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Nomenclature

j : index for fuel (j = 1, 2, where “1” represents natural gas and “2” is fuel oil);

t : index for time in hours (t = 0, · · · , T, where T is the number of hours in the planning
horizon);

ut : zero-one generation unit commitment decision variable in time period t;

vt : zero-one fuel decision variable in time period t (where “1” means the present fuel is
natural gas and “0” says the present fuel is fuel oil);

xt : state variable indicating the unit status in time period t;

tonj : the minimum number of periods the unit must remain on after it has been turned on
using fuel j (j = 1, 2);

toffj : the minimum number of periods the unit must remain off after it has been turned off
using fuel j (j = 1, 2);

∗The research is supported by the National Science Foundation under Grant 0100186.
†Corresponding author.



460 W. ZHU AND C.-L. TSENG

tcoldj : the minimum number of periods required to cool the unit from shutdown when fuel
j (j = 1, 2) is used;

Φ : the state space for the fuel-switching unit
{Φ ≡ (−tcold1 , · · · ,−toff1 , · · · , ton1 ∪ −tcold2 , · · · ,−toff2 , · · · , ton2 )};

i : index for the unit status (i ∈ Φ);

qt : decision variable indicating the amount of power the unit is generating in time period
t;

qmin
j : minimum rated capacity of the unit using fuel j (j = 1, 2);

qmax
j : maximum rated capacity of the unit using fuel j (j = 1, 2);

PE
t : electricity price ($/MWh) in time period t;

P
Fj

t : fuel j (j = 1, 2) price ($/MMBtu) in time period t;

H(q) : heat (MMBtu) required to generate q (MW) of power;

πt(xt, vt, qt;PE
t , PF1

t , PF2
t ) : profit for operating the unit at output level qt in time period t

when the electricity, fuel 1 and fuel 2 prices are PE
t , PF1

t and PF2
t respectively;

St(ut, ut−1, vt) : startup/shutdown cost when the unit is turned on/off in time period t;

Jt : the asset value of the generation unit in time period t;

h1,1
t : the regression function when the unit is on in both time periods t and t + 1;

h1,0
t : the regression function when the unit is on in time period t and off in time period

t + 1;

h0,1
t : the regression function when the unit is off in time period t and is on in time period

t + 1;

h0,0
t : the regression function when the unit is off in both time periods t and t + 1;

h0,0,n
t : the regression function when the unit is cold in both time periods t and t+1 without

switching fuel;

h0,0,s
t : the regression function when the unit is cold in both time periods t and t + 1 with

fuel switched.

1 Introduction

The earliest introduction of market concepts to electric power systems took place in Chile
in the late 1970s. The UK government privatized the UK Electricity Supply Industry in
1990. Then the British process was used as a model for the deregulation of several countries,
such as Norway, Australia, and New Zealand. The deregulation of the US electric power
market in the last few years has replaced the vertical utility by a series of independently
operating units with a more horizontal relationship [1]. After the restructuring, the electric
utility industry throughout the US has been facing pressure to increase its efficiency, to
reduce operational costs, and to lower purchase cost of power equipment [2]. In order to
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adapt well in the new business environment, generation asset investors must consider market
uncertainty in appraising the asset value.

In addition to market uncertainty, the investors must also consider an asset’s operating
flexibility that enables the unit to respond to changing exogenous economic conditions and
provide solutions that enhance profitability. The importance of such operating options be-
comes critical especially when the market environment is highly volatile. For example, when
facing exogenous stochastic prices a generator with operating options, such as fuel switching
can protect itself against adverse price movements, with the capability of switching into an
alternative fuel that may be less affected by the adverse price realizations [3], [4]. There
is a rich literature about optimal switching application in economics activities and asset
valuation under uncertainty [15], [16], [17], and [18] etc.

In the present competitive environment, a generator will invest only when an adequate
return on the investment is expected. Since electricity is non-storable in nature, the gen-
eration asset value may be replicated on future spark spread options [5], [6], and [19]. In
addition to pure spark spread options, physical constraints such as minimum uptime and
downtime constraints may also affect the value. Tseng and Barz [7] proposed a Monte Carlo
(MC) simulation to formulate the power plant valuation problem as a multi stage stochas-
tic problem. In addition, discrete-time price trees for correlated price processes for both
electricity and fuel, such as geometric mean reverting processes are employed to value a
power asset. The computational efficiency of the valuation problem may be improved by
using stochastic dynamic programming via a price tree [8]. Although the method produces
a satisfactory result for a two-factor case (referring to two uncertainties such as electricity
price and gas price), it may not be applicable to a three-factor case if an additional uncer-
tainty must be considered (e.g., for a unit capable of switching fuels). The tree approach is
especially prohibitive when the time horizon is long because of the ‘curse of dimensionality’.
Therefore, valuing a generation asset with fuel-switching option (considering three price un-
certainties) is a challenging task. In this paper, we explore the Least-Squares Monte Carlo
(LSMC) approach and use it to value the fuel-switching option.

This paper is organized as follows. In Section 2, we provide an overview of the fuel-
switching unit including physical constraints and fuel-switching options. We then model the
generation asset valuation problem using LSMC in Section 3. We present numerical results
in Section 4 and conclude this paper in Section 5.

2 Problem Description

2.1 Overview of Fuel-switching Units

A thermal generation unit with fuel-switching options can use two different fuels to generate
electricity, and can be quickly switched from one fuel to the other. The operation of the
unit involves three commodities with different market prices. In this paper, the following
conditions are implicitly assumed: (1) fuel switching does not affect the normal operation
of a unit; (2) fuel switching can be finished within a reasonable time; (3) fuel-switching cost
can be viewed as a constant; (4) a fuel-switching plant cannot use two fuels simultaneously.
Under these conditions, the fuel-switching options can be implemented easily in power plants
and provide the following advantages:

• Fuel-switching capabilities may help stabilizing the operation of a unit under limited
resources available to a country or region;
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• Fuel-switching options may help saving the operation cost of a unit in the long term;

• Fuel-switching options may help solving some pollution issues, such as reducing emis-
sions of greenhouse gases.

In the power industry, players may prefer natural gas to fuel oil because natural gas
is much ‘cleaner’ than fuel oil under environmental restrictions on emission of greenhouse
gases. Therefore, fuel switching has been considered as a method of emission abatement.
On the other hand, although natural gas prices are much more expensive than fuel oil prices
based on cost per BTU and so power producers may have to react to the soaring price of
natural gas by switching to cheaper, more environmentally harmful fuel sources.

To reduce power producers’ exposure to price volatility or possible supply disruptions in
the present deregulated environment, industrial users are expected to increasingly seek the
flexibility of switching fuels using hybrid technologies, especially in the U.S., duel fuel units
consist of 14% of the total generation capacity [14].

In the current energy market, oil and gas prices are correlated and oil-to-gas competition
begins to set a potential opportunity for mutual fuel switching (gas-to-oil or oil-to-gas).
When technical performance for hourly fuel switching is proven and readily available, a fuel
switching unit may become a viable solution to this problem.

2.2 Fuel-switching Options

Generally speaking, fuel-switching options for a thermal unit refers to the ability to burn
alternate fuels, such as natural gas or fuel oil. Switching occurs when one fuel out-of-the-
money is replaced by another in-the-money (or less out-of-the-money) from the view of
economy.

Since a fuel-switching unit can operate using different fuels, the cost characteristics of
the unit depend on the fuel used. Different fuel may have a different amount of MMBtu
required to produce a MW [11], [12]. This property differs from unit to unit and fuel to
fuel. The value of a fuel-switching unit is affected by the operational constraints such as the
minimum up/down time constraints.

In reality, fuel switching is a transitional process, which may take from minutes to hours
dependent upon the unit. In this paper, we assume that the fuel switching can be done
instantaneously under other conditions to be addressed next.

There are normally two ways to switch fuels: on-line switching and off-line switching.
In on-line switching, the switch takes place when the unit has already been on-line for at
least its minimum uptime periods (i.e., state ton1 ). During the switching, it transits to the
shutdown status using another fuel. For off-line switching, the unit must be off-line while
the fuel switching takes place. Therefore, the state transits (from tcold1 to tcold2 or from tcold2

to tcold1 ). Fig. 1 illustrates the state transitions of both on-line and off-line switching. In
this paper, we focus on the off-line switching model.

In this paper we concentrate on the economic rather than technical issues in fuel switch-
ing: how to employ fuel-switching options to minimize production costs, reduce market
risks and make more profit in the short term. In other words, we ignore the impacts from
technical improvement, environmental restrictions, resource availability etc.

2.3 Profit Function of a Fuel-switching Unit

In this paper, the input-output characteristic of a generating unit is captured by H(q)
(MMBtu), which is a function describing the fuel required to generate q (MW) of power
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Figure 1: A state transition diagram between two fuels (on-line and off-line).
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[13]. Now this function is dependent on the fuel type used, denoted by Hj(q) for fuel j. The
profit at time t may be represented as follows:
πt(xt, vt, qt;PE

t , PF1
t , PF2

t )

=
{

PE
t qt −H1(qt)PF1

t vt −H2(qt)PF2
t (1− vt), if xt > 0,

0, otherwise.
(2.1)

where qt is the generation level at time t and we assume that qt is dispatched instantaneously
and optimally after the prices (PE

t , PF1
t , PF2

t ) are revealed.

2.4 Operational Constraints of a Fuel-switching Unit

The operational constraints are formulated as follows.

• Minimum up/downtime constraints:

ut =





1, if 1 ≤ xt < ton1 vt + ton2 (1− vt),
0, if − toff1 vt − toff2 (1− vt) < xt ≤ −1
0 or 1, otherwise.

(2.2)

• Switch constraints:

vt =
{

1− vt−1 or vt−1, if xt = tcold1 or tcold2

vt−1, otherwise. (2.3)

switch happens only when the unit is cold at time t.

• State transition constraints:

xt =
{

min(ton,max(xt−1, 0) + 1), if ut = 1,
max(−tcold,min(xt−1, 0)− 1), if ut = 0 (2.4)

where

ton = ton1 vt + ton2 (1− vt) (2.5)
toff = toff1 vt + toff2 (1− vt) (2.6)

tcold = tcold1 vt + tcold2 (1− vt) (2.7)

• Unit capacity constraints:

ut(qmin
1 vt + qmin

2 (1− vt)) ≤ qt ≤ ut(qmax
1 vt + qmax

2 (1− vt)) (2.8)

• Startup/shutdown costs:

St(ut, ut−1, vt) =





Su
1 vt + Su

2 (1− vt), if ut = 1 and ut−1 = 0,
Sd

1vt + Sd
2 (1− vt), if ut = 0 and ut−1 = 1,

0, otherwise.
(2.9)

where Su
1 and Su

2 represent constant startup costs for fuel 1 and fuel 2; Sd
1 and Sd

2 are
constant shutdown costs for fuel 1 and fuel 2.

The operational constraints including the switch constraints have been fully captured in the
state transition diagram in Fig. 1.
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3 The Least-Squares Monte Carlo Approach

The method to be introduced in this section can be viewed as an extension of the method
proposed in [9] for valuing American-style options. We extend their approach to a more
complicated situation involving multi-stage decision making and fuel-switching options.

Let Jt(xt, ut, vt, qt;PE
t , PF1

t , PF2
t ) be the so-called value-to-go function indicating the

total value of the unit for the remaining period at state xt at time t, and assume a finite
time horizon [0, T ]. The asset valuing problem can be formulated as the following recursive
relation:

Jt(xt, ut, vt, q
∗
t ;PE

t , PF1
t , PF2

t ) = πt(xt, vt, q
∗
t ;PE

t , PF1
t , PF2

t )+

max
ut,vt

{Et[Jt+1(xt+1, ut+1, vt+1, qt+1;PE
t+1, P

F1
t+1, P

F2
t+1)]− St(ut, ut−1, vt)} (3.1)

where q∗t represents the optimal generation level in time t within the capacity range
[qmin, qmax] ; Et denotes the expectation operator given the price information available at
time t.

3.1 Solution Procedure

From (3.1), it can be seen at time t to make an optimal commitment decision, one must
know Et[Jt+1(xt+1, ut+1, vt+1, qt+1;PE

t+1, P
F1
t+1, P

F2
t+1)], which implicitly is a function of cur-

rent price information, PE
t , PF1

t , and PF2
t . The main idea of the LSMC method is to

approximate such a function by regression. In terms of the states and the switching option,
different functions are to be approximated using regression. They are defined below.

If xt = xt+1 = ton,

h1,1
t (vt, qt;PE

t , PF1
t , PF2

t ) = Et[Jt+1(ton, ut+1, vt+1, qt+1;PE
t+1, P

F1
t+1, P

F2
t+1)] (3.2a)

If xt = ton and xt+1 = −1,

h1,0
t (vt, qt;PE

t , PF1
t , PF2

t ) = Et[Jt+1(−1, ut+1, vt+1, qt+1;PE
t+1, P

F1
t+1, P

F2
t+1)] (3.2b)

If −tcold ≤ xt ≤ −toff and xt=1 = 1,

h0,1
t (vt, qt;PE

t , PF1
t , PF2

t ) = Et[Jt+1(1, ut+1, vt+1, qt+1;PE
t+1, P

F1
t+1, P

F2
t+1)] (3.2c)

If −tcold < xt ≤ −toff and xt+1 < 0,

h0,0
t (vt, qt;PE

t , PF1
t , PF2

t ) = Et[Jt+1(xt − 1, ut+1, vt+1, qt+1;PE
t+1, P

F1
t+1, P

F2
t+1)] (3.2d)

If xt = xt+1 = −tcold,

h0,0,n
t (vt, qt;PE

t , PF1
t , PF2

t ) = Et[Jt+1(−tcold, ut+1, vt+1, qt+1;PE
t+1, P

F1
t+1, P

F2
t+1)] (3.2e)

If xt = −tcold and xt+1 = −(tcold1 (1− vt) + tcold2 vt),

h0,0,s
t (vt, qt;PE

t , PF1
t , PF2

t ) = Et[Jt+1(xt+1, ut+1, vt+1, qt+1;PE
t+1, P

F1
t+1, P

F2
t+1)] (3.2f)

If the above regression functions ht(vt, qt;PE
t , PF1

t , PF2
t ) are available at time t, one

could know the expected unit value for the next time period when the uncertain prices
(PE

t , PF1
t , PF2

t ) are revealed. Then, one could also know how to make optimal decisions
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at t. Especially when the unit stay at the cold state and h0,0,n
t < h0,0,s

t , fuel switching
may happen at this time period. Since analytical forms of ht(·) are nonexistent in general,
we will use numerical methods based on Monte Carlo simulation to approximate ht(·).
Through simulating a set of random variables, the expected value yields the least square
error. Therefore, to approximate the above expected function, we generate N data samples
of prices based on the mean reverting uncertainty model (3.4). Thus, the expected value
of Jt+1(xt+1, ut+1, vt+1, qt+1;PE

t+1, P
F1
t+1, P

F2
t+1) can be approximated by the function that

best regressions Jt+1 on the data of price (PE
t , PF1

t , PF2
t ) and possible decision values of

(ut, vt, qt). That means any realization of (ut, vt, qt) at time t, one would know how to
optimally make decisions for the next time period based on the above regression functions
ht(vt, qt;PE

t , PF1
t , PF2

t ).
The expected value of Jt+1(·) can be approximated though forward-moving

simulation and backward-moving dynamic programming iterations from T − 1 to
T−2, · · · , 0. Thus, the asset value can be obtained by J0(x0, u0, v0, q0;PE

0 , PF1
0 , PF2

0 ), where
(x0, u0, v0, q0;PE

0 , PF1
0 , PF2

0 ) are determined by the initial conditions of the unit. As to JT ,
it is determined by the boundary conditions as follows.

3.2 Boundary Conditions

At time T , there is no commitment decision to make, because the power plant value is only
conditioned on the state xT as follows:

JT (xT , ut, vT , q∗T ;PE
T , PF1

T , PF2
T )

=
{

PE
T q∗T −H1(q∗T )PF1

T vT −H2(q∗T )PF2
T (1− vT ), if xT > 0,

0, otherwise.
(3.3)

where q∗T represents the optimal generation level in time T within the capacity range
[qmin

j , qmax
j ] for fuel j, which is determined by vT .

At time T − 1, for the remaining two time periods, one can use the LSMC to estimate
JT−1(xT , uT−1, vT−1, qT−1;PE

T−1, P
F1
T−1, P

F2
T−1) for the data samples. The decision maker

can choose whether to switch fuel immediately or not and revisit the exercise decision at the
next time period when the unit is at cold state. The value of JT−1(·) is maximized path-wise,
and hence the value of fuel-switching option is greater than or equal to 0 unconditionally.
This procedure can be repeated for time T -2,· · · , 0. The last iteration, starting with the
initial conditions at time 0, provides the optimal planning and asset estimation for the whole
time horizon.

3.3 Price Processes

Mean reversion refers to how likely it is for the short-term interest rate to be pulled back,
over time, toward its mean value: mean reverting processes are widely applied to finance and
energy commodities. For example, the oil price tends to revert back to a ‘normal’ long-term
equilibrium level, although it has significant short-term oscillations. In this paper, we assume
that price of electricity PE

t , price of fuel 1 PF1
t , and price of fuel 2 PF2

t are all functions of
y1, y2, and y3, respectively, which are governed by the following (mean-reverting) stochastic
differential equations [7], [8].

dyl = −µl[yl(t)−mt,l(t)]dt + σldBl, (3.4)

where l=1, 2, and 3 represents electricity, fuel 1, and fuel 2 respectively; µl is a drift function;
σl is a constant volatility and Bl is a Wiener process with correlation ρlm (l, m=1, 2, 3).
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There exists a one-to-one transformation between y1 and PE
t , between y2 and PF1

t , and
between y3 and PF2

t . Therefore, (PE
t , PF1

t , PF2
t ) can be obtained through the corresponding

(y1, y2, y3), and vice versa.
For the purpose of carrying out the simulation process, the time horizon of fuel-switching

options is divided into T subintervals of length ∆t (=1 hour). The discrete version of the
process for yl is

∆yl = −µl(yl −mt,l)∆t + σlεl

√
∆t (3.5)

where ∆yl is the change in yl in time ∆t; εl is a random sample from a standardized normal
distribution. The coefficient of correlation between εl and εm is ρlm for 1 ≤ l, m ≤ 3.
One simulation trial involves obtaining T samples of the εl(1 ≤ l ≤ 3) from a multivariate
standard normal distribution. These are substituted into equation (3.5) to produce simulated
paths for each yl and enable a sample value for the real option to be calculated.

In (3.5), to generate three correlated normal random variables, ε1, ε2, and ε3, first we
generate three mutually independent standard normal random variables, Z1, Z2, and Z3.
We then consider the following linear transformation:

εl =
l∑

k=1

αlkZk (l = 1, 2, 3) (3.6)

To meet the variances and covariances of εl(l = 1, 2, 3), the following two constraints are
imposed. ∑

k

α2
lk = 1 (3.7)

and ∑

k

αlkαmk = ρlm (3.8)

The first sample ε1 is set equal to Z1. Then the above equations can be solved, ε2 is
calculated from Z1 and Z2, ε3 is calculated from Z1, Z2 and Z3.

From (3.6), we have
ε1 = α11Z1,
ε2 = α21Z1 + α22Z2,
ε3 = α31Z1 + α32Z2 + α33Z3.

(3.9)

In matrix form, it is
ε = αZ (3.10)

where ε = (ε1, ε2, ε3)T , Z = (Z1, Z2, Z3)T and

α =




α11 α12 α13

α21 α22 α23

α31 α32 α33




Then, according to (3.7) and (3.8), we obtain

α =




1 0 0
ρ12

√
1− ρ2

12 0

ρ13
ρ23−ρ12ρ13√

1−ρ2
12

√
1− ρ2

13−2ρ12ρ13ρ23+ρ2
23

1−ρ2
12


 (3.11)
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Define new uncertainty variables zl, l = 1, 2, 3 that satisfy the following linear relation.



z1

z2

z3


 = α−1




y1

y2

y3


 (3.12)

It can be shown that zl, l = 1, 2, 3 have been ‘decoupled’. That is, given a realization of zl,
l = 1, 2, 3 at time t, their increments dzl, l = 1, 2, 3 are uncorrelated. We generate sample
path data (over time) for zl, l = 1, 2, 3 first, which are then converted to yl, l = 1, 2, 3, and
then PE

t , PF1
t , and PF2

t to evaluate the payoffs. This procedure preserves the correlation
among the price data that is critical to the value of the generation assets.

3.4 Algorithm Development

Now, we can use the above regression functions and boundary conditions to value the fuel-
switching unit through backward dynamic programming based on the pre-generated price
database. The detailed algorithm is as follows:

Data: Initial conditions (x0, u0, v0, q, 0, PE
0 , PF1

0 , PF2
0 ) are given, and data set size N > 0

is also given.

Step 0: Set t ← T − 1, k ← 1, j ← 1, i ≡ xt ← tonj , JT (xT , uT , vT , q∗T ;PE
T , PF1

T , PF2
T ) get

from (3.3).

Step 1: Obtain a set of sample prices (PE(k)
t , P

F1(k)
t , P

F2(k)
t ).

Step 2: Regress J
(k)
t+1 on (PE(k)

t , P
F1(k)
t , P

F2(k)
t ) to obtain ht(·) .

Step 3: If xt = tonj ,

J
(i,j,k)
t ← πt(xt, vt, qt;PE

t , PF1
t , PF2

t ) + max(h1,1
t , h1,0

t − St);
else if 0 < xt < tonj ,

J
(i,j,k)
t ← πt(xt, vt, qt;PE

t , PF1
t , PF2

t ) + J
(i+1,j,k)
t+1 ;

else if xt = 0,
J

(i,j,k)
t ← −∞;

else if −toffj < xt < 0,

J
(i,j,k)
t ← J

(i−1,j,k)
t+1 ;

else if −tcoldj < xt ≤ −toffj ,

J
(i,j,k)
t ← max(h0,0

t , h0,1
t − St);

else if xt = −tcoldj ,

J
(i,j,k)
t ← max(h0,0,n

t , h0,0,s
t , h0,1

t − St).

Step 4: If i ≥ −tcoldj , i ← i− 1, go to Step 3.

Step 5: If j < 2, j ← j + 1, i ← tonj , go to Step 3.

Step 6: If t > 0, t ← t− 1, j ← 1, i ← tonj , go to Step 1.

Step 7: Stop.

Note that the fuel switching will happen when xt = −tcold, and h
(0,0,n)
t < h

(0,0,s)
t . In

other words, when the unit is off-line and under the cold status, the operator will determine
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to switch fuel to make more money based on the condition of h
(0,0,n)
t < h

(0,0,s)
t . Now,

according to the initial unit status (x0, u0, v0, q0), and initial prices (PE
0 , PF1

0 , PF2
0 ), the

expected value of the fuel-switching unit is

J0(x0, u0, v0, q0;PE
0 , PF1

0 , PF2
0 ) ≈

N∑

k=1

J
(k)
0 /N (3.13)

In the above algorithm, the most difficult part is to obtain the regression function
ht(vt, qt;PE

t , PF1
t , PF2

t ). What remains to show is an appropriate functional form for ht(·).
Our experience shows that the following polynomial form works well for the regression.

ht(vt, qt;PE
t , PF1

t , PF2
t ) ≈ a1 + a2qt + a3q

2
t + a4q

3
t + a5q

∗qt + a6P
E
t + a7P

F
t

+a8q
∗PF

t + a9(PE
t )2/PF

t (3.14)

where
q∗ = max(qmin

1 ,min(qmax
1 , (PE

t /PF1
t − c1,1)/2c2,1))vt

+max(qmin
2 ,min(qmax

2 , (PE
t /PF2

t − c1,2)/2c2,2))(1− vt) (3.15)

q∗ is determined by the optimal dispatch rule and the present fuel, PF
t = PF1

t vt+PF2
t (1−

vt), and a1 to a9 are the parameters to be fitted in the regression. Here we assume that the
heat rate function of the unit follows the quadratic function given in (4.1a) and c1,j and c2,j

are the coefficients for different fuel j. In the numerical results for the example described in
the next section we find a R2 value of around 0.83, which means the regression finds a good
fit between the polynomial form above and the data.

Although ht(vt, qt;PE
t , PF1

t , PF2
t ) is a highly nonlinear function in (vt, qt) and

(PE
t , PF1

t , PF2
t ), and it may not be smooth everywhere because it involves q∗, ht(·) is still a

linear function of the regression parameters a1, · · · , a9, which can be figured out efficiently
by solving a system of linear equations (a 9× 9 linear system in this case.)

4 Numerical Results

To value a fuel-switching capable unit, we compare the following two examples: the same
unit with and without fuel-switching options.

4.1 Baseline: a Non-switching Case

Without considering the fuel-switching option, the valuation problem only involves two
uncertainties and can be solved using a two-factor lattice method [8]. This serves as a
baseline case, by which we can calibrate the performance of the LSMC method.

Consider a natural gas-fired generating unit with the following input-output character-
istics.

H1(qt) = c0,1 + c1,1qt + c2,1q
2
t (4.1a)

C1(qt) = H1(qt)× PF1
t (4.1b)

where the cost function C1(·) is assumed to be a quadratic function of qt, H1(·) is the heat
rate function, PF1

t is the fuel price at time period t. Assume PF1
0 is $2.2/MMBtu, PE

0 is
$20/MW, and qmin

1 = 225MW, qmax
1 = 700MW, c0,1 = 540, c1,1 = 9.223, and c2,1 = 0.00234.

We also assume that ton1 = 5, and toff1 = tcold1 = 10 to fully capture the influence of the
physical constraints. Let the startup cost be $2300 and shutdown cost be $1000. Hourly
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Table 1: Mean reverting process coefficients of electricity, gas and oil

Coefficients σ mu mt P0

Electricity 0.27 0.072 2.878 20
Gas 0.24762 0.010570 1.01945 2.2
Oil 0.10209 0.003704 0.48054 0.58

Table 2: Mean log Price of electricity: mt(t)

t 1 2 3 4 5 6 7 8
mt(t) 1.8874 2.6557 1.9348 2.3402 3.5027 3.8568 3.7583 4.6602

t 9 10 11 12 13 14 15 16
mt(t) 4.8613 4.71 5.8114 4.7363 5.044 5.7383 5.9166 4.7126

t 17 18 19 20 21 22 23 24
mt(t) 3.7233 1.4573 1.322 2.5106 3.6167 0.6446 1.6033 1.8328

electricity prices and gas prices are generated by two mean reverting processes following
(3.4). The corresponding coefficients in Table 1 are realistic in that they are based on
the authors’ industrial experience within PJM and can also be found in reference [7]. The
correlation coefficient between electricity and gas is 0.078744. And electricity hourly prices
also follow a certain on-peak vs. off-peak pattern as Table 2.

To compare the algorithm performance of LSMC with the lattice method in [7], seven
cases are tested corresponding to seven operating periods using the same gas-fueled gener-
ating unit, ranging from 1 day (24 hours) to 7 days (168 hours). The average CPU times
are recorded in Table 3.

Fig. 2 shows that the LSMC method is much more efficient than the lattice method.
However, the LSMC method obtains 1 to 1.9% lower value than that from the lattice method
in Fig. 3, which can be further reduced by adding more subintervals among each hour with
the increase of CPU time. This discrepancy increases as the time horizon increases. This
is because the regression function is only an approximation, not an exact fit. So there are
errors in assessing the asset values. In addition, the errors may add up during the forward
and backward iterations. Nevertheless, this test serves as a calibration of the LSMC method
for valuing a generation asset.

4.2 A Fuel-switching Unit

To value a fuel-switching unit, an additional (fuel) price uncertainty must be considered.
As mentioned previously, the lattice approach is prohibitive because of huge memory space
and the corresponding large CPU time required.

Table 3: Average CPU time (seconds)

T (hours) 24 48 72 96 120 144 168
Lattice 0.78 1.64 2.83 4.22 5.86 7.86 10.09
LSMC 0.23 0.47 0.69 0.94 1.16 1.38 1.61
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Figure 2: CPU time of the lattice model and the LSMC approach.
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Figure 3: The asset value of the lattice model and the LSMC approach.
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Table 4: Asset value (dollars)

T (hours) 24 48 72 96 120 144 168
Lattice 221343 525641 835970 1145564 1453553 1759987 2065077

(w/o FSO)
LSMC 219318 520810 826594 1130352 1431635 1730252 2025840

(w/o FSO)
LSMC 229492 547244 873881 1202886 1535541 1868028 2201012

(w FSO)

Table 5: Asset Value (dollars)

ρ 0.0 0.1 0.2 0.3 0.4 0.5
Asset value 2208745 2202111 2195412 2188820 2182207 2175539

For simplicity, we assume that when the generating unit is fired by oil, the input-output
characteristics remain the same as in (4.1a) and (4.1b), although in reality the coefficients
of the quadratic function in (4.1a) should vary. That is,

H1(qt) = H2(qt) (4.2)

and
C2(qt) = H2(qt)× PF2

t (4.3)

Hourly electricity prices, gas prices and oil prices are generated by three mean reverting
process following (3.4). The correlation coefficient between electricity and oil is 0.033024
and the correlation between gas and oil is 0.19704.

In Fig. 4 and Table 4, it can be seen that the fuel-switching capability can increase
the asset value. There exist a 7% (when T=168) additional value due to the fuel switching
option, comparing with the baseline using the lattice method. Since the LSMC approach
underestimates the asset value (2%) in the baseline case (compared with the lattice method),
it may also underestimate the asset value with the fuel-switching options. If this argument
is true, than the fuel switching option may increase the asset value as high as 10%. To
verify this conjecture, we build a three-factor lattice (with a small T , T = 12). We compare
the asset values using both the 3-factor lattice method and the LSMC method, the result of
lattice method is 1% higher than that of the LSMC method. Since the error increases over
T , it is fair to estimate that the error in the 1-week case (T = 168), the error (underestimate)
is at least 2%.

4.3 Sensitivity Analysis on ρgas,oil

Intuitively the value of the fuel-switching option increases as the correlation between the
fuel prices decreases. That means more chances for one fuel to be in-the-money and the
other out-of-the-money.

To study the impacts of fuel price correlation on the option value, we take the same
fuel-switching unit and repeatedly run the program with different ρ between gas and oil
prices. The following results for one-week case (T=168) are obtained.

It can be seen that the asset value decreases linearly as the correlation coefficient ρgas,oil

increases. For an example, under an extreme case, the correlation between gas and oil price
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is -1. That is the increase of gas price will cause the decrease of oil price correspondingly.
Under this condition, the power producer will make decisions in switching fuel from natural
gas to fuel oil to cut down fuel cost, so as to increase the asset value of the fuel-switching
unit. In the present energy market, changes in oil prices in this country are almost irrelevant
to natural gas. Our recent analysis based on futures price data, indicates that the price
correlation between the oil and gas is less than 0.1, which means the fuel-switching units
are still in great need in the current power market, even before considering their value for
emission abatement.

5 Conclusions

In this paper, we use the LSMC method to value the fuel-switching option of a generation
asset considering the operational constraints. We estimate that the option value can be
very significant (at about 10% over a one-week period in the example we considered). It
provides another evidence that operational flexibility should not be overlooked when valuing
an generation asset. In this sense, fuel-switching options is one of the most important
factors in determining electricity generation asset value. The value of fuel-switching option
is affected by the correlation coefficient between natural gas and fuel oil prices to some
extent.
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