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convergence results to directly target this class of problems.
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1 Introduction

We analyze a new class of derivative-free filter pattern search algorithms for mixed variable
optimization problems with general nonlinear constraints. This class of algorithms has
already been shown in [2] to be effective on a problem from the engineering literature. That
reference also shows the value of the mixed variable formulation over a basic parameter
study.

Mixed variable optimization problems [6] are characterized by a mixture of continuous
and categorical variables, the latter being discrete variables that must take on values from a
predefined list or set of categories, or else the problem functions cannot be evaluated. Thus,
continuous relaxations are not possible. These variables may be assigned numerical values
for programming convenience, but these values are typically meaningless, and in fact, it will
be generally misleading to think of defining a metric based on them. Type of material, color,
and shape are common examples. Without loss of generality, we may represent categorical
variables by their corresponding indices in the set that contains them (e.g., 1 = steel, 2 =
aluminum, etc.).
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In formulating the mixed variable programming (MVP) problem, we note that changes
in the discrete variables can mean a change in the constraints. Thus, we denote nc and
nd as the maximum dimensions of the continuous and discrete variables, respectively, and
we partition each point x = (xc, xd) into continuous variables xc ∈ Xc ⊆ Rnc

and discrete
variables xd ∈ Xd ⊆ Znd

. We adopt the convention of ignoring unused variables.
The problem under consideration can be expressed as follows:

min
x∈X

f(x)

s.t. C(x) ≤ 0,
(1.1)

where f : X → R∪{∞}, and C : X → (R∪{∞})p with C = (C1, C2, . . . , Cp)T . The domain
X is the union of continuous domains across possible discrete variable values; i.e.,

X =
⋃

xd∈Xd

(Xc(xd)× {xd}),

with the convention that X = Xc if nd = 0. Furthermore, Xc is defined by a finite set of
bound and linear constraints, dependent on the values of xd. That is,

Xc(xd) = {xc ∈ Rnc

: `(xd) ≤ A(xd)xc ≤ u(xd)},
where A(xd) ∈ Rm×nc

is a real matrix, `(xd), u(xd) ∈ (R ∪ {±∞})m, and `(xd) ≤ u(xd) for
all values of xd. Note that this formulation is indeed a generalization of the standard NLP
problem, in that, if nd = 0, then the problem reduces to a standard NLP problem, in which
`, A, and u (and hence, X = Xc) do not change. An important difference is that MVP
problems will typically involve optimization on a nonmetric space.

Convergence in a mixed variable domain is assumed to be as one would expect: a sequence
{xi} = {(xc

i , x
d
i )} ⊂ X converges to x = (xc, xd) ∈ X if xc

i converges to xc (under the
standard definition) and xd

i = xd for all sufficiently large i.
Torczon [31] introduced the class of generalized pattern search (GPS) methods for solving

unconstrained NLP problems, unifying a wide variety of existing derivative-free methods,
and proving convergence of a subsequence of iterates to a stationary point, under the assump-
tions that all iterates lie in a compact set and that the objective function f is continuously
differentiable in a neighborhood of the level set L(x0) = {x ∈ Rn : f(x) ≤ f(x0)} defined by
the initial point x0 ∈ Rn. Under similar assumptions, Lewis and Torczon extended pattern
search to bound [23] and linearly constrained problems [24] by ensuring that directions used
in the algorithm include tangent cone generators of all nearby constraints, thereby ensuring
convergence of a subsequence of iterates to a Karush-Kuhn-Tucker (KKT) point. Lewis and
Torczon [22] also establish the connection between pattern search and the positive basis the-
ory of Davis [15], in which they generalize [31] to allow the use of any set of directions that
positively span Rn (i.e., directions such that any vector in Rn can be expressed as a non-
negative linear combination of these directions). This can significantly reduce the number
of function evaluations.

Audet and Dennis [6] extended pattern search to bound constrained MVP problems
under the assumption of continuous differentiability of the objective function on the neigh-
borhood of a level set in which all iterates lie. The success of the method is demonstrated
in [21] on a problem in the design of thermal insulation systems, an expanded version of
which is discussed and numerically solved in [2] using the algorithm class given here. These
algorithms were also successfully used in the quantitative reconstruction of objects from
x-ray radiograph data [29]. A further extension to linearly constrained MVP problems with
a stochastic objective function is given in [30].
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A more general derivative-free framework for solving linearly constrained mixed variable
problems is introduced in [27]. Instead of applying pattern search to the continuous variables,
mathematical conditions are established, by which a suitably chosen derivative-free method
could be used as a local continuous search and ensure convergence to a first-order stationary
point. A general derivative-based approach for large-scale unconstrained MVP problems
that exploits these conditions is given in [26].

An equivalent formulation of GPS for linearly constrained NLP problems was introduced
and analyzed by Audet and Dennis [7] for functions that are less well-behaved. They apply
the nonsmooth calculus of Clarke [13] to establish convergence properties for functions lack-
ing the smoothness properties of those studied in previous work. In doing so, they present
a hierarchy of convergence results for bound and linearly constrained problems, in which
the strength of the results depends on local continuity and smoothness conditions of the
objective function. As a consequence, they establish some of the earlier results of [31], [23],
and [24] as corollary to theirs with much shorter and simpler proofs.

For NLP problems with general nonlinear constraints, Lewis and Torczon [25] apply
bound constrained pattern search to an augmented Lagrangian function [14] and show that,
under the same assumptions as in [14], plus a mild restriction on search directions, the
algorithm converges to a KKT first-order stationary point. It is unclear to us how to choose
the parameters needed to implement their algorithm. The algorithm given here has no such
difficulty.

Audet and Dennis [8] adapt a filter method within the GPS framework to handle gen-
eral nonlinear constraints. Originally introduced by Fletcher and Leyffer [17] to conve-
niently globalize sequential quadratic programming (SQP) and sequential linear program-
ming (SLP), filter methods accept steps if either the objective function or an aggregate
constraint violation function is reduced. Fletcher, Leyffer, and Toint [18] show convergence
of the SLP-based approach to a limit point satisfying Fritz John [20] optimality conditions;
they show convergence of the SQP approach to a KKT point [19], provided a constraint qual-
ification is satisfied. However, in both cases, more than a simple decrease in the function
values is required for convergence with these properties.

Audet and Dennis show convergence to limit points x̂ having almost the same charac-
terization as in [7], but with only a simple decrease in the objective or constraint violation
function required. While they are unable to show convergence to a point satisfying KKT
optimality conditions (and, in fact, have counterexamples [8]), in that −∇f(x̂) does not
necessarily belong to the normal cone at x̂, they are able to show that −∇f(x̂) belongs to
the polar of a cone defined by directions that are used infinitely often. Thus, a richer set of
directions, although more costly, will increase the likelihood of achieving convergence to a
KKT point.

The present paper introduces a filter GPS algorithm for MVP problems with general
nonlinear constraints. In doing so, we make use of the nonsmooth Clarke [13] calculus as
in [7] and [8] to establish a unifying hierarchy of results for all the pattern search methods
to date.

The paper is outlined as follows. After presenting some basic ideas on mixed variables in
Section 2, we construct the mixed variable GPS (MVPS) method of Audet and Dennis [6]
in Section 3, retailored for linearly constrained MVP problems. In Section 4, we extend this
development to general constraints by incorporating a filter and we introduce the Filter-
MVPS algorithm. We establish theoretical convergence properties for the new algorithm in
Section 5.

Notation. R, Z, and Z+ denote the set of real numbers, integers, and nonnegative
integers, respectively. For any finite set S ⊂ Rn, we may refer to the matrix S as the one
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whose columns are the elements of S. Similarly, for any matrix A, the notation a ∈ A means
that a is a column of A. When x has only continuous variables, we denote by B(x, ε) the
ball of radius ε > 0 centered at x.

2 Local Optimality for Mixed Variables

In order to solve problems with categorical variables, a notion of local optimality is needed,
since we are not dealing with a metric space. For continuous variables, this is well-defined in
terms of local neighborhoods. However, for categorical variables, a local neighborhood must
be defined by the user, and there may be no obvious choice for doing so; special knowledge
of the underlying engineering process or physical problem may be the only guide.

To keep the definition as general as possible, we define local neighborhoods in terms
of a set-valued function N : X → 2X , where 2X denotes the power set (or set of all
possible subsets of X). By convention, we assume that for all x ∈ X, the set N (x) is finite,
and x ∈ N (x). As an example, one common choice of neighborhood function for integer
variables is the one defined by N (x) = {y ∈ X : yc = xc, ‖yd − xd‖1 ≤ 1}. However,
categorical variables may have no inherent metric, which would make this particular choice
inapplicable.

With this construction, the classical definition of local optimality is extended to mixed
variable domains by the following definition, which is similar to one found in [6].

Definition 2.1. Let Ω = {x ∈ X : C(x) ≤ 0}. A point x = (xc, xd) ∈ X is said to be a
local minimizer of f on Ω with respect to the set of neighbors N (x) ⊂ X if there exists an
ε > 0 such that f(x) ≤ f(v) for all v in the set

Ω ∩
⋃

y∈N (x)

(
B(yc, ε)× {yd}) . (2.1)

3 Pattern Search for Linearly Constrained MVPs

In order to introduce the Filter-MVPS algorithm, it is helpful to first build up the structure
by describing the GPS algorithm for linearly constrained MVP problems. Most of the
discussion in this section comes from [6], but some improvements are added here, including a
slightly more general mesh construction and the treatment of linear constraints and functions
that are not necessarily continuously differentiable.

A pattern search algorithm is characterized by a sequence of feasible iterates {xk} ⊂ X
with nonincreasing objective function values. Each iteration consists of two key steps – an
optional search step and a local poll step – in which the objective function is evaluated
at a finite number of points (called trial points) lying on a carefully constructed mesh (to be
formally defined for MVP problems later) in an attempt to find a new iterate with a lower
objective function value than the current iterate (called the incumbent).

A key practical point in the Audet-Dennis version of the GPS algorithm is that they
explicitly separate out the search step from the poll step within the iteration. In the
search step, any finitely terminating strategy may be used in selecting a finite number of
trial points, as long as the points lie on the mesh. This flexibility lends itself quite easily
to hybrid algorithms and enables the user to apply specialized knowledge of the problem.
The user can apply a few steps of a favorite heuristic, such as random sampling, simulated
annealing, a few generations of a genetic algorithm, etc., or perhaps use a few steps of
an algorithm to optimize an inexpensive surrogate function on the mesh, as is common
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in difficult engineering design problems with expensive function evaluations [5, 10, 11, 12].
While the search step contributes nothing to the convergence theory of GPS (and in fact,
an unsuitable search may impede performance), the use of surrogates enables the user to
potentially gain significant improvement early on in the iteration process at much lower cost.
See [28] for evidence to support this assertion.

If the search step fails to find an improved mesh point (i.e., a point with lower objective
function value), then the poll step is invoked, in which the function is evaluated at a
finite set of neighboring mesh points around the incumbent, called the poll set. The poll
step is more carefully structured, so as to help ensure the algorithm’s theoretical convergence
properties. If either the search or poll step finds an improved mesh point, then it becomes
the incumbent, and the mesh is retained or coarsened. If no improved mesh point is found,
then xk is said to be a mesh local optimizer, and the current mesh is refined. The next
iteration then begins on a finer mesh.

3.1 Construction of the Mesh and Poll Set

The following construction is slightly more general than in [6]. For each combination
i = 1, 2, . . . , imax, of values that the discrete variables may possibly take, a set of positive
spanning directions Di in Rnc

is constructed by forming the product

Di = GiZi, (3.1)

where Gi ∈ Rnc×nc

is a nonsingular generating matrix, and Zi ∈ Znc×|Di|. We will some-
times use D(x) in place of Di to indicate that the set of directions is associated with the
discrete variable values of x ∈ X. The set D is then defined by D =

⋃imax
i=1 Di.

The mesh Mk at iteration k is formed as the direct product of Xd with the union of
a finite number of lattices in Xc, each of which is the union of lattices centered at the
continuous part of the variables at all previously evaluated trial points Sk, where S0 is the
set of initial points. More precisely,

Mk =
imax⋃

i=1

M i
k ×Xd (3.2)

with M i
k =

⋃

x∈Sk

{xc + ∆kDiz : z ∈ Z|Di|
+ } ⊂ Rnc

,

where ∆k > 0 is the mesh size parameter. The mesh is purely conceptual and is never
explicitly created; instead, mesh points are generated as necessary in the algorithm.

Using this construction, we also require that the neighborhood functionN be constructed
so that all discrete neighbors of the current iterate lie on the current mesh; i.e., N (xk) ⊆ Mk

for all k. Also observe that each lattice in (3.2) is expressed as a translation from xc
k,

as opposed to yc
k, for some yk ∈ N (xk). This is necessary to ensure convergence of the

algorithm, but it does not mean that a point and its discrete neighbors have the same
continuous variable values. In fact, Kokkolaras et al. [21] construct their neighbor sets in a
way that neighbors often do not have the same continuous variable values.

Polling in the MVPS algorithm is performed with respect to the continuous variables,
the discrete neighbor points, and the set of points generated by an extended poll step.
At iteration k, let Dk(x) ⊆ Di0 ⊆ D denote the positive spanning set of poll directions for
some x ∈ Sk corresponding to the i0-th set of discrete variable values. The poll set centered
at x is defined as

Pk(x) = {x} ∪ {x + ∆k(d, 0) ∈ X : d ∈ Dk(x)} ⊂ Mk. (3.3)
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The notation (d, 0) is consistent with the partitioning into continuous and discrete variables,
respectively, where 0 means that discrete variables do not change value. Thus, x+∆k(d, 0) =
(xc + ∆kd, xd

k).
Whenever poll set and set of discrete neighbors fail to produce a lower objective function

value, MVPS performs an extended poll step, in which additional polling is performed
around any promising points in the set of discrete neighbors whose objective function value
is sufficiently close to the incumbent value. That is, if y ∈ N (xk) satisfies f(xk) ≤ f(y) <
f(xk) + ξk for some user-specified tolerance value ξk ≥ ξ (called the extended poll trigger),
where ξ is a fixed positive scalar, then we begin a finite sequence of poll steps about the
points {yj

k}Jk
j=1, beginning with y0

k = yk ∈ N (xk) and ending when either f(yJk

k +∆k(d, 0)) <

f(xk) for some d ∈ Dk(yJk

k ), or when f(xk) ≤ f(yJk

k + ∆k(d, 0)) for all d ∈ Dk(yJk

k ). For
this discussion, we let zk = yJk

k , the last iterate (or endpoint) of the extended poll step.
We will show in Section 5 that under reasonable assumptions Jk is always finite.

We should note that in practice, the parameter ξk is typically set as a percentage of the
objective function value (but bounded away from zero), such as, say, ξk = max{ξ, 0.05|f(xk)|}.
A relatively high choice of ξk will generate more extended poll steps, which is likely to
lead to a better local solution, but at a cost of more function evaluations. On the other
hand, a lower value of ξk will require fewer function evaluations, but it will probably result
in a poorer quality local solution.

The set of extended poll points for a discrete neighbor y ∈ N (xk), denoted E(y), con-
tains a subset of the points {Pk(yj

k)}Jk
j=1. At iteration k, the set of points evaluated in the

extended poll step (or extended poll set) is given by

Xk(ξk) =
⋃

y∈N ξk
k

E(y), (3.4)

where N ξk

k = {y ∈ N (xk) : f(xk) ≤ f(y) ≤ f(xk) + ξk}.

3.2 Update Rules

If either the search, poll, or extended poll step is successful at finding an improved
mesh point, then it becomes the new incumbent xk+1, and the mesh may be retained or
coarsened according to the rule,

∆k+1 = τm+
k ∆k, (3.5)

where τ > 1 is rational and fixed over all iterations, and the integer m+
k satisfies 0 ≤ m+

k ≤
mmax for some fixed integer mmax ≥ 0. Coarsening of the mesh does not prevent convergence
of the algorithm, and may make it faster. Note that only a simple decrease in the objective
function value is required.

If the search, poll, and extended poll steps all fail to find an improved mesh point,
then the incumbent is a mesh local optimizer and remains unchanged (or, alternatively, can
be chosen as a point having the same function value as the incumbent, if one exists), while
the mesh is refined according to the rule,

∆k+1 = τm−
k ∆k, (3.6)

where τ > 1 is defined above, τm−
k ∈ (0, 1), and the integer m−

k satisfies mmin ≤ m−
k ≤ −1

for some fixed integer mmin. It follows that, for any integer k ≥ 0, there exists an integer rk

such that

∆k = τ rk∆0. (3.7)
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3.3 Linear Constraints

For linear constraints, infeasible points are simply discarded without being evaluated. How-
ever, to ensure that appropriate convergence results are retained, the directions that define
the mesh be sufficiently rich to ensure that polling directions can be chosen that conform to
the geometry of the constraint boundaries, and these directions must be used in infinitely
many iterations. For our analysis, we need the following definition (from [7]), which abstracts
this notion of conformity.

Definition 3.1. A rule for selecting the positive spanning sets Dk(x) ⊆ D conforms to
X ⊂ Rn at x ∈ Rn for some specified ε > 0, if at each iteration k and for each y in the
boundary of X for which ‖y − x‖ < ε, the tangent cone TX(y) is generated by nonnegative
linear combinations of a subset of the columns of Dk(x).

Thus, just as in [7] and [24], in order to ensure convergence, we require that the rule for
selecting directions always conforms to Xc for some ε > 0. To enforce this condition, we
appeal to the construction of Lewis and Torczon [24], who provide an algorithm for choosing
conforming directions using standard linear algebra tools.

Nonlinear constraints pose a problem for GPS algorithms in that choosing enough di-
rections to conform to the geometry of the constraints (to guarantee convergence to a KKT
point) would require an infinite number of directions in D, which the convergence theory does
not support. Thus, a different strategy must be employed to handle nonlinear constraints.
In the next section, we add a filter to do this.

4 The Filter-MVPS Algorithm

In filter algorithms, the goal is to minimize two functions, the objective f and a continuous
aggregate constraint violation function h that satisfies h(x) ≥ 0 with h(x) = 0 if and only if
x is feasible. Specifically, we will set

h(x) = ‖C(x)+‖22, (4.1)

where C(x)+ is the vector of constraint violations at x; i.e., for i = 1, 2, . . . , m, Ci(x)+ =
Ci(x) if Ci(x) > 0; otherwise, Ci(x)+ = 0. Our reason for making this particular choice is
that h inherits whatever smoothness properties C possesses [8]. Other choices for h may be
used, but convergence properties may be weakened.

In our case, and consistent with [8], we define a second constraint violation function
hX = h + ψX , where ψX is the indicator function for X. It is 0 on X and +∞ elsewhere.
This construct is convenient Again we point out that there is no difficulty in using this
convenient construct since we simply discard any x /∈ X without evaluating its constraint
violation. We will see in Section 5 that convergence results will depend on the smoothness
of h and not hX .

The Filter-MVPS algorithm can be viewed as either an extension of the Filter-GPS
algorithm [8] for mixed variables, or as an extension of the mixed variable GPS algorithm
of Audet and Dennis [6] for general nonlinear constraints. We present it here as the latter,
and appeal to [8] for the construction of the filter.

4.1 Filters

The definition of dominance provided below, which comes from the multi-criteria optimiza-
tion literature, is adapted from a similar term in [17], so that it is defined with respect to
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the objective function f and constraint violation function h. This adaptation is consistent
with [8]. A formal definition of a filter follows immediately thereafter.

Definition 4.1. A point x ∈ Rn is said to dominate y ∈ Rn, written x ≺ y, if f(x) ≤ f(y)
and hX(x) ≤ hX(y) with either f(x) < f(y) or hX(x) < hX(y).

Definition 4.2. A filter, denoted F , is a finite set of points in the domain of f and h such
that no pair of points x and y in the set have the relation x ≺ y.

In constructing a filter for GPS algorithms, we put two additional restrictions on F . First,
we set a bound hmax on aggregate constraint violation, so that each point y ∈ F satisfies
hX(y) < hmax. Second, we include only infeasible points in the filter and track feasible points
separately, consistent with [17, 16]. With these two modifications, the following terminology
is now provided.

Definition 4.3. A point x is said to be filtered by a filter F if any of the following properties
hold:

1. There exists a point y ∈ F such that y ¹ x,

2. hX(x) ≥ hmax,

3. hX(x) = 0 and f(x) ≥ fF , where fF is the objective function value of the best feasible
point found thus far.

The point x is said to be unfiltered by F if it is not filtered by F .

Thus, the set of filtered points, denoted by F , is given by

F =
⋃

x∈F
{y : y º x} ∪ {y : hX(y) ≥ hmax} ∪ {y : hX(y) = 0, f(y) ≥ fF }. (4.2)

Observe that, with this notation, if a new trial point has the same function values as those
of any point in the filter, then the trial point is filtered. Thus, only the first point with such
values is accepted into the filter.

4.2 Description of the Algorithm

For the new class of algorithms, we change the notation slightly. At each iteration k, an
iterate xk is not necessarily the point around which the poll step will be performed. Instead,
the filter Fk is updated at each iteration k (this requires an initial population of the filter
F0), and the poll center pk is chosen as either the incumbent best feasible point pF

k or the
incumbent least infeasible point pI

k. Neither choice for pk will affect the convergence theory,
but we have had good numerical experience using both points during a run, and not using
pI

k is essentially the same as not using the filter. For a given poll center pk, the poll set
Pk(pk) is defined in (3.3).

Because the filter seeks a better point with respect to either of the two functions (the
objective function f and the constraint violation function hX), a change must be made to
the rule for selecting discrete neighbors, about which to perform an extended poll step.
Recall that in the MVPS algorithm, extended polling is performed around any discrete
neighbor whose objective function value is sufficiently close to that of the current iterate
(i.e., “almost” an improved mesh point). With the addition of nonlinear constraints to the
problem, we require a notion of a discrete neighbor “almost” generating a new incumbent
best feasible point or least infeasible point.
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While this issue has by no means a single workable approach, the implementation here
has the desirable property of being a generalization of the MVPS algorithm. At iteration k,
let fF

k = f(pF
k ) denote the objective function value of the incumbent best feasible point. If

no feasible point exists, we set fF
k = ∞. Similarly, let hI

k = hX(pI
k) > 0 be the constraint

violation function value of the incumbent least infeasible point. If no such point exists,
we set hI

k = hmax and f I
k = −∞, where f I

k = f(pI
k) is the objective function value of the

least infeasible point. Given current poll center pk and user-specified extended poll triggers
ξf
k ≤ ξ > 0 and ξh

k ≤ ξ > 0 for f and h, respectively (where ξ is a positive constant), we
perform an extended poll step around any discrete neighbor yk ∈ N (pk) satisfying either
0 < hI

k < hX(yk) < min(hI
k + ξh

k , hmax), or hX(yk) = 0 with fF
k < f(yk) < fF

k + ξf
k . The

extended poll triggers ξf
k and ξh

k can also be set according to the categorical variable values
associated with the current poll center, but this dependency is not included in the notation,
so as not to obfuscate the ideas presented here.

Similar to the MVPS algorithm described in Section 3, the extended poll step gen-
erates a sequence of extended poll centers {yj

k}Jk
j=0, beginning with y0

k = yk and ending
with extended poll endpoint, yJk

k = zk.
Thus, at iteration k, the set of all points evaluated in the extended poll step, denoted

Xk(ξf
k , ξh

k ), is

Xk(ξf
k , ξh

k ) =
⋃

y∈N f
k ∪Nh

k

E(y) (4.3)

where E(y) denotes the set of extended poll points, and

N f
k = {y ∈ N (pk) : hX(y) = 0, fF

k ≤ f(y) ≤ fF
k + ξf

k}, (4.4)

N h
k = {y ∈ N (pk) : 0 < hI

k < hX(y) < min(hI
k + ξh

k , hmax)}. (4.5)

The set of trial points is defined as Tk = Sk ∪ Pk(pk) ∪ N (pk) ∪ Xk(ξf
k , ξh

k ), where Sk is
the finite set of mesh points evaluated during the search step.

The addition of the filter complicates our notions of success or failure of the iteration
in finding a desirable iterate. The following definitions now define the two outcomes of the
search, poll, and extended poll steps.

Definition 4.4. Let Tk denote the set of trial points to be evaluated at iteration k, and
let Fk denote the set of filtered points described by (4.2). A point y ∈ Tk is said to be an
unfiltered point if y 6∈ Fk.

Definition 4.5. Let Pk(pk) denote the poll set centered at the point pk, and let Fk denote
the set of filtered points described by (4.2). The point pk is said to be a mesh isolated filter
point if all mesh points evaluated during the poll and extended poll steps are filtered;
i.e., Pk(pk) ∪N (pk) ∪ X (ξf

k , ξh
k ) ⊂ Fk.

Figure 1 is a depiction of a filter on a bi-loss graph, in which the best feasible and least
infeasible solutions are indicated, and the feasible solutions lie on the vertical axis (labeled f).
Dashed lines indicate the areas for which an extended poll step is triggered. If a feasible
discrete neighbor has an objective function value that lies on (fF

k , fF
k + ξf

k ) (i.e., higher on
the axis than the current feasible incumbent, but lower than the horizontal dashed line), an
extended poll step is performed around this discrete neighbor. Similarly, an extended
poll step is performed if an infeasible discrete neighbor has a constraint violation function
value that lies on (hF

k , hF
k +ξh

k ) (i.e., it lies to the right of the current least infeasible solution,
but left of the vertical dashed line).
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6f

-
h

fF
k

(hI
k,fI

k )

hmax

Fk

r
r

hI
k+ξh

k

fF
k +ξf

k

Figure 1: MVP Filter and Extended Poll Triggers.

The goal of each iteration is to find an unfiltered point, but the details of when to
continue an extended poll step must be generalized from the simple decrease condition
in f under which the MVPS algorithm operates. More specifically, if the extended poll
step finds an unfiltered point, it is added to the filter, the best feasible and least infeasible
points are updated (if appropriate), the new poll center is chosen, and the mesh is coarsened
according to the rule in (3.5). If the extended poll step fails to find a new point y

satisfying y ∈ N f
k ∪N h

k , then the current incumbent poll center pk is declared to be a mesh
isolated filter point, the next poll center is chosen from among the current best feasible and
least infeasible points (which remain unchanged), and the mesh is refined according to the
rule in (3.6).

Finally, we treat the case in which extended poll points are filtered, yet still belong to N f
k

or N h
k . To do so, we establish the notion of a temporary local filter. At iteration k, for each

discrete neighbor yk, a local filter FL
k (yk) is constructed relative to the current extended

poll step and initialized only with the point yk and hL
max = min(hI

k + ξh
k , hmax). As with

the MVPS algorithm, the extended poll sequence {yj
k}Jk

j=1 begins with y0
k = yk and ends

with zk = yJk

k , where each yj
k is the poll center of the local filter – chosen either as the best

feasible or least infeasible point, relative to the local filter. Extended polling with respect to
yk proceeds, with the local filter being updated as appropriate, until no more unfiltered mesh
points can be found with respect to the new local filter, or until an unfiltered point is found
with respect to the main filter. When either of these conditions is satisfied, the extended
poll step ends, and the main filter is appropriately updated with the points of the local
filter, which is then discarded. The mesh size parameter ∆k, which is constant throughout
the step, is then updated, depending on whether an unfiltered point (with respect to the
main filter) has been found.

The extended poll step and Filter-MVPS (FMVPS) Algorithm are summarized in
Figures 2 and 3. In [2], the algorithm was applied to the design of a load-bearing thermal
insulation system, in which case, the resulting design achieved a 50% improvement over
previous designs.
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Extended Poll Step at Iteration k

Input: Current poll center pk, filter Fk, and extended poll triggers ξf
k and ξh

k .

For each discrete neighbor yk ∈ N f
k ∪N h

k (see (4.4) and (4.5)), do the following:

• Initialize local filter FL
k with yk and hL

max = min{hI
k + ξh

k , hmax}. Set y0
k = yk.

• For j = 0, 1, 2, . . .

1. Evaluate f and hX at points in Pk(yj
k) until a point w is found that is unfiltered

with respect to FL
k , or until all such points have been evaluated.

2. If no point w ∈ Pk(yj
k) is unfiltered with respect to FL

k , then go to Next.

3. If a point w is unfiltered with respect to Fk, set xk+1 = w and Quit.

4. If w is filtered with respect to Fk, but unfiltered with respect to FL
k , then update

FL
k to include w, and compute new extended poll center yj+1

k .

• Next: Discard FL
k and process next yk ∈ N f

k ∪N h
k .

Figure 2: Extended Poll Step for the FMVPS Algorithm

5 Convergence Analysis

The convergence properties of the new algorithm are now presented. First, the behavior
of the mesh size parameter ∆k will be shown to have the same behavior as in previous
algorithms, and a general characterization of limit points of certain subsequences is given.
Results for the constraint violation function and for the objective function follow, similar to
those found in [8]. Finally, stronger results for a more specific implementation of the new
algorithm are provided. These mimic those found in [6], but apply to the more general MVP
problem with nonlinear constraints. We should note that many of the results presented here
are significantly different than the original presentation in [1].

We make the following assumptions, consistent with those of previous GPS algorithms:

A1: All iterates {xk} produced by the algorithm lie in a compact set.

A2: For each fixed xd, the corresponding set of directions Di = GiZi, as defined in (3.1),
includes tangent cone generators for every point in Xc(xd).

Assumption A1 is satisfied if the level sets of f are bounded. Since the extended poll
step is conducted for a fixed value of ∆k, Assumption A1 ensures that the index Jk of the
extended poll endpoint is finite; thus the algorithm is well-defined. Assumption A2 is
actually a condition on the linear constraints. The structure of the coefficient matrix A
determines whether or not it is possible to construct a set of directions that both satisfies
(3.1) and includes all of the tangent cone generators. In [24], a more specific assumption is
made, in which Gi would be the identity matrix, and A has only rational entries.

5.1 Mesh Size Behavior and Limit Points

The behavior of the mesh size was originally characterized for unconstrained problems by
Torczon [31], independent of the smoothness of the objective function. It was extended to
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Filter Mixed Variable Generalized Pattern Search – FMVPS

Initialization: Let S0 be a set of initial evaluated points in X. Include in the filter F0

all undominated points in S0. Set hmax > hX(x0) for some x0 ∈ F0. Fix ξ > 0 and
∆0 > 0.

For k = 0, 1, 2, . . . , perform the following:

1. Choose poll center pk ∈ {pF
k , pI

k} ⊆ Fk, and update the extended poll triggers ξf
k ≥ ξ

and ξh
k ≥ ξ. Set the incumbent values fF

k = f(pF
k ), hI

k = hX(pI
k), f I

k = f(pI
k).

2. Search step: Employ some finite strategy seeking an unfiltered mesh point xk+1 6∈
Fk.

3. Poll step: If the search step did not find an unfiltered point, evaluate f and h at
points in the poll set Pk(pk)∪N (pk) ⊂ Mk until an unfiltered mesh point xk+1 6∈ Fk

is found, or until all points have been exhausted.

4. Extended Poll step: If search and poll did not find an unfiltered point, execute
the algorithm in Figure 2 to continue looking for xk+1 6∈ Fk.

5. Update: If search, poll, or extended poll finds an unfiltered point,
Update filter Fk+1 with xk+1, and set ∆k+1 ≥ ∆k according to (3.5);
Otherwise, set Fk+1 = Fk, and set ∆k+1 < ∆k according to (3.6).

Figure 3: FMVPS Algorithm

MVP problems by Audet and Dennis [6], who later adapted the proof to provide a lower
bound on the distance between mesh points at each iteration [7]. The proofs here are
straightforward extensions of the latter work to MVP problems. The first lemma provides
the lower bound on the distance between any two mesh points whose continuous variable
values do not coincide, while the second lemma shows that the mesh size parameter is
bounded above. The theorem that follows shows the key result that lim infk→+∞∆k = 0.

Lemma 5.1. For any integer k ≥ 0, let u and v be any distinct points in the mesh Mk such
that ud = vd. Then for any norm for which all nonzero integer vectors have norm at least 1,

‖uc − vc‖ ≥ ∆k

‖G−1
i ‖ .

where the index i corresponds to the discrete variable values of u and v.

Proof. Using (3.2), we let uc = xc
k + ∆kDizu and vc = xc

k + ∆kDizv define the continuous

part of two distinct points on Mk with both zu, zv ∈ Z|D
i|

+ . Furthermore, since we assume
that u and v are distinct with ud = vd, we must have uc 6= vc, and thus zu 6= zv. Then

‖uc − vc‖ = ∆k‖Di(zu − zv)‖ = ∆k‖GiZi(zu − zv)‖ ≥ ∆k
‖Zi(zu − zv)‖

‖G−1
i ‖ ≥ ∆k

‖G−1
i ‖ ,

the last inequality because Zi(zu − zv) is a nonzero integer vector with norm greater than
or equal to one.

Lemma 5.2. There exists a positive integer ru such that ∆k ≤ ∆0τ
ru

for any integer k ≥ 0.
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Proof. Under Assumption A1, the discrete variables can only take on a finite number
of values in LX(x0). Let imax denote this number, and let I = {1, 2, . . . , imax}. Also
under Assumption A1, for each i ∈ I, let Yi be a compact set in Rnc

containing all GPS
iterates whose discrete variable values correspond to i ∈ I. Let γ = max

i∈I
diam(Yi) and

β = min
i∈I

‖G−1
i ‖, where diam indicates the maximum distance between any two points. If

∆k > γβ, then Lemma 5.1 (with v = xk) ensures that any trial point u ∈ Mk either satisfies
uc = xc

k or would have lied outside of
⋃

i∈I Yi. Then if ∆k > γβ, no more than imax successful
iterations will occur before ∆k falls below γβ. Thus, ∆k is bounded above by γβ(τmmax)imax ,
and the result follows by setting ru large enough so that ∆0τ

ru ≥ γβ(τmmax)imax .

Theorem 5.3. The mesh size parameters satisfy lim inf
k→+∞

∆k = 0.

Proof. (Torczon [31]) Suppose by way of contradiction that there exists a negative integer
r` such that 0 < ∆0τ

r` ≤ ∆k for all integer k ≥ 0. Combining (3.7) with Lemma 5.2
implies that for any integer k ≥ 0, rk takes its value from among the integers of the finite
set {r`, r` + 1, . . . , ru}. Therefore, rk and ∆k can only take a finite number of values for all
k ≥ 0.

Since xk+1 ∈ Mk, (3.2) ensures that xc
k+1 = xc

k + ∆kDizk for some zk ∈ Z|Di|
+ and

1 ≤ i ≤ imax. By repeatedly applying this equation and substituting ∆k = ∆0τ
rk , it follows

that, for any integer N ≥ 1,

xc
N = xc

0 +
N−1∑

k=1

∆kDizk

= xc
0 + ∆0D

i
N−1∑

k=1

τ rkzk = xc
0 +

pr`

qru ∆0D
i

N−1∑

k=1

prk−r`

qru−rkzk,

where p and q are relatively prime integers satisfying τ = p
q . Since prk−r`

qru−rkzk is an
integer for any k, it follows that the continuous part of all iterates having the same discrete
variable values lies on the translated integer lattice generated by xc

0 and the columns of
pr`

qru ∆0D
i. Moreover, the discrete part of all iterates also lies on the integer lattice Xd ⊂ Znd

.
Therefore, since all iterates belong to a compact set, there must be only a finite number

of different iterates, and thus one of them must be visited infinitely many times. Therefore,
the mesh coarsening rule in (3.5) is only applied finitely many times, and the mesh refining
rule in (3.6) is applied infinitely many times. This contradicts the hypothesis that ∆0τ

rl

is
a lower bound for the mesh size parameter.

These results show the necessity of forcing the set of directions to satisfy Di = GiZi.
Under Assumption A1, this ensures that the mesh has only a finite number of points in X,
which means that there can only be a finite number of consecutive unfiltered mesh points.
Assumption A2 is included to simply ensure that this construction is maintained in the
presence of linear constraints. Audet and Dennis [7] provide an example in which a different
construction yields a mesh that is dense in X. In this case, Lemma 5.1 cannot be satisfied,
and convergence of ∆k to zero is not guaranteed. As stated earlier, a sufficient condition for
Assumption A2 to hold is that Gi = I, i = 1, 2, . . . , imax and that the coefficient matrix A
is rational [24].

We should note also that the rationality of τ is essential for convergence. Audet [4] gives
an example in which an irrational value for τ generates a sequence satisfying lim inf

k→+∞
∆k > 0.
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5.2 Refining Subsequences

Since ∆k shrinks only at iterations in which no mesh isolated filter point is found, Theo-
rem 5.3 guarantees that the Filter-MVPS algorithm has infinitely many such iterations. We
are particularly interested in subsequences of iterates that correspond to these points. We
now include the following two useful definitions.

Definition 5.4. A subsequence of mesh isolated filter points {pk}k∈K (for some subset of
indices K) is said to be a refining subsequence if {∆k}k∈K converges to zero.

Definition 5.5. Let {vk}k∈K be either a refining subsequence or a corresponding subse-
quence of extended poll endpoints, and let v̂ be a limit point of the subsequence. A direction
d ∈ D is said to be a limit direction of v̂ if vk + ∆k(d, 0) belongs to X and is filtered for
infinitely many k ∈ K.

In [6], Audet and Dennis prove the existence of a limit point

p̂ = lim
k∈K

pk, (5.1)

where K is the index set corresponding to a refining subsequence. They also establish two
other important classes of limit points,

ŷ = lim
k∈K

yk and ẑ = (ẑc, ŷd) = lim
k∈K

zk, (5.2)

where each zk ∈ X is the endpoint of the extended poll step initiated at yk ∈ N (pk).
The notation used in (5.1) and (5.2) that describes these specific subsequences and their

limit points will be retained and used throughout the remainder of this paper. Many of the
theorems that follow will require the assumption that ŷ ∈ N (p̂).

5.3 Background for Optimality Results

In this subsection, we provide some additional background material, based on the ideas of the
Clarke calculus, along with a new definition and theorem that will be used in the convergence
theorems. Some of these ideas have been used in proofs by Audet and Dennis [7, 8] in the
context of certain limit points of the GPS algorithm, and the new definition allows us to
generalize slightly their hypotheses.

First, the following definitions from [13] are needed. They apply to any function g :
Rn → R that is Lipschitz near a point x ∈ Rn.

• The generalized directional derivative of g at x in the direction v is given by

g◦(x; v) := lim sup
y→x,t↓0

g(y + tv)− g(y)
t

,

where t is a positive scalar.

• The generalized gradient of g at x is the set

∂g(x) := {ζ ∈ Rn : g◦(x; v) ≥ vT ζ for all v ∈ Rn}.

• g is strictly differentiable at x if, for all v ∈ Rn,

lim
y→x,t↓0

g(y + tv)− g(y)
t

= ∇g(x)T v.
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The following is a generalization of the previous definition.

Definition 5.6. Let X be a convex subset of Rn. Let TX(x) denote the tangent cone to X
at x ∈ X. A function g is said to be strictly differentiable with respect to X at x ∈ X if, for
all v ∈ TX(x),

lim
y→x,y∈X,t↓0

g(y + tv)− g(y)
t

= ∇g(x)T v.

Theorem 5.7 below essentially establishes first-order necessary conditions for optimality
with respect to the continuous variables in a mixed variable domain. The assumptions on g
given here are slightly weaker than the strict differentiability assumption used in [7] to estab-
lish first-order results for GPS limit points – but only in the presence of linear constraints.
Without linear constraints, Definition 5.6 clearly reduces to that of strict differentiability.

However, we first introduce new notation, so that g′(x; (d, 0)) denotes the directional
derivative at x with respect to the continuous variables in the direction d ∈ Rnc

(i.e., while
holding the discrete variables constant – hence the 0 ∈ Znd

), g◦(x; (d, 0)) denotes the Clarke
generalized directional derivative at x with respect to the continuous variables, and ∂cg(x)
represents the generalized gradient of g at x with respect to the continuous variables. This
convention is used throughout Section 5.

Theorem 5.7. Let x = (xc, xd) ∈ X ⊆ Rnc × Znd

. Suppose the function g is strictly
differentiable with respect to Xc at x. If D ∈ Rnc

positively spans the tangent cone TXc(x),
and if g◦(x; (d, 0)) ≥ 0 for all d ∈ D ∩ TXc(x), then x is a KKT point of g with respect to
the continuous variables. Moreover, if Xc = Rnc

or if xc lies in the interior of Xc, then g is
strictly differentiable at x with respect to the continuous variables and ∇cg(x) = 0.

Proof. Under the hypotheses given, let D be a set of vectors that positively spans TXc(x),
and let v ∈ TXc(x) be arbitrary. Then v =

∑|D|
i=1 αidi for some αi ≥ 0 and di ∈ D,

i = 1, 2, . . . , |D|. Then

∇cg(x)T v =
|D|∑

i=1

αi∇cg(x)T di =
|D|∑

i=1

αig
◦(x; (di, 0)) ≥ 0,

since all the terms of the final sum are nonnegative.
If Xc = Rnc

, or if xc lies in the interior of Xc, then TXc(x) = Rnc

and g is strictly
differentiable at x. Since we have ∇cg(x)T v ≥ 0 for all v ∈ Rnc

, including −v, we also have
∇cg(x)T v ≤ 0 for all v ∈ Rnc

. Therefore, 0 = ∇cg(x).

5.4 Results for the Constraint Violation Function

Section 5.2 establishes the existence of the limit points p̂, ŷ, and ẑ, as shown in (5.1) and
(5.2). While the next result applies to more general limit points of the algorithm, the
remainder of the results in this section apply to these specific limit points. This format will
be repeated in Section 5.5 as well. We remind the reader that, since we have chosen h as
specified in (4.1), h inherits whatever smoothness C possesses [8]. This enables us to state
our the hypotheses in terms of C, rather than h, in the results that follow.

The first result, which is similar to a theorem in [7] for f , requires a very mild condition
on h. Note that this result will not hold for f without an additional assumption because
there is no guarantee that any subsequence of objective function values is nonincreasing.
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Proposition 5.8. If C is lower semi-continuous with respect to the continuous variables
at a limit point p̄ of poll centers {pk}, then limk h(pk) exists and is greater than or equal
to h(p̄) ≥ 0. If C is continuous at every limit point of {pk}, then every limit point has the
same function value.

Proof. If C(p̄) ≤ 0, then h(p̄) = 0, and the result follows trivially. Now let Ci(p̄) > 0
for some i = 1, 2, . . . , p, in which case, h(p̄) > 0. Then p̄ is a limit point of a sequence of
least infeasible points pI

k, which is monotonically nonincreasing. Since C, and hence h, is
lower semi-continuous at p̄, we know that for any subsequence {pk}k∈K of poll centers that
converges to p̄, lim infk∈K h(pk) ≥ h(p̄) ≥ 0. But the subsequence of constraint violation
function values at pI

k is a subsequence of a nonincreasing sequence. Thus, the entire sequence
is also bounded below by h(p̄), and so it converges.

We now characterize the limit points identified in (5.1) and (5.2) with respect to the
constraint violation function h. The following theorem establishes the local optimality of h
at p̂ with respect to its discrete neighbors. The short proof is nearly identical to one in [6].

Theorem 5.9. Let p̂ and ŷ ∈ N (p̂) be limit points as defined by (5.1) and (5.2). If C is
lower semi-continuous at p̂ and upper semi-continuous at ŷ with respect to the continuous
variables, then h(p̂) ≤ h(ŷ).

Proof. Since k ∈ K ensures that {pk}k∈K are mesh isolated poll centers, we have h(pk) ≤
h(yk) for all k ∈ K. By the assumptions of lower and upper semi-continuity on C, and hence
h, along with (5.1) and (5.2), we have h(p̂) ≤ limk∈K h(pk) ≤ limk∈K h(yk) = h(ŷ).

The next two results establish a directional optimality condition for h at p̂ and ẑ with
respect to the continuous variables.

Theorem 5.10. Let p̂ be a limit point of a refining subsequence. Under Assumptions A1–
A2, if C is Lipschitz near p̂ with respect to the continuous variables, then h◦(p̂; (d, 0)) ≥ 0
for all limit directions d ∈ D(p̂) of p̂.

Proof. Let {pk}k∈K be a refining subsequence with limit point p̂ and let d ∈ D(p̂) be a
refining direction of p̂. From the definition of the generalized directional derivative, we have

h◦(p̂; (d, 0)) = lim sup
y→p̂, t↓0

h(y + t(d, 0))− h(y)
t

≥ lim sup
k∈K

h(pk + ∆k(d, 0))− h(pk)
∆k

.

Since C is Lipschitz near p̂, h is also Lipschitz, and hence finite, near p̂. Since points that
are infeasible with respect to X are not evaluated by the algorithm, the assumption of d
being a limit direction of p̂ ensures that infinitely many right-hand quotients are defined.
All of these quotients must be nonnegative, or else the corresponding poll step would have
found an unfiltered point, a contradiction.

Theorem 5.11. Let p̂, ŷ ∈ N (p̂), and ẑ be limit points defined by (5.1) and (5.2), and
let ξ > 0 denote a lower bound on the extended poll triggers ξf

k and ξh
k for all k. Under

Assumptions A1-A2, if h(ŷ) < h(p̂) + ξ and C is Lipschitz near ẑ with respect to the
continuous variables, then h◦(ẑ; (d, 0)) ≥ 0 for all limit directions d ∈ D(ẑ) of ẑ.

Proof. From the definition of the generalized directional derivative [13], we have

h◦(ẑ; (d, 0)) = lim sup
y→ẑ, t↓0

h(y + t(d, 0))− f(y)
t

≥ lim sup
k∈K

h(zk + ∆k(d, 0))− h(zk)
∆k

.
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Since C is Lipschitz near ẑ, h is also Lipschitz, and hence finite, near ẑ. Since h(ŷ) < h(p̂)+ξ
ensures that extended polling was triggered around yk ∈ N (pk) for all sufficiently large
k ∈ K, and since d is a limit direction of ẑ, it follows that zk + ∆k(d, 0) ∈ X infinitely often
in K, and infinitely many of the right-hand quotients are defined. All of these quotients
must be nonnegative, since for k ∈ K, zk is an extended poll endpoint.

For bound or linear constraints, in order to guarantee the existence of limit directions,
for which Theorem 5.10 applies, each Di ⊂ D, i = 1, 2, . . . , imax is constructed in accordance
with the algorithm given in [24] to generate a sufficiently rich set of directions to ensure
conformity to Xc (see Definition 3.1).

The next two corollaries establish conditions on h under which p̂ and ẑ satisfy a first-order
optimality condition with respect to the continuous variables.

Corollary 5.12. Let p̂ be the limit of a refining subsequence with limit directions D(p̂),
and suppose C is strictly differentiable with respect to Xc at p̂. Then under Assumptions
A1–A2, ∇ch(p̂)T w ≥ 0 for all w ∈ TXc(p̂). Moreover, if Xc = Rnc

, or if p̂ lies in the interior
of Xc, then ∇ch(p̂) = 0.

Proof. Since the rule for selecting Dk(pk) conforms to Xc for some ε > 0, and since there
are finitely many linear constraints, Dk(pk) → D(p̂), and D(p̂) positively spans TXc(p̂).
Theorem 5.10 guarantees that h◦(p̂, (d, 0)) ≥ 0 for all d ∈ D(p̂), and since the strict differ-
entiability of C applies to h, the result follows directly from Theorem 5.7.

Corollary 5.13. Let p̂, ŷ ∈ N (p̂), and ẑ be limit points defined by (5.1) and (5.2), and
let ξ > 0 denote a lower bound on the extended poll triggers ξf

k and ξh
k for all k. Let D(ẑ)

denote the limit directions of ẑ, and suppose C is strictly differentiable with respect to Xc

at ẑ. If h(ŷ) < h(p̂)+ ξ, then under Assumptions A1–A2, ∇ch(ẑ)T w ≥ 0 for all w ∈ TXc(ẑ).
Furthermore, if Xc = Rnc

or ẑc lies in the interior of Xc, then ∇ch(ẑ) = 0.

Proof. Since the rule for selecting Dk(zk) conforms to Xc for some ε > 0, and since there are
finitely many linear constraints, Dk(zk) → D(ẑ), and D(ẑ) positively spans TXc(ẑ). Theo-
rem 5.11 ensures that h◦(ẑ; (d, 0)) ≥ 0 for all d ∈ D(ẑ), and since the strict differentiability
of C applies to h, the result follows directly from Theorem 5.7.

As a consequence of these two corollaries and Theorem 5.9, we have shown that, under
the assumptions given,

• p̂ is a KKT point for h with respect to the continuous variables.

• h(p̂) ≤ h(ŷ) for all ŷ ∈ N (p̂).

• For any ŷ ∈ N (p̂) satisfying h(p̂) = h(ŷ), the extended poll endpoint ẑ associated with
ŷ is a KKT point with respect to the continuous variables.

In the third condition, we actually have h(p̂) = h(ŷ) = h(ẑ). Naturally, we would prefer ŷ
to also be a KKT point, but this requires a stronger hypothesis on the algorithm, which is
shown in [6]. If the three limit points are all infeasible, then it is probably the case that
ŷ = ẑ. If the limit points are feasible, then this issue is moot, since we achieve the desired
condition that p̂ minimizes h.

Note also that, although there is no guarantee of convergence to a feasible point, these
results (with respect to the continuous variables) are no weaker than those obtained for
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many other optimization algorithms. In fact, the typical assumption for SQP methods is
that the Jacobian of the active constraints is full rank everywhere. This is a very strong
assumption and easily implies that every local minimizer of h is a feasible point.

5.5 Results for the Objective Function

We now address the properties of certain limit points with respect to the objective function
f . Unfortunately, in order to obtain results for f that are similar to those for h, an additional
hypothesis must be added; namely, that the best feasible point must be chosen as the poll
center for all but a finite number of iterations. Furthermore, convergence to a KKT point
(with respect to the continuous variables) cannot be guaranteed, but we will show a similar
result to that of [8], in which a cone is identified whose polar contains the negative gradient.

The first result, under very mild conditions, is similar to Proposition 5.8.

Proposition 5.14. Under Assumption A1, there exists at least one limit point p̄ of the
iteration sequence {pk} of poll centers. Suppose that this sequence was generated by polling
around the best feasible point for all but a finite number of iterations. If f is lower semi-
continuous at p̄ with respect to the continuous variables and h is continuous at p̄ with respect
to the continuous variables, then limk f(pk) exists and is greater than or equal to f(p̄), which
is finite. If f is continuous at every limit point of {pk}, then every limit point has the same
function value.

Proof. First, pk = pF
k , hence h(pk) = 0, for all but finitely many k. Thus, f(pk) is

nonincreasing for all sufficiently large k ∈ K. Since f is lower semi-continuous at p̄, we know
that for any subsequence {pk}k∈K of poll centers converging to p̄, lim infk∈K f(pk) ≥ f(p̄).
But the subsequence of function values is a subsequence of a nonincreasing sequence (for
sufficiently large k). Thus, for sufficiently large k, the sequence is also bounded below by
f(p̄), and so it converges.

The remainder of this section contains results for the limit points described by (5.1)
and (5.2). The following result, which is similar to Theorem 5.9, establishes optimality
conditions with respect to the discrete set of neighbors.

Theorem 5.15. Let p̂ be a limit point of a refining subsequence {pk}k∈K in which pk was
chosen as the best feasible point for all but a finite number of iterations, and let ŷ ∈ N (p̂)
be defined by (5.2). If f is lower semi-continuous at p̂ and upper semi-continuous at ŷ with
respect to the continuous variables, then f(p̂) ≤ f(ŷ).

Proof. Since pk = pF
k for all but a finite number of iterations, h(pk) = 0, and hence

f(pk) ≤ f(yk), for all sufficiently large k ∈ K. Taking limits and applying (5.1) and 5.2,
the assumptions of lower and upper semi-continuity of f at p̂ and ŷ, respectively, yields the
result: f(p̂) ≤ limk∈K f(pk) ≤ limk∈K f(yk) = f(ŷ).

The next two results establish conditions under which Clarke generalized directional
derivatives are nonnegative at p̂ and ẑ, respectively.

Theorem 5.16. Let p̂ be a limit point of a refining subsequence {pk}k∈K in which pk was
chosen as the best feasible point for all but a finite number of iterations, and let d ∈ D be a
limit direction of p̂. Under Assumptions A1–A2, if f is Lipschitz near p̂ with respect to the
continuous variables, then f◦(p̂; (d, 0)) ≥ 0.
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Proof. Since pk = pF
k for all but a finite number of iterations, it follows that h(pk) = 0 for

sufficiently large k ∈ K. From the definition of the generalized directional derivative [13],
we have that

f◦(p̂; (d, 0)) = lim sup
y→p̂, t↓0

f(y + t(d, 0))− f(y)
t

≥ lim sup
k∈K

f(pk + ∆k(d, 0))− f(pk)
∆k

,

which is nonnegative, since the terms in the right-hand quotient are nonnegative for all
sufficiently large k ∈ K.

Theorem 5.17. Let p̂ be a limit point of a refining subsequence, and let ŷ ∈ N (p̂) and ẑ be
limit points as defined by (5.2), in which the extended poll endpoints zk were chosen as the
best feasible point with respect to the local filter FL at all but a finite number of iterations.
Let d ∈ D be a limit direction for ẑ. Suppose that f(ŷ) < f(p̂) + ξ, where ξ > 0 is a lower
bound on the extended poll triggers ξf

k and ξh
k for all k. Under Assumptions A1–A2, if f is

Lipschitz near ẑ with respect to the continuous variables, then f◦(ẑ; (d, 0)) ≥ 0.

Proof. Since zk = zF
k for all but a finite number of iterations, it follows that h(zk) = 0 for all

sufficiently large k ∈ K. From the definition of the generalized directional derivative [13],
we have that

f◦(ẑ; (d, 0)) = lim sup
y→ẑ, t↓0

f(y + t(d, 0))− f(y)
t

≥ lim sup
k∈K

f(zk + ∆k(d, 0))− f(zk)
∆k

,

which is nonnegative, since the terms in the right-hand quotient are nonnegative for all
sufficiently large k ∈ K.

The next two results describe the optimality conditions for f at p̂ and ẑ under the
assumptions of strict differentiability with respect to Xc.

As is the case with the Filter GPS algorithm [8], convergence to a KKT point cannot
be guaranteed with respect to the continuous domain, since there is no guarantee that
the negative gradient lies inside the normal cone; however, we specify a cone, whose polar
contains the negative gradient.

Corollary 5.18. Let p̂ be a limit point of a refining subsequence {pk}k∈K in which pk was
chosen as the best feasible point for all but a finite number of iterations, and let Vd be the
cone generated by all limit directions d ∈ D of p̂. Under Assumptions A1–A2, if f is strictly
differentiable with respect to Xc at p̂, then −∇cf(p̂) belongs to the polar V ◦

d of Vd.

Proof. By Theorem 5.16, f◦(p̂; (d, 0)) ≥ 0 for all d ∈ Vd, and by Theorem 5.7, we have
∇cf(p̂)T w ≥ 0 for all w ∈ Vd. The result follows from the definition of a polar cone:
−∇cf(p̂) ∈ {v ∈ Rn : vT w ≤ 0 ∀ w ∈ Vd}.

Corollary 5.19. Let p̂ be a limit point of a refining subsequence, and let ŷ ∈ N (p̂) and ẑ
be limit points as defined by (5.2) in which the extended poll endpoints zk were chosen as
the best feasible point with respect to the local filter FL(yk) at all but a finite number of
iterations. Suppose that f(ŷ) < f(p̂) + ξ, where ξ > 0 is a lower bound on the extended
poll triggers ξf

k and ξh
k for all k. Let Vd be the cone generated by all limit directions d ∈ D

of ẑ. Under Assumptions A1–A2, if f is strictly differentiable with respect to Xc at p̂, then
−∇cf(ẑ) belongs to the polar V ◦

d of Vd.
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Proof. By Theorem 5.17, f◦(ẑ; (d, 0)) ≥ 0 for all d ∈ Vd, and by Theorem 5.7, we have
∇cf(ẑ)T w ≥ 0 for all w ∈ Vd. The result follows from the definition of a polar cone:
−∇cf(ẑ) ∈ {v ∈ Rn : vT w ≤ 0 ∀ w ∈ Vd}.

The theorems presented in this section are more restrictive than the corresponding theo-
rems in Section 5.4, in that they only apply to the subclass of possible limit points of refining
subsequences, in which the best feasible point was chosen as the poll center for all but a
finite number of iterations. However, there are more subsequences for which these theorems
hold. The results from these three theorems can be satisfied for a larger class of refining
subsequences by replacing the assumption of polling around the best feasible point for all but
finitely many iterations with the condition that poll points be filtered by the best feasible
or least infeasible point, rather than by a different filter point, for all but a finite number of
iterations. In particular, Theorem 5.15 holds if we require f(pk) ≤ f(yk) for all sufficiently
large k ∈ K, Theorem 5.16 and Corollary 5.18 hold if we require f(pk) ≤ f(pk + ∆kd)
for all sufficiently large k ∈ K, and Theorem 5.17 and Corollary 5.19 hold if we require
f(zk) ≤ f(zk + ∆kd) for all sufficiently large k ∈ K. While these conditions are more gen-
eral than the condition they would replace, they are dependent on the performance of the
algorithm and thus cannot be ensured in practice. On the other hand, the choice to poll
around the best feasible point for all but a finite number of iterations is easy to implement.

A second point is that these theorems assume that we have feasible points that we can
poll around. If this is not the case, then the results of Section 5.4 still hold for h, and it is
still possible, though not guaranteed, that the results of this section can yet hold.

Finally, we point out one other key result that we adapt from [8].

Proposition 5.20. If h and f are strictly differentiable with respect to Xc at poll center
pk, and if ∇cf(pk) 6= 0, then there cannot be infinitely many consecutive iterations where
pk is a mesh isolated poll center.

Proof. Under the assumptions, suppose that there are infinitely many consecutive iterations
in which pk is a mesh isolated filter point. Let d be a direction associated with the (constant)
subsequence of poll centers such that ∇cf(pk)T d < 0.

Since h is strictly differentiable at pk with respect to the continuous variables, there
exists an ε > 0 such that either h(pk + ∆(d, 0)) ≤ h(pk) < hmax, or h(pk + ∆(d, 0)) > h(pk),
for all 0 < ∆ < ε.

If the first condition is satisfied, then for ∆k < ε, the poll step will find an unfiltered
point, a contradiction. If the second condition is satisfied, then let h̃ be the smallest value
of

{h(x) : h(x) > h(pk), x ∈ Fk} ∪ {hmax},

and let f̃ be the corresponding objective function value; i.e., either f̃ = f(x̃) for the vector
x̃ ∈ Fk that satisfies h(x̃) = h̃, or f̃ = −∞ in the case where h̃ = hmax. It follows that
h̃ > h(pk) and f̃ < f(pk). Therefore, for sufficiently small ∆k < ε, we have h(pk) <
h(pk + ∆kd) < h̃ and f̃ < f(pk + ∆kd) < f(pk); thus, the trial mesh point is unfiltered, a
contradiction.

A limitation of this result is that, while it prevents a non-stationary pk from being a
mesh isolated poll center for infinitely many consecutive iterations, it does not completely
prevent the algorithm from stalling there. The algorithm could still generate an infinite
number of consecutive iterations in which pk is either a mesh isolated filter point or a filter
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point that does not generate a new poll center. If, for example, pk simply alternates between
these two possibilities, then Proposition 5.20 holds, but the algorithm still stalls at pk.

As in previous results, the additional hypothesis of pk = pF
k for infinitely many k ∈ K

would fully prevent stalling because it would force h(pk) = 0 for infinitely many k ∈ K,
and the strict differentiability of f at pk means that ∇cf(pk)T d < 0 for some direction
d ∈ Dk(pk). Thus, for sufficiently large k ∈ K, ∆k is sufficiently small to force f(pk+∆kd) <
f(pk), and the algorithm moves to a new point.

Remark 5.21. Many of the results in this and the previous subsections also apply to
additional directions, which are specifically identified in [8]. We have not included this in
our presentation because it would require an extraordinary amount of additional material
to explain it properly. Since it is not possible to ensure convergence to a KKT point, the
extra material adds little to the overall convergence theory. Instead, we refer the interested
reader to [8] for a thorough discussion.

5.6 Conclusions

In summary, if the Assumptions A1–A2 are satisfied, then we get the following hierarchy
of convergence results for the Filter-MGPS Algorithm. These results unify the convergence
theory of the previous work in pattern search methods. In what follows, p̄ denotes any limit
point of the entire GPS iteration sequence, pF

k denotes the best feasible point at iteration
k, and p̂, ŷ, and ẑ are limit points defined by (5.1) and (5.2).

• If C is lower semi-continuous at any limit point p̄ of the GPS iteration sequence with
respect to the continuous variables, then h(p̄) ≤ limk h(pk). A similar result for f
requires that pk = pF

k for all but finitely many k.

• Every limit point of the iteration sequence at which C is continuous has the same
constraint violation function value limk h(pk), whether or not it is a stationary point
for h. A similar result for f requires that pk = pF

k for all but finitely many k.

• If C is lower semi-continuous at p̂ and upper semi-continuous at ŷ ∈ N (p̂) with respect
to the continuous variables, then h(p̂) ≤ h(ŷ). A similar result for f requires the choice
of pk = pF

k for all but finitely many k.

• If the function C is Lipschitz near p̂ with respect to the continuous variables, then
h◦(p̂; (d, 0)) ≥ 0 for any limit direction d of p̂. A similar result holds at ẑ. Similar
results for f at p̂ and ẑ require the choice of pk = pF

k (or zk = zF
k with respect to the

local filter) for all but finitely many k.

• If C is strictly differentiable (or its equivalent on the tangent cone) at p̂ with respect
to the continuous variables, then p̂ is a first-order stationary point for h with respect
to the continuous variables. A similar result holds at ẑ.

• If f is strictly differentiable (with respect to the continuous variables) at a limit point
p̂ for which the choice of pk = pF

k was made for all but finitely many k, then the polar
of the cone formed by the limit directions of p̂ contains −∇f(p̂). While a first order
stationary cannot be guaranteed in general, it can be if C(p̂) < 0. A similar result
holds at ẑ.

It is unfortunate that convergence of the algorithm to a first-order stationary point
(with respect to the continuous variables) cannot be guaranteed. In order for this to occur,
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we would need −∇f(p̂) to be contained in the normal cone. Instead, it is contained in a
different cone generated by certain limit directions, which is all we can show for this class of
algorithms. Nevertheless, its effectiveness in practice has been demonstrated [2]. At some
point in the future, we hope to apply the new class of mesh-adaptive direct search (MADS)
algorithms [9] to mixed variable problems, since it is a generalization of pattern search that
possesses stronger convergence properties [9, 3] for problems with nonlinear constraints.
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(eds.), Birkhäuser, Cambridge, Massachusetts, 1998, pp. 49–58.

[12] A.J. Booker, J.E. Dennis, Jr., P.D. Frank, D.B. Serafini, V. Torczon and M.W. Trosset,
A rigorous framework for optimization of expensive functions by surrogates, Struct.
Optim. 17 (1999) 1–13.



FILTER PATTERN SEARCH FOR MIXED VARIABLE CONSTRAINED OPTIMIZATION 499

[13] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983. Reissued
in 1990 by SIAM Publications, Philadelphia, as Vol. 5 in the series, Classics in Applied
Mathematics.

[14] A.R. Conn, N.I.M. Gould and P.L. Toint, A globally convergent augmented Lagrangian
algorithm for optimization with general constraints and simple bounds, SIAM J. Nu-
mer. Anal. 28 (1991) 545–572.

[15] C. Davis, Theory of positive linear dependence, Amer. J. Math. 76 (1954) 733–746.

[16] R. Fletcher, N.I.M. Gould, S. Leyffer, P.L. Toint and A. Wächter, On the global conver-
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