper has not been considered
before, hence we review results for online Bin Packing problems that are slight variations of
ours. Table 1 summarizes the results known so far in online Bin Packing. The numbers in
square brackets refer to the bibliography.

For online Bin Packing with uniform bin sizes and the LIB constraint, Manyem [7]
provided an algorithm based on First Fit with a guaranteed (worst case) AAR of 3. (See
equation (3.1) for the definition of AAR, the asymptotic approximation ratio.) For the same
problem, using adversary arguments, Finlay and Manyem [5] proved that no algorithm can
guarantee an AAR less than 1.76. Again for the same problem, in [10], Manyem et al.
construct counter-examples to show that the guaranteed AAR’s of the well-known First Fit
(FF), Best Fit (BF) and Harmonic Fit (HF) algorithms are at least two.

For online Bin Packing with variable bin sizes without the LIB constraint, Csirik [4]
provided an algorithm based on Harmonic Fit that guarantees an asymptotic approximation
ratio (AAR) of at most 1.7. In the same paper, with just two bin sizes, Csirik was able to
cut down the ratio to 1.4. Later, the upper bound 1.7 was further reduced to 1.63597 by
Seiden et al. [12] with a refined version of the harmonic algorithm. Interestingly, they also
gave the first ever lower bound 1.335 for variable-sized online bin packing problem when
there are only two bin sizes. The authors claimed that their techniques will be applicable
to a more general case.

Variable sized bins. Our paper deals with problem instances of variable bin sizes and
the LIB constraint. We derive an upper bound “BFF ” for Variable Sized Bin Packing with
LIB in Theorem 3.11 of this paper. The bound is a function of four parameters (see Theorem
3.11). This is a generalisation of an earlier result by Manyem et al [9] where all available
bin sizes are restricted to be multiples of the smallest bin size.

Recently, Xing and Chen [15] studied a new variant of uniform sized bin packing problem
called the A-shaped bin packing problem. Each item is specified by a pair of numbers: height
and radius. In packing, the sum of the heights of items in a bin can not exceed one and an
item with a larger radius can not be placed on top of another item having a smaller radius.
The uniform sized bin packing problem with the LIB constraint can be viewed as a special
case of the A-shaped problem by considering the height as the same as the radius. Xing and
Chen in [15] proposed a radius classifying algorithm which places two items into the same
bin only if they have the same radius, forcing the LIB constraint to be satisfied. By the
same idea as in [6], they prove that the radius classifying algorithm combined with First Fit
(RCFF) has the following inequality

RCFF (L) ≤ 1.7L∗ + 2T (1.1)

where RCFF (L) is the total number of bins used by the algorithm, L∗ is the optimal number
of bins necessarily to pack the list of items, and T is the number of distinct radii in the list.
This bound is not applicable to our problem since we deal with variable bin sizes and the
list L may have an infinite T .
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Basic Problem LIB ? Bin Sizes Upper Bound Lower Bound
No Uniform 1.59 [11] 1.53 [13]

Bin No Variable 1.63597 [12] 1.33561[12]
Packing Yes Uniform 3.0 [8] 1.76 [5]

Yes Variable BFF [Theorem 3.11] 1.76 [5]

Table 1: Bounds on Approximation Ratios in online Bin Packing and Covering with LIB

Organisation of this Paper. We provide a version of First Fit (FF) heuristic in Section
2 and then prove an upper bound on the guaranteed AAR (Asymptotic Approximation
Ratio) in Section 3. The experimental results are in Section 4. The results here are more
general than the ones mentioned in [9], where the bin sizes are multiples of the smallest bin
size.

1.1 Applications

Bin Packing and Covering theory does help to solve practical industry based problems such
as assigning semiconductor wafer lots to customer orders [2]. Another interesting application
arises during assigning tasks to computer processors based on a task priority. Each bin is
analogous to a processor. The size of a bin corresponds to the processor’s capabilities (such
as speed), and the position of a task in a bin corresponds to its priority.

The LIB version of Bin Packing has applications in the Transportation industry∗, espe-
cially with loading of pallets in a truck. If long items are placed at the bottom of a pallet
inside a truck, transportation is easier. In terms of weight, if heavier items are placed at the
bottom, better stability of the truck can be achieved, and smaller items will not get crushed
by larger items.

The dual of Bin Packing is Bin Covering, where the item sizes in a bin should total
up to at least the bin size. Bin Covering has been applied in the industry, from packing
peaches into cans in an “online” manner (so that the weight of each can is at least equal
to its advertised weight) to breaking up a large company into smaller companies such that
each new company is viable [14].

2 Problem and Algorithm

Problem Statement: Online LIB Variable-Sized Bin Packing (OLIBP). Given an
infinite supply of variable sized bins, and n items ordered from 1 up to n, each item with size
in [γ, 1] and 0 < γ < 1. Each item arrives following the given order and, upon the arrival,
should be placed in a bin assigned to it (on top of items previously placed in that bin). This
placement cannot be changed later. In placing the items, the following LIB condition (2.1)
and online condition (2.2) given below should be obeyed. For any used bin:

[i is below j in a used bin] =⇒ [ai ≥ aj ], (2.1)

and in a used bin, if item i is below item j, then i should have arrived prior to j in the input
list L, that is,

[i is below j in a used bin] =⇒ [i < j]. (2.2)
∗Of course, to apply this research in a practical context, one needs to obtain algorithms for three-

dimensional bin packing. But before embarking on an analysis of the three-dimensional case, we should
analyse the simpler (one-dimensional) problem first.
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ai Size of item i
bj Bin number j
B Set of used bins
B Set of available bin sizes, s1 through sK

i Index for an item (usually)
K Number of available bin sizes (cardinality of B)
L Input list of items, in a given sequence
N (or n) Cardinality of L (usually)
p percentage of ones (used in experimental studies)
RALG Worst case asymptotic approximation ratio for algorithm ALG
s1(sK) Size of the smallest (largest) available bin size
topSize(bj) Size of the item at the top of bin bj

totalSize(bj) Sum of the sizes of the items in bin bj

Table 2: Notation (in alphabetical order)

LIB Largest (Longest, in the one-dimensional case) Item at the Bottom
FF First Fit heuristic
AAR asymptotic approximation ratio
SU Space Utilization factor (in a bin, or set of bins)
VSBP Variable Sized Bin Packing
OLIBP Online and LIB version of VSBP

Table 3: Acronyms

A feasible solution is one where the sum of the item sizes in each used bin is at most equal
to the bin size. The available bin sizes consist of a finite set B = {sj : 1 ≤ j ≤ K},
sj < sj+1, 1 ≤ j ≤ K − 1. The bin sizes are normalized, that is, sK (the largest bin size)
is equal to one. The smallest bin size s1 is greater than zero. The goal is to find a feasible
solution that minimizes the sum of the size of used bins.

2.1 NP-hardness

Once we replace the online condition with the online constraint (2.2), it can be shown that
the online (optimization) version is NP-hard. We shall do this by showing that the decision
version is NP-complete. If a decision problem is in NP, then the corresponding optimization
version is said to be an NPO problem [1], where NPO stands for NP Optimization.

Proof that the decision version is in NP. It is simple to show this fact. Given a solu-
tion S (the one guessed by a non-deterministic Turing machine), it can be checked within
polynomial time in n, whether S is feasible for the given instance — this is just an exercise
in checking the LIB (2.1) and online (2.2) constraints for all items in the used bins. There
are n used bins at the most, each of which contains at most n items. In addition, we should
ensure that each item has been placed in a bin. Feasibility also involves checking whether
the number of used bins is at most a given value K. Thus the problem is in NP (and hence
the optimization problem, OLIBP, is in NPO).

Reduction. The offline Bin Packing problem (also Problem P1 below), known to be NP-
complete [3], can be reduced to the online version described above. Let us say that (in short)

P1: offline version without the LIB constraint (uniform bin sizes),
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P2: online version whose item sizes are non-increasing (uniform bin sizes),
P3: online version with LIB (uniform bin sizes), and
P4: online version with LIB (variable bin sizes).

We shall defer the specific definition for each problem (especially P2) to the reduction
proof.

As in NP-completeness reductions, all problems considered are decision versions. More-
over, in reductions from Pi to Pi+1, 1 ≤ i ≤ 2, we will use the same value of k for the source
problem Pi and the target problem Pi+1, where k appears in the decision query, “Is there a
feasible solution that uses at most k bins?”. In the P3 to P4 reduction, we will use the same
k in P3 and P4, however, the query in P4 changes to, “Is there a feasible solution where the
sum of the sizes of the used bins is at most k ?”.

We can do a step-by-step reduction from P1 to P4 as follows.
Reduction from P1 to P2: Let I2 be an instance of P2. Then the item sizes in I2 are

non-increasing, in the sense that ai ≥ aj for i < j where i < j is defined by the given online
order. In other words, for an instance of P2, heavier (longer) items always arrive earlier.
Consequently, a given instance I1 of P1 can be transformed to an instance I2 of P2, simply
by sorting the items in I1 in the order of non-increasing sizes.

We should show that a feasible solution for I1 can be converted to a feasible solution
for I2 and vice-versa. Clearly, a feasible solution S2 to I2 using k2 bins (where k2 ≤ k) is
also a feasible solution to I1. In the other direction, a feasible solution S1 to I1 using k1

bins (k1 ≤ k) can be transformed to a feasible solution for I2, by rearranging items in each
used bin of S1, so that the Lib constraint (2.1), and therefore the online condition (2.2) is
satisfied.

In both proof directions, the number of bins used is unchanged when we transform the
solution for one problem to a solution for the other.

Hence the reduction from P1 to P2, which proves that P2 is NP-complete.
Reduction from P2 to P3: Consider an instance I2 of P2. Since both problems are online

version, I2 is also an instance for P3 (but call it I3). In addition, the item sizes in I2 are
non-increasing, in which case the online and LIB constraints play exactly the same role, and
have exactly the same effect. Therefore, a solution S3 to I3 satisfying both the online and
the LIB constraint is surely a solution to I2. Conversely, a solution S2 to I2 satisfying only
the online constraint will, simultaneously, meet the LIB constraint. Finally, S2 and S3 has
the same objective value (counting the number of used bins).

Hence the reduction from P2 to P3, and thus P3 is NP-complete.
Reduction from P3 to P4: This is straightforward. P3 is just a special case of P4. Given

an instance I3 of P3, use only unit-sized bins in the instance I4 of P4 — the input list for
both instances is exactly the same. The objective function in I3, which counts the number
of unit-sized bins, is clearly equal to the objective function in I4, which computes the sum
of the sizes of (unit-sized) used bins. It follows that P4 is NP-complete (and hence the
optimization version of P4, which is OLIBP, is NP-hard).

The above argument also applies to optimal solutions for I1 and I2. One might argue
that since I1 has more “freedom” in the placement of items, and that the solution space of
I2 is a subset of the solution space of I1, an optimal solution S∗1 for I1 should use fewer bins
(say s1) than an optimal solution S∗2 for I2 (let us say, s2 number of bins) — that is, it can
be argued that s1 < s2. However, this is untrue, because items in each bin of S∗1 can be
sorted in the order of item sizes to provide a feasible solution S̄∗2 for I2. Now, S̄∗2 uses fewer
bins than S∗2 (s1 instead of s2), contradicting our assumption that S∗2 is an optimal solution
to I2.
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2.2 First Fit

The First Fit algorithm can be modified to accommodate OLIBP. (See [8] or [7] or [3] for
descriptions of First Fit.) The behaviour of FF is summarized as follows: When an item i
arrives, assume that bins b1 through bm have already been used, in that order. Each such
bin bj , 1 ≤ j ≤ m, has two parameters, topSize(bj) and totalSize(bj), representing the size
of the topmost item in bj and the sum of the item sizes in bj respectively. FF scans b1

through bm in that order. For each such bin bj , it checks if (1) ai ≤ topSize(bj), and (2)
ai ≤ size(bj) − totalSize(bj). FF places item i in the first such bin bj that satisfies both
these conditions and updates topSize(bj) as well as totalSize(bj). If no such bin among b1

through bm satisfies these conditions, FF opens a new bin bm+1 of size

daieB = min{sj |sj ≥ aj , sj ∈ B} (2.3)

to place i. For instance, if B = {0.2, 0.4, 0.6, 0.8, 1.0}, an arriving item of size 0.64 will be
placed in a bin of size d.64eB = 0.8, not in a bin with a size of one.

Algorithm (ALG). First Fit (online variable-sized LIB Bin Packing).
Given: Items 1 · · ·N with sizes a1 · · · aN , γ ≤ ai ≤ 1 for 1 ≤ i ≤ N ,

bin sizes s1 · · · sK , 0 < s1 < s2 < · · · < sK−1 < sK = 1.
Running Time: O(N(K + N)).

1 nBin (number of bins used) = 0;
2 for (item = 1 to N) do
3 placed[item] = NO;
4 bin = 1;
5 While (bin ≤ nBin AND placed[item] == NO) do
6 X = (topSize[bin] ≥ size[item]);
7 Y = (size[bin]-totalSize[bin] ≥ size[item]);
8 if (X == true AND Y == true) then
9 place item in bin;
10 update topSize[bin] and totalSize[bin];
11 placed[item] = YES;
12 end if
13 bin = bin + 1;
14 end While
15 if (placed[item] == NO) then (item not placed in any previous bin)
16 nBin = nBin + 1; (new, fresh, unused bin)
17 size[nBin] = s1;
18 While (size[nBin] < size[item])
19 increase size[nBin] to next higher bin size available;
20 place item in nBin;
21 topSize[nBin] = size[item];
22 totalSize[nBin] = size[item];
23 placed[item] = YES;
24 end if
25 end for

The key difference between original FF algorithm (where only bins of unit-size are used)
and ALG is that, in case an unused bin is needed, ALG searches (in lines 18-19) the set of
bin sizes {s1, s2, · · · , sK} for the best fitting bin for the item to be placed.
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3 Proof of A Bound of AAR

In this subsection, we give estimations of the asymptotic approximation ratio (AAR) for
ALG. Let ALG(L) denote the sum of the sizes of bins generated online by ALG to pack L.
Let OPT (L) be the optimal value of bin sizes necessary for packing items in L. The AAR
is defined by

RALG = lim
s→∞

sup
L
{ALG(L)
OPT (L)

|OPT (L) > s}. (3.1)

Define the SU(B) (Space Utilization factor for a set of used bins B = {b1, b2, · · · bm}) by
the First Fit algorithm as follows:

SU(B) =

∑
bj∈B

∑
i∈bj

ai∑
bj∈B size(bj)

=

∑
bj∈B totalSize(bj)∑

bj∈B size(bj).
(3.2)

In other words, SU(B) is the ratio of the space occupied by items in the bins B, to the
sum of the sizes of the bins in B. If B consists of just one bin bj , we will simply write
SU(bj) as a shorthand for SU({bj}). The following observation follows immediately from
the definition of SU(B).

Lemma 3.1. If SU(bi) of each used bin bi, i = 1, 2, · · · ,m is greater than or equal to δ,
then RALG has an upper bound of 1

δ .

Proof. Since SU(bj) ≥ δ, the total item size in bj should be larger than δ × size(bj). Hence
∑

bj∈B

totalSize(bj) ≥ δ
∑

bj∈B

size(bj). (3.3)

Any feasible packing, including the optimal one, must use bins whose total size is at least∑
bj∈B totalSize(bj). Therefore,

lim
s→∞

sup{RALG(L)
OPT (L)

|OPT (L) > s} ≤ lim
s→∞

sup{
∑

bj∈B size(bj)

δ
∑

bj∈B size(bj)
|OPT (L) > s} =

1
δ
.

In the rest of this paper, we will choose δ to be

0 < δ ≤ min
1≤i≤K−1

si

si+1

and consider instances where there are some bins with the space utilization less than δ (so
that Lemma 3.1 does not apply). Let

J = max
1≤j≤m

{j|SU(bj) < δ}.

In other words, bJ is the last bin in B for which SU(bj) < δ is true. Let I be the bottom
item of bin bJ and let totalSizeI(bj) be the sum of the sizes of items in bin bj when item I
arrived. Similarly, topSizeI(bj) is the size of the top item in bin bj when item I arrived.

Lemma 3.2. Let δ, I, J be defined as above. Then we have (1) aI ∈ (γ, s1]; (2) size(bJ) =
s1; and (3) aI < δs1.
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Proof. Clearly, a new bin bJ is opened when I arrives, since I has been placed at the
bottom of bJ . (1) By ALG, if aI ∈ (si, si+1], 1 ≤ i ≤ K − 1, then size(bJ) = si+1 and
totalSize(bJ) ≥ aI > si. Hence

SU(bJ) =
totalSize(bJ)

size(bJ)
>

si

si+1
≥ δ,

which contradicts SU(bJ) < δ. Therefore, aI ∈ (γ, s1].
(2) Since aI ∈ (γ, s1], size(bJ) = s1.
(3) Since

aI

size(bJ)
≤ SU(bJ) < δ,

we have aI < δs1.

Lemma 3.3. If γ ≥ δs1, RALG ≤ 1/δ.

Proof. If γ ≥ δs1, then aI ≥ δs1. By Lemma 3.2, the SU(B) factor of every used bin is at
least δ. By Lemma 3.1, RALG is bounded above by 1/δ.

Let us continue with the notations defined above Lemma 3.2. Upon I’s arrival, there are
two reasons why I was placed in a new bin bJ , and not in any of the bins bj (1 ≤ j ≤ J − 1)
used earlier: either (i) totalSizeI(bj) + aI > size(bj), or (ii) topSizeI(bj) < aI . Since there
could be some items that arrived after I and were placed in bj , the following inequalities
hold:

totalSizeI(bj) ≤ totalSize(bj); (3.4)

topSizeI(bj) ≥ topSize(bj). (3.5)

Now, partition {bj |1 ≤ j ≤ J − 1} into two disjoint sets C and D with the following
definition:
Type-c bins: First, consider the set C of bins, with |C| = c, and

C = {bj |totalSizeI(bj) + aI > size(bj), 1 ≤ j ≤ J − 1}.

Refer to C as type-c bins. Since aI < δs1, it follows that

totalSizeI(bj) > size(bj)− δs1, ∀bj ∈ C.

By inequality (3.4),
totalSize(bj) > size(bj)− δs1, ∀bj ∈ C. (3.6)

Define p =
∑

bj∈C
size(bj). Then,

OPT (L) ≥ sum of item sizes ≥
∑

bj∈C
totalSize(bj) ≥

∑

bj∈C
[size(bj)− δs1] = p− δcs1.

(3.7)
On the other hand, for type-c bins, the solution returned by ALG has a value of

∑

bj∈C
size(bj) =

p. The upper and lower bounds for p are:

cs1 ≤ p ≤ c. (3.8)
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Lemma 3.4. For δ <
1
2
, C ⊆ {bj |SU(bj) ≥ δ, 1 ≤ j ≤ J − 1}.

Proof. By inequality (3.6),

totalSize(bj)
size(bj)

> 1− δs1

size(bj)
.

Since size(bj) ≥ s1,

SU(bj) =
totalSize(bj)

size(bj)
≥ 1− δs1

s1
= 1− δ > δ.

Type-d bins: Secondly, let D be the subsets of bins, with |D| = d and

D = {bj |topSizeI(bj) < aI , 1 ≤ j ≤ J − 1} ∩ C̄,
where C̄ = {bj |totalSizeI(bj) + aI ≤ size(bj), 1 ≤ j ≤ J − 1}. Name these bins as type-d
bins.

Among type-d bins, consider any two, say bj and bk with j < k, meaning that bin bj was
opened before bin bk. Let eI(j) [eI(k)] be the topmost item of bj [bk] when I arrived.

Lemma 3.5. If bj , bk ∈ D with j < k, then (1) totalSizeI(bj) + aeI(k) ≤ size(bj); (2)
aeI(j) < aeI(k) < aI .

Proof. By the definition of D, aeI(k) = topSizeI(bk) < aI for all bk ∈ D, and

totalSizeI(bj) + aI ≤ size(bj).

It follows that
totalSizeI(bj) + aeI(k) < size(bj).

In other words, there was enough space in bj for item eI(k). If eI(k) had arrived after
eI(j), then a placement of eI(k) over eI(j) would have been attempted and failed due to
aeI(j) < aeI(k). On the other hand, if eI(j) had arrived after eI(k), then, a placement of
eI(k) over an earlier item x < eI(j) in bj would have been attempted and failed, implying
that ax < aeI(k). Since x is below eI(j) in bj , aeI(j) ≤ ax. It follows that aeI(j) ≤ ax < aeI(k).

Lemma 3.6. Let D = {bt1 , bt2 , · · · , btd
}, with t1 < t2 < · · · < td — thus among the D bins,

bt1 was opened the earliest and btd
the last. For any item ψ ∈ btk

, k = 2, 3, · · · , d, if ψ < I
and aψ < aI , then there is another item τ ∈ btk−1 such that τ < ψ and aτ < aψ.

Proof. Since btk−1 ∈ D, we have the following inequality:

totalSizeI(btk−1) + aI ≤ size(btk−1).

By assumption, ψ arrived before I. Therefore,

totalSizeψ(btk−1) ≤ totalSizeI(btk−1).

Moreover, aψ < aI implies that

totalSizeI(btk−1) + aψ < size(btk−1).
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Then
totalSizeψ(btk−1) + aψ ≤ size(btk−1). (3.9)

This implies that, when ψ arrives, there is at least one item τ already in btk−1 so that
aτ < aψ. Otherwise, by (3.9), ψ would have been placed in btk−1 .

Let the topmost item of btd
, as I arrived, be αd. Then αd < I and aαd

< aI . Apply
Lemma 3.6 backward repeatedly, we obtain a sub-list of L such that α1 < α2 < · · · < αd < I,
aα1 < aα1 < · · · < aαd

< aI with αk ∈ btk
, k = 1, 2, · · · , d. Let Λ = {α1, α2, · · · , αd}.

According to the online and LIB constraints, every item in Λ must be placed in distinct bins
and each item has a length at least γ. As a result, we have

Lemma 3.7. The sum of the bin sizes optimal algorithm to pack type-d bins should be at
least γd, whereas the value of the solution returned by ALG is q =

∑
bj∈D size(bj) ≤ d.

Type-f bins: Beyond bin bJ , the last bin with space utility SU(bJ) < δ, there could be
several used bins all of which have SU ≥ δ. Name these bins as type-f and denote them by
F = {bj ∈ B|j ≥ J + 1}. Let the sum of their sizes be

f =
∑

bj∈F
size(bj), (3.10)

which is the value returned by ALG. Again, by equation (3.3) in Lemma 3.1, the sum of item sizes
in type-f bins is at least ∑

bj∈F
totalSize(bj) ≥ fδ, (3.11)

which will be used as a lower bound for packing items in type-f bins the optimal way.
Thus the entire set of bins used by ALG is made up of, in this order: (i) a mixture of

type-c bins and type-d bins, (ii) bin bJ containing item I, and (iii) type-f bins. The lower
bound estimations for the sum of item sizes in each category are: (i) p− δcs1 for type-c bins
(by (3.7)); (ii) γd for type-d bins (by Lemma 3.7); (iii) γ for bin bJ ; (iv) fδ for type-f bins
(by (3.11)). Therefore, the lower bound for the optimal bin sizes is p− δcs1 + dγ + γ + fδ,
whereas the solution returned by ALG is p+ q + s1 + f (q is defined in the statement of this
lemma.) The asymptotic ratio AAR requires us to consider the ratio

ALG(L)
OPT (L)

≤ p + q + s1 + f

p− δcs1 + dγ + γ + fδ
(3.12)

for all large inputs L for which OPT (L) > s and s →∞. Equivalently, one of the numbers
p, q, f must tend to infinity in the limit. Observe that, by (3.8), p →∞ implies c →∞ and
also by Lemma 3.7, q →∞ implies d →∞. In what follows, we shall write (·, ·, · · · , ·) →∞
to indicate at least one of the components tend to infinity. Taking the limit on both sides
of (3.12) gives

RALG ≤ lim
(p,c,q,d,f)→∞

p + q + s1 + f

p− δcs1 + dγ + γ + fδ

= lim
(p,c,q,d,f)→∞

p + q + f

p− δcs1 + dγ + fδ

where s1 in the numerator and γ in the denominator do not affect the limit in any case.
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Lemma 3.8. If c > 0,
s1(1− δ)

δ
< 1 and γ < δ, then

p + q + f

p− δcs1 + dγ + fδ
≤ 1 + d

c (1− γ
δ )

s1(1− δ)
.

Proof. Since cs1 ≤ p ≤ c and q ≤ d,

p + q + f

p− δcs1 + dγ + fδ

≤ c + d + f

cs1 − δcs1 + dγ + fδ

=
1
δ

cδ + d(δ − γ) + dγ + fδ

cs1 − δcs1 + dγ + fδ
.

Since δ > γ and cs1 > δcs1,

cδ + d(δ − γ) + dγ + fδ

cs1 − δcs1 + dγ + fδ
≤ max{1,

cδ + d(δ − γ)
cs1 − δcs1

}.

Moreover, by assumption,

cδ + d(δ − γ)
cs1 − δcs1

=
c + d(1− γ

δ )
c

δ

s1(1− δ)
> 1.

This implies that

p + q + f

p− δcs1 + dγ + fδ
≤ 1

δ

cδ + dδ(1− γ
δ )

cs1 − δcs1
=

1 + d
c (1− γ

δ )
s1(1− δ)

.

Remark. We may choose δ = min
1≤i≤K−1

{ si

si+1
}, then the condition s1

1− δ

δ
< 1 holds auto-

matically. To see this, let k ∈ [1,K − 1] be the integer such that δ =
sk

sk+1
. Then

s1
1− δ

δ
= s1

1− (sk/sk+1)
(sk/sk+1)

= s1
sk+1 − sk

sk
=

s1

sk
(sk+1 − sk) < 1.

Define M = lim
(c,d)→∞

d

c
, which might be infinite. Then, under the assumption of Lemma

3.8,

RALG ≤ 1 + M(1− γ
δ )

s1(1− δ)
. (3.13)

Lemma 3.9. If c = 0, d > 0 and γ < δ, then

p + q + f

p− δcs1 + dγ + fδ
≤ 1

γ
.

Proof. Since c = 0 implies p = 0 and also q ≤ d and γ < δ,

p + q + f

p− δcs1 + dγ + fδ
=

q + f

dγ + fδ
≤ 1

δ

dδ + fδ

dγ + fδ
≤ 1

δ

dδ

dγ
=

1
γ

.
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Lemma 3.10. If c > 0, d = 0 and δ ≤ min{1
2
, min

1≤i≤K−1
{ si

si+1
}}, then RALG ≤ 1

δ
.

Proof. Since d = 0, there are no type-d bins and C = {bj | 1 ≤ j ≤ J − 1}. By Lemma 3.4,
SU(C) ≥ δ. This makes type-c and type-f indistinguishable and the lower bound estimations
(of the optimal solution value) for the item sizes should follow the same rationale: (i) pδ for
type-c bins and (ii) fδ for type-f bins. Therefore,

RALG ≤ lim
(p,f)→∞

p + s1 + f

pδ + γ + fδ
= lim

(p,f)→∞
p + f

pδ + fδ
=

1
δ
.

Remark. When d = 0, the upper bound in (3.13) reduces to 1
s1(1−δ) . By the assumption in

Lemma 3.8, s1(1− δ) < δ. Hence, 1
δ is a better bound than 1

s1(1−δ) for the case d = 0.

Remark. If c = d = 0, by Lemma 3.1, RALG ≤ 1
δ
.

Theorem 3.11. The asymptotic approximation ratio obtained by ALG (the FF heuristic)
for the online VSBP Problem with the LIB constraint is guaranteed to be at most

max{1 + M(1− γ
δ )

s1(1− δ)
,
1
δ
,
1
γ
}. (3.14)

If there are only type-c and type-f bins, then RALG is at most 1
δ . If there are only type-d and

type-f bins, then RALG is at most 1
γ . If there are only type-f bins, then RALG is at most 1

δ .

Theorem 3.11 is a theoretical upper bound for the FF heuristic for solving OLIBP.
Although this bound could be infinite whenever M is, we show in the next section that, by
over 80,000 instances, this is rarely the case in practice.

4 Experimental Studies in OLIBP

The purpose of this section is two-folded: (1) we carried out simulations to study the practical
performance of ALG and (ii) to get some idea about how tight the bounds we derived in
Theorem 3.11 could be. To this end, we need to know the optimal bin sizes which will
be computed by a branch and bound (B&B) based algorithm (described below). In the
numerical experiments, we first determine N (the number of items) and K (the number of
bin sizes). Then, the sizes of both the items and the bins were created randomly by uniform
distribution. For each pair of (N, K), 5000 sets of data were generated. There are totally
80,000 instances tested in this experiment. The most extensive example we computed, is to
pack 1000 items (N=1000) into a collection of bins with seven distinct bin sizes (K = 7).
However, the branch & bound algorithm is very time consuming, so we were able to run it
only for few values of (N, K). See Table 4.

In the B&B approach here, a node t of the B&B tree represents a partial solution that
packs items, in this order, from 1 to some i ∈ L. The children of t represent different ways to
pack item i+1, either in used bins at node t or in a new bin. The lower bound was computed
at each node and tested against the current upper bound. At the beginning of the B&B
algorithm, we set the upper bound to be the value of the ALG solution. As soon as B&B
found a complete solution whose value is smaller than the ALG value, the upper bound is
changed from the ALG value, to the value of this complete solution. If the lower-bound was
larger than the current upper bound at any node, all its sub-trees were pruned.



ONLINE BIN PACKING: VARIABLE BIN SIZES AND LIB CONSTRAINTS 523

L
is

t
N

um
be

r
of

N
um

be
r

A
ve

.
M

ax
.

P
er

ce
nt

ag
e

M
in

.
A

ve
.

M
ax

.
Si

ze
B

in
Si

ze
s

of
R

un
s

R
at

io
R

at
io

of
on

es
U

B
U

B
U

B
(N

)
(K

)
(v

s.
B

&
B

)
(v

s.
B

&
B

)
(v

s.
B

&
B

)
10

5
50

00
1.

04
5

1.
49

1
0.

30
9

1.
09

5
4.

54
0

10
0.

00
0

10
7

50
00

1.
03

6
1.

31
9

0.
26

7
1.

14
8

4.
12

1
10

0.
00

0
15

5
50

00
1.

05
2

1.
38

9
0.

14
4

1.
11

3
4.

77
8

10
0.

00
0

15
7

50
00

1.
04

6
1.

26
6

0.
08

0
1.

10
6

4.
10

8
10

0.
00

0
20

5
50

00
N

A
N

A
N

A
1.

09
5

4.
84

1
10

0.
00

0
20

7
50

00
N

A
N

A
N

A
1.

09
9

4.
04

7
10

0.
00

0
25

5
50

00
N

A
N

A
N

A
1.

07
7

4.
68

8
10

0.
00

0
25

7
50

00
N

A
N

A
N

A
1.

16
2

4.
12

7
10

0.
00

0
10

0
5

50
00

N
A

N
A

N
A

1.
11

8
4.

39
9

75
.0

00
10

0
7

50
00

N
A

N
A

N
A

1.
10

2
3.

86
6

72
.0

00
20

0
5

50
00

N
A

N
A

N
A

1.
09

5
4.

73
8

84
.0

00
20

0
7

50
00

N
A

N
A

N
A

1.
10

4
3.

90
3

52
.0

00
50

0
5

50
00

N
A

N
A

N
A

1.
08

6
4.

18
5

71
.0

00
50

0
7

50
00

N
A

N
A

N
A

1.
13

1
3.

95
1

58
.0

00
10

00
5

50
00

N
A

N
A

N
A

1.
09

3
4.

45
6

75
.0

00
10

00
7

50
00

N
A

N
A

N
A

1.
10

6
3.

93
0

69
.0

00

Table 4: Simulations for the exact ratios and the upper bounds of RALG in Theorem 3.11.
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(c, d) M Number of Average Upper Maximum Upper
Occurences Bound Bound

(62,3) 0.048 3 9.056 10 (s1 = 0.60000)
(63,2) 0.032 8 11.273 19.64286 (s1 = 0.0800)
(64,1) 0.016 33 15.685 66.66667 (s1 = 0.02500)
(65,0) 0 4956 3.836 69.000 (δ = 0.01449)

Table 5: The upper bounds of RALG in 5000 runs for N = 1000, K = 7.

At any partial solution, let L′ = {i + 1, i + 2, . . . , N} be the set of items not yet placed.
V is a subset of L′ so that, if j ∈ V , at least one of these three conditions are satisfied:

1. aj > 0.5 (When an attempt was made to place j on top of k with ak ≥ aj , we would
have found that aj + ak > size(l) for all used bins l.);

2. aj is larger than the topSize of any of the used bins;

3. aj is larger than the empty space in any of the used bins.

In other words, items in V cannot be placed in any used bins so far, while items in L′−V are
allowed to be placed in a used bin provided there is sufficient space. Let (i) u be the sum of
the sizes of bins used thus far; (ii) x be the space leftover in used bins; (iii) v be the sum of
sizes of items in V ; and (iv) w be the sum of the sizes of items in L′− V . Then we obtain a
lower bound to be used in the branch & bound algorithm as follows: u+ v +max{0, w−x}.

With the B&B method above, we were able to obtain the optimal values OPT (L) for
instances (N, K) = (10, 5), (10, 7), (15, 5), (15, 7). Then, the FF based ALG was applied to
solve the same sets of data and its performance is measured by the ALG(L)

OPT (L) ratios. In Table 4,
since there are 5000 runs for each set of (N, K), the fourth column reports the average value
of the ratios, the fifth column the worst value of the ratios, and the sixth column lists the
percentage of ones (when ALG(L) = OPT (L)) within the 5000 runs. Then, we can arrive
a few conclusions from the data: (i) on average, ALG returned a value roughly 5% higher
than the optimal value; (ii) the worst ratio 1.491 (see the row (N, K)=(10, 5)) indicates that
the ALG could use 49% more space than what is necessary; (iii) as the problem size (N, K)
increases, the percentage of ones drops (the sixth column). That is, ALG(L) deviates from
the OPT (L) value more and more often as the problem size gets larger.

In the remainder of this section, we shall discuss how we simulate the theoretical upper
bound in Theorem 3.11, and its implications. First, we need to collect a few parameters:
s1, γ, δ,M . Since s1 is the smallest bin size, γ is the smallest size of the items and δ =
min1≤i≤K−1(si/si+1), they can be obtained immediately once the item sizes and the bin
sizes are generated by the computer. As for M , its original definition is the limit of d/c as
in (3.13). What we shall do is to run ALG to collect the actual value c (number of type-c
bins) and d (number of type-d bins) and use d

c to replace the limit value M . By this way,
whenever an instance L is given and ALG is executed, we obtain not only a solution to pack
the online items, but also an estimated upper bound for the ratio ALG(L)/OPT (L). From
Table 4, the numerical upper bounds vary from values less than 2 (column 6), to at most
100 (the last column). Their average falls around four.

If the simulated upper bound is 100, it is probably not very useful. On the other hand,
take (N, K) = (1000, 7) as an example where the best upper bounds over 5000 runs was
1.106. In this particular case, since the problem size is large, it is very difficult to find the
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Figure 1: N=1000, K=7

optimal solution for packing the items subject to the online and LIB constraints. By the
estimation

ALG(L)
OPT (L)

≤ 1.106,

we can conclude that OPT (L) ≥ 0.904(ALG(L)) which is valuable information regarding the
unknown optimal value. From column 8, we found that the average value of the numerical
upper bounds for all rows is less than 5. It indicates that the bound might not be tight
enough in average, but useless upper bounds such as 100 are rare.

Figure 1 gives a complete distribution of the upper bounds in the case of 5000 runs for
N = 1000,K = 7. Each run provides a numerical upper bound and there are 5000 such
numbers — these numbers are sorted in increasing order, and presented in Figure 1. As we
can see, roughly 80% of the upper bounds are less than 5.

Finally, we take a close look at the 5000 runs for N = 1000, K = 7. Table 5 illustrates
the number of occurrences (out of 5000 runs) that a particular (c, d) combination was en-
countered. As can be seen, more than 99% of the runs (4956 out of 5000) did not produce
any type-d bins. As a result of Lemma 3.10, the upper bound is 1

δ . The bound is loose when
δ is small. See the last row in Table 5 where the worst bound happened at δ = 0.01449. For
the remaining 1% of the instances (44 out of 5000), the d value was still very small (≤ 3),
so that M = d/c is nearly 0, and the upper bound in equation (3.13) can be approximated
by 1

s1(1−δ) . In this case, the large bounds occur when there is a large δ or a small s1. See,
for example, the second row in Table 5 where s1 = 0.08 and the third row with s1 = 0.025.
Since a loose bound means that the ALG(L) value could miss the OPT(L) by a lot, the
implication is that the FF algorithm could perform badly when some of the available bins
are very small (a small s1), or there are no bins of moderate size (if we interpret a small δ
to be some i such that si << si+1).
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5 Scope for Further Research

In this paper, we give a theoretical upper bound of the FF method for packing items online
with the LIB constraint. This result is interesting not only because it is the first bound of
this kind given in literature, but also because the numerical evidence supports it.

However, in Theorem 3.11, M could be very large or even infinity. (This is because we
were unable to estimate the ratio d/c.) If this happens, the bound is surely very loose, but
FF is not necessarily as bad. In fact, our numerical simulations showed that, practically,
M is often very small (the largest M was 0.048 in our simulation). Moreover, FF is fairly
reliable (on average, FF returned a value roughly 5% higher than the optimal value whereas
in the worst example, FF used 49% more space than optimal).

Several future research directions as a follow-up to this paper are proposed below. All
problems referred to here are online LIB versions.

• Try to estimate the d/c value and improve the bound by replacing the parameter M
with a more definite number.

• Bin Covering: The discussion in this paper can be extended to its Bin Covering coun-
terpart.

• Testing of HF: A Harmonic Fit (HF) heuristic could be developed and experimentally
tested for the online and LIB version of VSBP.

• Higher dimensions: All problems considered here can be extended to their two and
three dimensional counterparts.
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