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1 Introduction

In this paper, we deal with the equilibrium problem, abbreviated EP, as follows: Given a
nonempty set K and a function f of K ×K into R with f(x, x) = 0 for all x ∈ K,

find x̄ ∈ K such that f(x̄, y) ≥ 0 for all y ∈ K.

Such a point x̄ ∈ K is called a solution of EP. According to Blum and Oettli [3], EP is deeply
related to optimization problems, saddle point problems, Nash equilibria in noncooperative
games, fixed point problems, variational inequality problems, complementary problems and
so on; see [3, 2, 8] for more details. Many researchers have widely studied EP. For instance,
Blum and Oettli [3] showed the existence of solutions of EP. Iusem and Sosa [8] discussed
the relation between EP and convex feasibility problems. They [9] also studied iterative
algorithms for solving EP. Combettes and Hirstoaga [4] proved some convergence theorems
for EP by using the resolvents of the function f ; see also Moudafi [10].

On the other hand, Takahashi and Toyoda [16] introduced an iteration process to find
a common solution of a fixed point problem of a nonexpansive mapping and a variational
inequality problem for an inverse-strongly-monotone mapping; see also [6, 7]. Recently, Tada
and Takahashi [13] considered the problem of finding a common solution of an equilibrium
problem and a fixed point problem and they obtained two convergence theorems.

In this paper, motivated by these results, especially [7, 13], we introduce an iterative
method by Cesàro means in order to approximate a common solution of an equilibrium
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problem and a fixed point problem for a nonexpansive mapping in Hilbert spaces. Then
we prove that the iterative sequence converges weakly to some common solution of the
equilibrium problem and the fixed point problem. Using this result, we improve the result
of Baillon [1], which is the well-known nonlinear ergodic theorem. Further we consider the
problem of finding a common point of the fixed point set of a nonexpansive mapping and
the solution set of a variational inequality problem for a monotone mapping.

2 Preliminaries

Let H be a real Hilbert space with inner product 〈 · , · 〉 and norm ‖ · ‖. Let {xn} be a
sequence of H and x ∈ H. We write xn ⇀ x and xn → x to indicate that {xn} converges
weakly to x and {xn} converges strongly to x, respectively. The set of all positive integers
is denoted by N.

Let C be a nonempty closed convex subset of a real Hilbert space H. A mapping T of
C into H is said to be nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C. A mapping T
of C into H is also said to be firmly nonexpansive if

‖Tx− Ty‖2 ≤ ‖x− y‖2 − ‖(I − T )x− (I − T )y‖2

for all x, y ∈ C; see [5] for more details. The set of fixed points of T is denoted by F(T ).
For each x ∈ H, there exists a unique point z ∈ C such that

‖x− z‖ = min{‖x− y‖ : y ∈ C}.

This nearest point z is denoted by Px and P is called the metric projection of H onto C.
We know that P is nonexpansive, and moreover, firmly nonexpansive. Let x ∈ H and z ∈ C
be given. We also know that z = Px if and only if

〈x− z, z − y〉 ≥ 0 (2.1)

for all y ∈ C; see [15] for more details. We know the following [16]:

Lemma 2.1 (Takahashi-Toyoda [16]). Let C be a nonempty closed convex subset of a
real Hilbert space H, let P be the metric projection of H onto C, and let {xn} be a sequence
in H. If

‖xn+1 − u‖ ≤ ‖xn − u‖
for all u ∈ C and n ∈ N, then {Pxn} converges strongly.

Let C be a nonempty closed convex subset of a real Hilbert space H. Let f be a function
of C × C into R that satisfies the following conditions:

(F1) f(x, x) = 0 for all x ∈ C;

(F2) f is monotone, that is, f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;

(F3) f(x, · ) is convex and lower semicontinuous for all x ∈ C;

(F4) f is upper hemicontinuous, that is, for any x, y ∈ C, a function τ of [0, 1] into R defined
by τ(t) = f((1− t)x + ty, y) for all t ∈ [0, 1] is upper semicontinuous.
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Recall that x ∈ C is said to be a solution of EP if f(x, y) ≥ 0 for all y ∈ C. The set of
solutions of EP is denoted by EP(C, f). According to [3, Corollary 1], we may define a
mapping Jr of H into C for each r > 0 as follows:

Jr(x) = {z ∈ C : 0 ≤ f(z, y) +
1
r
〈y − z, z − x〉 for all y ∈ C}. (2.2)

Such a mapping Jr is said to be the resolvent of f for r > 0, which has the following
property [3]; see also [4].

Lemma 2.2 ([3], [4, Lemma 2.12]). Let C be a nonempty closed convex subset of a real
Hilbert space H. Let f be a function of C ×C into R that satisfies the conditions from (F1)
to (F4) above. Let Jr be the resolvent of f for r > 0. Then

1. Jr(x) 6= ∅ for all x ∈ H;

2. Jr is single-valued and firmly nonexpansive;

3. F(Jr) = EP(C, f);

4. EP(C, f) is closed and convex.

We need the following:

Lemma 2.3 ([3]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
f be a function of C × C into R that satisfies the conditions from (F1) to (F4) above. Let
x ∈ C. If f(z, x) ≤ 0 for all z ∈ C, then f(x, y) ≥ 0 for all y ∈ C.

Proof. Assume f(z, x) ≤ 0 for all z ∈ C. Let y ∈ C be given. For t ∈ (0, 1), define
xt = (1− t)x + ty. By assumption, it is clear that xt ∈ C and f(xt, x) ≤ 0 for all t ∈ (0, 1).
Then, from (F1) and (F3), we have

0 = f(xt, xt)
≤ (1− t)f(xt, x) + tf(xt, y)
≤ tf(xt, y)

and hence f(xt, y) ≥ 0 for all t ∈ (0, 1). Since f is upper hemicontinuous, we conclude that

0 ≤ lim sup
t→+0

f(xt, y) ≤ f(x, y).

This completes the proof.

We also need the following:

Lemma 2.4 ([7], [15, p. 59]). Let C be a nonempty closed convex subset of a real Hilbert
space H. Let {xn} be a sequence of H, let {zn} be a sequence of H defined by

zn =
1
n

n∑

k=1

xk

for every n ∈ N, and let T be a mapping of C into H. Suppose that z ∈ C and ‖xn − z‖ ≥
‖xn+1 − Tz‖ for every n ∈ N. If there exists a subsequence {zni} of {zn} with zni ⇀ z, then
z = Tz.
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Proof. By assumption, we have

0 ≤ ‖xk − z‖2 − ‖xk+1 − Tz‖2

= ‖xk − Tz + Tz − z‖2 − ‖xk+1 − Tz‖2

= ‖xk − Tz‖2 − ‖xk+1 − Tz‖2 + 2 〈xk − Tz, Tz − z〉+ ‖Tz − z‖2 .

Summing these inequalities from k = 1 to n and dividing by n, we have

0 ≤ 1
n

(‖x1 − Tz‖2 − ‖xn+1 − Tz‖2) + 2 〈zn − Tz, Tz − z〉+ ‖Tz − z‖2

≤ 1
n
‖x1 − Tz‖2 + 2 〈zn − Tz, Tz − z〉+ ‖Tz − z‖2 .

Therefore, for each i ∈ N, we have

0 ≤ 1
ni
‖x1 − Tz‖2 + 2 〈zni

− Tz, Tz − z〉+ ‖Tz − z‖2 .

Tending i →∞, we obtain

0 ≤ 2 〈z − Tz, Tz − z〉+ ‖Tz − z‖2 = −‖Tz − z‖2

and hence Tz = z.

3 Weak Convergence Theorem

We prove the following theorem which is the main result of this paper.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T be a nonexpansive mapping of C into H and let f be a function of C × C into R that
satisfies the conditions from (F1) to (F4). Suppose that F(T )∩EP(C, f) 6= ∅. Let {xn} and
{zn} be two sequences defined by





x1 = x ∈ H,

xn+1 = TJrnxn,

zn =
1
n

n∑

k=1

xk

for every n ∈ N, where {rn} is a sequence of positive real numbers with lim infn→∞ rn > 0
and Jrn

is the resolvent of f for rn > 0. Then {zn} converges weakly to some point z ∈
F(T ) ∩ EP(C, f). Moreover, z = limn→∞ Pxn, where P is the metric projection of H onto
F(T ) ∩ EP(C, f).

Proof. Put yn = Jrnxn. First let us prove that {xn}, {yn}, and {zn} are bounded and
limn→∞ ‖xn − yn‖ = 0. Let u ∈ F(T ) ∩ EP(C, f). Since EP(C, f) = F(Jrn

) and Jrn
is

firmly nonexpansive for every n ∈ N, we have

‖xn+1 − u‖2 = ‖TJrn
xn − TJrn

u‖2

≤ ‖Jrn
xn − Jrn

u‖2

≤ ‖xn − u‖2 − ‖(I − Jrn
)xn − (I − Jrn

)u‖2



WEAK CONVERGENCE THEOREMS BY CESÀRO MEANS 505

≤ ‖xn − u‖2 − ‖xn − Jrn
xn‖2

≤ ‖xn − u‖2 ≤ ‖x1 − u‖2 .

This implies that limn→∞ ‖xn − u‖ exists and {xn} is bounded and hence both {yn} and
{zn} are also bounded. Further, we have

‖xn − Jrn
xn‖2 ≤ ‖xn − u‖2 − ‖xn+1 − u‖2 .

So, we obtain
lim

n→∞
‖xn − yn‖ = lim

n→∞
‖xn − Jrn

xn‖ = 0. (3.1)

Let {wn} be a sequence in C defined by

wn =
1
n

n∑

k=1

yk

for n ∈ N. It is clear that

‖zn − wn‖ =
1
n

∥∥∥∥∥
n∑

k=1

(xk − yk)

∥∥∥∥∥ ≤
1
n

n∑

k=1

‖xk − yk‖ .

From (3.1), we obtain
lim

n→∞
‖zn − wn‖ = 0. (3.2)

Since {zn} is bounded, there exists a subsequence {zni
} of {zn} such that zni

⇀ z. It follows
from (3.2) that the subsequence {wni

} of {wn} also converges weakly to z. We show that
z ∈ EP(C, f). By (2.2) and (F2), we have

f(y, yk) ≤ −f(yk, y)

≤ 1
rk
〈y − yk, yk − xk〉

≤ 1
rk
‖y − yk‖ ‖yk − xk‖

≤ L ‖yk − xk‖

for all y ∈ C and k ∈ N, where L = sup{‖y − yk‖ /rk : k ∈ N}. Thus, from (F3), we have

f(y, wn) = f(y,
1
n

n∑

k=1

yk)

≤ 1
n

n∑

k=1

f(y, yk)

≤ 1
n

n∑

k=1

‖yk − xk‖L

for every n ∈ N. Then it follows from (3.1) that

lim
n→∞

1
n

n∑

k=1

‖yk − xk‖L = 0.
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Since wni
⇀ z and f(y, · ) is weakly lower semicontinuous from (F3), we conclude that

f(y, z) ≤ lim inf
i→∞

f(y, wni) ≤ 0

for all y ∈ C. By virtue of Lemma 2.3, this implies that f(z, y) ≥ 0 for all y ∈ C.
Consequently, we have z ∈ EP(C, f). Next we show z ∈ F(T ). Since both T and Jrn

are
nonexpansive and z ∈ EP(C, f), we have

‖xn+1 − Tz‖ = ‖Tyn − Tz‖ ≤ ‖yn − z‖ = ‖Jrn
xn − Jrn

z‖ ≤ ‖xn − z‖ .

Thus it follows from Lemma 2.4 that z ∈ F(T ). On the other hand, since ‖xn+1 − u‖ ≤
‖xn − u‖ for all n ∈ N and u ∈ F(T ) ∩ EP(C, f), Lemma 2.1 implies that Pxn → w ∈
F(T ) ∩ EP(C, f) as n → ∞. So, to complete the proof, it is enough to prove z = w. From
z ∈ F(T ) ∩ EP(C, f) and (2.1), it holds that

〈z − w, xk − Pxk〉 = 〈z − Pxk, xk − Pxk〉+ 〈Pxk − w, xk − Pxk〉
≤ 〈Pxk − w, xk − Pxk〉
≤ ‖Pxk − w‖ ‖xk − Pxk‖
≤ ‖Pxk − w‖M

for every k ∈ N, where M = sup{‖xk − Pxk‖ : k ∈ N}. Summing these inequalities from
k = 1 to ni and dividing by ni, we have

〈
z − w, zni −

1
ni

ni∑

k=1

Pxk

〉
≤ 1

ni

ni∑

k=1

‖Pxk − w‖M.

Since zni ⇀ z as i → ∞ and Pxn → w as n → ∞, we obtain 〈z − w, z − w〉 ≤ 0. This
means z = w. This completes the proof.

4 Applications

In this section, we prove some weak convergence theorems in a Hilbert space by using
Theorem 3.1. We first prove the following theorem that is a generalization of the result by
Baillon [1].

Theorem 4.1. Let C be a nonempty closed convex subset of a real Hilbert space H, let T
be a nonexpansive mapping of C into H with F(T ) 6= ∅, and let x ∈ H. Let {xn} and {zn}
be two sequences defined by 




x1 = x ∈ H,

xn+1 = TPCxn,

zn =
1
n

n∑

k=1

xk

for every n ∈ N, where PC is the metric projection of H onto C. Then {zn} converges
weakly to z = limn→∞ PF(T )xn, where PF(T ) is the metric projection of H onto F(T ).

Proof. Let f be a function of C × C into R defined by f(x, y) = 0 for x, y ∈ C. Then it
is obvious that f satisfies the conditions from (F1) to (F4) in Theorem 3.1, EP(C, f) = C,
and the resolvent Jr of f for r > 0 is the metric projection PC of H onto C. Therefore
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F(T ) ∩ EP(C, f) = F(T ) 6= ∅. Hence Theorem 3.1 implies that {zn} converges weakly to
z ∈ F(T ) and z = limn→∞ PF(T )xn.

In Theorem 4.1, if T is a mapping of C into itself and x ∈ C, then we see that xn+1 =
Txn = Tnx and the sequence {zn} defined by

zn =
1
n

n∑

k=1

T k−1x

for every n ∈ N converges weakly to z ∈ F(T ). So, we obtain the first nonlinear ergodic
theorem which was proved by Baillon [1]; see [15, Theorem 3.2.1].

Next we deal with the problem of finding a common solution of a variational inequality
problem and a fixed point problem. Such a problem was discussed in [16, 6, 7]. Let C be a
nonempty closed convex subset of a real Hilbert space H. Let A be a mapping of C into H.
The variational inequality problem is formulated as follows:

Find x ∈ C such that 〈y − x,Ax〉 ≥ 0 for all y ∈ C.

Such a point x ∈ C is called a solution of this problem. The set of solutions of the variational
inequality problem is denoted by VI(C, A), that is,

VI(C,A) = {x ∈ C : 〈y − x,Ax〉 ≥ 0 for all y ∈ C}.
A mapping A of C into H is said to be monotone if

〈x− y, Ax−Ay〉 ≥ 0

for all x, y ∈ C. A mapping A of C into H is also said to be hemicontinuous if for any
x, y, z ∈ C, a function τ of [0, 1] into R defined by τ(t) = 〈z, A((1− t)x + ty)〉 for all
t ∈ [0, 1] is continuous; see, for example, [15]. Let A be a monotone and hemicontinuous
mapping of C into H and let f be a function of C × C into R defined by

f(x, y) = 〈y − x,Ax〉
for x, y ∈ C. Then, it is obvious that f satisfies (F1) and (F3). From the definition, we have

f(x, y) + f(y, x) = 〈y − x,Ax−Ay〉 = −〈x− y, Ax−Ay〉 .
The monotonicity of A implies that f(x, y) + f(y, x) ≤ 0. Further we have

f((1− t)x + ty, y) = (1− t) 〈y − x,A((1− t)x + ty)〉 .
Since A is hemicontinuous, f satisfies (F4) in Theorem 3.1. Consequently we may define
the resolvent Jr of f for each r > 0. In this case we know that EP(C, f) = VI(C, A). For
convenience, we call Jr the resolvent of A for r. From observations above, we obtain the
following:

Theorem 4.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A
be a monotone hemicontinuous mapping of C into H and T a nonexpansive mapping of C
into H. Suppose that F(T ) ∩VI(C, A) 6= ∅. Let {xn} and {zn} be two sequences defined by





x1 = x ∈ H,

xn+1 = TJrn
xn,

zn =
1
n

n∑

k=1

xk
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for every n ∈ N, where {rn} is a sequence of positive real numbers with lim infn→∞ rn >
0 and Jrn

is the resolvent of A for rn. Then {zn} converges weakly to some point z ∈
F(T ) ∩ VI(C, A). Moreover, z = limn→∞ Pxn, where P is the metric projection of H onto
F(T ) ∩VI(C, A).

Let B be a multi-valued mapping of H into H. The effective domain of B is denoted
by D(B), that is, D(B) = {x ∈ H : Bx 6= ∅}. A multi-valued mapping B is said to
be a monotone operator on H if 〈x− y, u− v〉 ≥ 0 for all x, y ∈ D(B), u ∈ Bx, and
v ∈ By. A monotone operator B on H is said to be maximal if its graph is not properly
contained in the graph of any other monotone operators B′ on H. By virtue of Rockafellar’s
theorem [12], for a maximal monotone operator B on H and λ > 0, we may define a single-
valued operator (I + λB)−1 : H → D(B), which is called the resolvent of B for λ. Let
B−10 = {x ∈ H : Bx 3 0}. It is known that the resolvent (I + λB)−1 is nonexpansive
and B−10 = F((I + λB)−1) for all λ > 0. As a direct consequence of Theorem 4.2, we
immediately obtain the following. A similar result was given by Passty [11].

Corollary 4.3. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A
be a monotone hemicontinuous mapping of C into H and B a maximal monotone operator
on H. Suppose that B−10 ∩VI(C, A) 6= ∅. Let {xn} and {zn} be two sequences defined by





x1 = x ∈ H,

xn+1 = (I + λB)−1Jrn
xn,

zn =
1
n

n∑

k=1

xk

for every n ∈ N, where λ > 0, {rn} is a sequence of positive real numbers with
lim infn→∞ rn > 0, and Jrn

is the resolvent of A for rn. Then {zn} converges weakly to some
point z ∈ B−10 ∩ VI(C,A). Moreover, z = limn→∞ Pxn, where P is the metric projection
of H onto B−10 ∩VI(C, A).
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[6] H. Iiduka and W. Takahashi, Strong convergence theorems for nonexpansive mappings
and inverse-strongly monotone mappings, Nonlinear Anal. 61 (2005) 341–350.

[7] H. Iiduka and W. Takahashi, Weak convergence theorems by Cesáro means for nonex-
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