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Abstract: The deregulation of electricity industries provides incentives for microgrids, entities that use
small-scale distributed generation (DG) to meet local energy loads, to evolve independently of the centralised
grid. We examine the impact of start-up costs on the operating costs and policies of DG given stochastic
electricity and fuel prices by formulating a stochastic dynamic programme for the microgrid, which minimises
its expected discounted cost, and solving it using least-squares Monte Carlo simulation. The microgrid’s
expected cost saving from using gas-fired DG relative to meeting its electric load via off-site purchases is
the implied DG option value. Numerical examples indicate that although start-up costs do not significantly
increase operating costs, they have a profound impact on the optimal DG operating schedule as the microgrid
must incorporate not only current, but also future, expected start-up costs into its decisions. Consequently,
the microgrid hesitates to turn DG units on, preferring to wait until the electricity price exceeds the natural
gas generating cost by a significant margin. We demonstrate that ignoring this tradeoff results in drastically
higher expected costs and fewer self-generation opportunities. Hence, optimal control policies are crucial as
the loss in value from operating DG sub-optimally may deter the formation of microgrids.
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1 Introduction

The first major reorganisation in over a century of the familiar power system may be be-
ginning. In the emerging paradigm, a significant fraction of energy conversion from primary
fuels to electricity takes place closer to loads, i.e., as distributed generation (DG). By compar-
ison, the current power system is characterised by large-scale centralised power generation,
transmission at high voltage over long distances, and final delivery to customer sites via the
low-voltage distribution network (see [18]). Under the emerging paradigm, the traditional
centralised grid (or macrogrid) still delivers large quantities of energy to end-users, but elec-
tricity supply is augmented by new local entities employing DG and enjoying some measure
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the feedback from the attendees of the 2006 International Association for Energy Economics International
Conference in Potsdam, Germany (7-10 June 2006). The feedback from two anonymous referees has greatly
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of control independence from the traditional grid, i.e., microgrids (see [1], [2], [11], [15], and
[16]).

Microgrids promise four major benefits internal to its participants, namely: 1. the
possibility of self-generating electricity at a cost below the delivered macrogrid cost; 2. the
application of combined heat and power (CHP) technology; 3. the opportunity to tailor the
quality of power delivered to suit the requirements of end-uses, here called heterogeneous
power quality and reliability (PQR) (see [13]); and 4. the more favourable environment
potentially created for energy efficiency and small-scale renewable generation investments.

Many other potential societal benefits of DG have been suggested (more detail on these
benefit streams can be found in [10] and [14]), although this paper addresses only the first
benefit. It is instructive to expand on all the four outlined above, which should motivate
the importance of the line of research pursued in this paper:

1. Self-generation must beat only the delivered retail electricity price, which is typically
two to three times the average wholesale price, against which central-station genera-
tors compete; that is, DG can compete successfully against grid power even though
diseconomies of small-scale are likely to be strong.

2. While the simple cycle efficiency of generation at modern central-station power plants
will normally exceed any likely competing technology available in small scales, usefully
employing the roughly two-thirds of primary energy lost in conversion and delivery
using CHP can change the overall efficiency competition considerably. CHP can po-
tentially hand microgrids a lower overall carbon footprint (even with similar fuel) as
well as lower cost. Since transporting electricity is much more convenient than trans-
porting heat, placing generation where economically attractive heat sinks exist may be
a desirable generation configuration and one that suggests a high degree of generator
dispersion. Also note that in warm climates, the most economic use of waste heat may
well be building space conditioning; that is, heating to the extent necessary directly
and using thermally activated cooling cycles. The latter application can be partic-
ularly attractive because it displaces expensive grid electricity purchases at times of
high overall demand.

3. While technical analysis of electricity service PQR can be highly sophisticated, by
contrast, analysis of the economics of the PQR of end-uses is at best rudimentary.
Locally matching the PQR delivered to the requirements of end-uses can potentially
meet our goals at a lower cost than high universal macrogrid PQR. In fact, controlling
PQR locally to end-uses may permit loosening of grid standards, thereby lowering
necessary operating standards and costs.

4. The decision-maker in a microgrid is offered a powerful opportunity to jump some
of the hurdles we face in the macrogrid. As the purchaser of electricity and other
fuel inputs, the adopter of generating technologies, and also as possibly the selector
of technologies on the demand side, he or she holds a unique vantage point that
seems absent in the macrogrid. The alternatives on both demand and supply sides
have a chance at being even-handedly considered, and alternatives that have difficulty
competing on the macrogrid, such as diffuse renewables, perhaps have a better chance
of being chosen; in other words, some of the market failures of the macrogrid might
be mitigated.

Although this paper deals with only a small part of the potential DG benefit stream,
two challenges should also mentioned:
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1. While DG currently contributes an infinitesimal share of urban pollution (NOx, CO,
and particulate pollution, noise, etc.) relative to mobile- and larger-point sources, a
significant penetration of (especially thermal) DG could have a detrimental affect on
the urban environment. Thermal generation of electricity far removed from population
concentrations at scales that make emissions control manageable, and its delivery
via high-voltage transmission, results in low overall human exposures that set a high
standard for close-to-people DG to compete against. On the other hand, limits on
favourable station sites, rights-of-way for transmission, adequate cooling water supply,
etc., threaten to limit the ability of the macrogrid to meet the ever-growing demand
for electricity.

2. While traditional CHP has been implemented in energy-intensive industrial, food pro-
cessing, and very large commercial installations, e.g., college campuses, most electricity
demand growth in developed economies occurs in the residential and small commer-
cial sectors to which operation of DG may represent a significant logistical burden.
Absent well-developed competitive markets for equipment, installation, control, and
maintenance of DG systems, rapid deployment is unlikely. For most decision-makers
in these sectors, energy costs represent a small share of budgets and are unlikely to
motivate the significant investment and tolerance for the operational headaches that
DG adoption could cause.

In this paper, we examine the operation of a hypothetical microgrid that has already
installed DG to meet some of its load and purchases electricity from a wholesale spot market
as needed.† We gain insight into the optimal DG operational policy by taking a real options
approach (see [8] and [17]). Specifically, we recognise that owning a flexible DG unit entitles
the microgrid to a strip of embedded options to vary its output according to the relative
prices of wholesale electricity and natural gas, the fuel on which existing DG predominantly
runs. In large developed economies, natural gas is a pure commodity that is competitively
traded. Given the weather-sensitive nature of much of its demand and the risks of supply
disruption and general shortages, volatile prices are highly likely. Electricity, on the other
hand, is generated by multiple fuels often bought on long-term contracts, so prices tend
to be more muted in the long term, but perhaps subject to more short-term volatility due
to capacity constraints and its non-storability. In solving the microgrid’s cost-minimisation
problem over a fixed time horizon, we obtain not only an optimal operating policy for
the DG unit, but also its implied option value, i.e., the maximum amount the microgrid
would be willing to pay to rent the unit for the given time horizon. Since we abstract from
transmission and distribution costs, this latter estimate is a lower bound for the DG unit’s
value. We also do not account for other DG benefits, such as CHP, or allow for optimisation
over its investment decision (see [20], [21], and [22] for a more comprehensive analysis in
a deterministic setting). Rather, our focus here is on measuring the impact of stochastic
electricity and fuel prices as well as DG start-up costs on the value of the DG unit and its
operational policy. We find that optimal control policies will be crucial for the viability of
microgrids.

The structure of this paper is as follows:

†In reality, most microgrids would face stable and relatively high electricity tariff rates from incumbent
utilities. For example, in the service territory of Pacific Gas and Electric (PG&E) in California, the energy
charge in year 2004 was around $100/MWh, along with a demand charge of $14350/MW during peak hours
and a monthly fixed fee of $175 (see [22]). Consideration of these additional costs would probably make the
DG units more attractive than they are in the present analysis.
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• Section 2 formulates the microgrid’s problem and outlines the simulation algorithm to
solve it

• Section 3 explores how the costs and operating schedules of DG units are affected by
start-up costs

• Section 4 summarises the findings of this paper and offers directions for future research

2 Problem Formulation

2.1 Microgrid’s Decision-Making Problem

We consider the decision-making problem over a time horizon, T (in years), of a microgrid
that has installed R on-site gas-fired DG units, where Gr is the capacity of unit r (in MW)
to meet a load, Dt (in MW), during hour t, where t ∈ {1, 2, . . . , 8760}, and also retains the
option to purchase electricity from the spot market. Here, we assume that the load has both
a flat base and a flat peak component, i.e., Dt = DB + DP I{t∈TP }, where DB is the base
load, DP is the additional load during peak hours, and TP is the set of all peak hours, e.g.,
TP = {[8(1 + 3(j − 1)), 8(1 + 3(j − 1)) + 11], j = 1, 2, . . . , 365} = {[8, 19], . . . , [8744, 8755]}
represents the hours 0800 to 2000 during each day over one year.‡ Such load profiles are
quite common as primary business activities occur during the daytime. Due to such a load
profile, it may be natural to consider two DG units. However, we proceed to formulate
the microgrid’s problem more generally for R units before setting R = 2 in the numerical
example. The natural logarithm of the electricity spot price during hour t is Xt (in $/MWh),
while that of the natural gas price is Yt (in $/GJ). These two follow (positively correlated)
stochastic processes as some central-grid electricity is generated using natural gas as an input
fuel.§ Furthermore, the heat rate of DG unit r is Hr (in GJ/MWh), where it is likely that
Gr > Gr′ ⇒ Hr < Hr′ , i.e., larger DG units are more efficient than smaller ones. Finally,
the start-up cost of DG unit r is Ur (in $/h per start), which incorporates the variable
operating and maintenance (O&M) costs of the DG units, thereby taking into account the
additional wear associated with frequent changes in operating status.

Since both electricity and natural gas prices are stochastic, the microgrid’s decision each
period is to determine whether or not to use DG. Specifically, during each period t, the
microgrid’s state is described by the R × 1 vector, mt, where the rth element of mt is 1 if
generator r is on at time t and 0 otherwise. As the problem will be linear in all decision
variables and homogenous, the property of its solution is that each DG unit can run either
at full capacity or not at all. This also reflects the reality that part-load operation of DG is
inefficient. Correspondingly, the microgrid’s operating decision at time t is zt ∈ M , where
M is the set of all possible states and |M | = 2R with R DG units.

Based on this structure, the microgrid’s minimum expected discounted cost to go at
time t given state mt and price vector (Xt, Yt) is Vt(mt;Xt, Yt). If Ct(zt,mt;Xt, Yt) is the
operating cost in period t associated with making decision zt while in state mt and facing
price vector (Xt, Yt), then for t = 1, 2, . . . , K − 1:

Vt(mt;Xt, Yt) = min
zt∈M

{Ct(zt,mt;Xt, Yt) + βEt[Vt+1(mt+1 = zt; X̃t+1, Ỹt+1)]} (2.1)

‡A stochastic component to the load could also be included in our analysis.
§We assume that microgrids are effectively price takers because their loads are small relative to the

quantities traded in energy markets. In addition, as microgrids tend to be quite heterogeneous because of
their varied sizes, main business activities, on-site requrements for heat and power, etc., collusion among
them to influence market prices would be unlikely. Thus, electricity and natural gas prices will be modelled
as correlated exogenous stochastic processes.
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Here, β = e−δ∆t is the one-period discount factor, where δ is the annual risk-adjusted
interest rate and ∆t = T/K is the length of the time period in years (the total time horizon
divided by the number of decision-making periods). Note that the state vector at time t+1
is simply the operating decision selected at time t. The cost function, Ct(zt,mt;Xt, Yt), is
specified as follows for t = 1, 2, . . . , K:

Ct(zt,mt;Xt, Yt) = ∆tν[eXt(Dt −G′zt) + eYtG′zt + U ′(zt −mt)
+] (2.2)

Equation 2.2 describes the cost function given the decision taken for a particular state,
where ν is a factor that converts the length of the time period ∆t into hours from years.¶

Note that since G′zt is the total DG capacity operating at time t, Dt −G′zt is the residual
electricity demand, which is purchased from the electricity spot market. Furthermore, the
rth element of the vector (zt−mt)

+ is equal to 1 if and only if DG unit r is turned on from
an idle state at time t. Thus, U ′(zt −mt)

+ is the start-up cost incurred by taking decision
zt at time t. As there is no operational dependence among the R units, the cost function is
linear and separable in the R units. Using Equation 2.2, the microgrid’s stochastic dynamic
programme (SDP) may be written and solved subject to the following terminal condition:

VK(mK ;XK , YK) = min
zK∈M

{CK(zK ,mK ;XK , YK)} (2.3)

Thus, the minimised expected discounted cost of meeting the microgrid’s energy needs is
βV1(m1;X1, Y1).

In the absence of start-up costs, the microgrid’s optimal decision-making rule is a myopic
one: simply use the cheaper source of energy without taking into account future states. In
this case, owning DG is similar to holding a strip of cross-commodity European options‖

for each hour of the year. The option to use DG is then exercised as long as the per MWh
cost of DG generation is less than the price of electricity in the spot market. Consequently,
the implied option value of DG may be determined by summing (or by integrating, in a
continuous-time case) the hourly option values over the entire year (see [7]). In case of path-
dependent features, closed-form expressions for option values may not available, thereby
necessitating the use of Monte Carlo simulation (see [3]).

While simulation is an efficient procedure for pricing those European options without
closed-form solutions, its drawback is that since it is a forward-induction procedure, sim-
ulation is not always applicable to options for which optimal exercise policies are needed
in advance, such as early-exercise or compound options.∗∗ Indeed, for many real options,
which have such features, the current state of the system does not include information on
the expectation of future events. For example, standard simulation would not be applicable
to the microgrid’s problem if its DG has start-up costs or operating constraints because
then the current state of the DG units alters the payoff structure of any remaining options
to generate. It is, therefore, necessary to estimate the impact of current decisions on future
cash flows given the current state. Typically, a backward-induction procedure, based on a
lattice that discretises the underlying securities’ stochastic processes, is used to price such
real options (see [4], [6], [8], and [19]). However, if either the number of underlying securities
¶Technically, since ν∆t = 1, we do not need to include this term in Equation 2.2. However, we do so to

indicate clearly that we have converted from years to hours correctly.
‖European options may be exercised only at the date of expiration. By contrast, American options may

be exercised at any time up to and including the expiration date.
∗∗Compound options entitle the holder to gain access to embedded flexibility within the project, e.g., if the

microgrid installs a DG unit and then has the additional option to upgrade to incorporate CHP applications,
then the initial DG investment is a compound real option. For this reason, compound options are often
referred to as being “options on options.”



444 A. SIDDIQUI AND C. MARNAY

is large or the stochastic processes are too complex to be discretised adequately, then such
lattice-based methods are computationally intractable.

In order to resolve this dilemma, a recently developed procedure, known as least-squares
Monte Carlo (LSMC) simulation, prices early-exercise options by first generating a large
number of sample paths for the underlying securities’ prices and then estimating a con-
ditional expectation payoff function via least-squares cross-sectional regressions (see [12]).
Specifically, at each time step, the cash flows from continuing to hold on to the option are
regressed on a function of current security prices to yield estimated response parameters.
These may then be used to estimate a payoff continuation function conditional on current se-
curity prices. For a large number of states or underlying stochastic prices, LSMC simulation
may be generalised to yield, for example, an estimated conditional continuation function for
each state by regressing the cash flows from continuation in each state on a function of all the
prices (see [24] and [26] for applications of LSMC simulation to real options). We proceed in
Section 2.2 to outline the LSMC simulation algorithm needed to solve the microgrid’s SDP.

2.2 LSMC Simulation Algorithm

The first step in solving the microgrid’s SDP (Equations 2.1 through 2.3) using LSMC
simulation is to generate N sample paths for the electricity and natural gas prices, with
(s(n)

t , w
(n)
t ) representing the period t prices for sample path n. In this context, the R × 1

vector of decision variables during time t and sample path n is z
(n)
t , where z is a N ×K×R

tensor and zt is a N × R matrix. The value and continuation functions are defined and
discussed as follows:

• Vt(mt; s
(n)
t , w

(n)
t ): minimum expected discounted cost to go in period t given state mt

along sample path n (also known as the value function)

• Φt(s
(n)
t , w

(n)
t ;mt, z

(n)
t ) ≡ Et[Vt+1(z

(n)
t ; s(n)

t+1, w
(n)
t+1)]: expected continuation value in pe-

riod t for sample path n given state mt and operational decision z
(n)
t

• Φ̂t(s
(n)
t , w

(n)
t ;mt, z

(n)
t ) = f(s(n)

t , w
(n)
t )b̂t(mt+1 = z

(n)
t ): estimated continuation value

in period t for sample path n given state mt and the decision taken is z
(n)
t , where

the estimated response parameter vector at period t given state mt+1 in period t + 1
from a cross-sectional, least-squares regression of period t + 1 value functions in state
mt on a function of period t prices is b̂t(mt+1) = [(f(st, wt))

T (f(st, wt))]
−1(f(st, wt))

T

V t+1(mt+1; st+1, wt+1)

Here, since V is a N ×K×|M | tensor, V t(mt; st, wt) is a N ×1 vector, corresponding to
the value vector during period t in state mt given the N × 2 price vector (st, wt). Similarly,
Φ̂ is a N ×K × |M | × |M | tensor, with the last two dimensions having |M | possible values
each since both the number of possible states and number of available decisions are equal
to the cardinality of the state space. Therefore, the expected discounted cost to go of the
microgrid during period t given state mt is:

Vt(mt; s
(n)
t , w

(n)
t ) = min

z
(n)
t ∈M

{Ct(z
(n)
t ,mt; s

(n)
t , w

(n)
t ) + βEt[Vt+1(z

(n)
t ; s(n)

t+1, w
(n)
t+1)]} (2.4)

where Ct(z
(n)
t ,mt; s

(n)
t , w

(n)
t ) is the cost associated with taking decision z

(n)
t . The dimensions

of f(s(n)
t , w

(n)
t ) and b̂t(mt) depend on the number of elements in f . Following [12], we let
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f(s(n)
t , w

(n)
t ) be a 1×6 vector setting f(s(n)

t , w
(n)
t ) = [ 1 s

(n)
t w

(n)
t s

(n)
t

2
w

(n)
t

2
s
(n)
t w

(n)
t

],

which implies that b̂t(mt) is a 6× 1 vector.†† Consequently, f(st, wt) is a N × 6 matrix.
As indicated in Figure 1, the LSMC simulation approach proceeds by first generating N

sample paths for the stochastic electricity and natural gas prices. Next, in line 2, a function
of the prices at each time period t and sample path n is constructed. In line 3, the terminal
condition for the value function is set: the decision is simply to minimise the immediate
cost. Then, after the estimated continuation function is initialised to zero in line 4, the
main recursion begins proceeds backwards in time as follows:

• Line 7: the response parameter vector for period t and future state mt+1 is estimated
by least-squares regression of period t+1 value functions in state mt+1 on the function
of the period t prices

• Line 9: the estimated continuation function at period t for state mt given the decision
taken is z

(n)
t is obtained by multiplying the function of the period t prices by the

response parameter vector for time period t and future state mt+1 = z
(n)
t

• Line 10: the optimal operational decision at time t is that which minimises the expected
discounted cost to go using the estimated continuation function

• Line 11: the value function is updated by using the cost associated with optimal
decision z

(n)∗
t and the actual future value

Line 15: the minimum expected cost is simply the discounted average value of the N
costs at time 1 in initial state m1

In particular, line 10 uses estimated continuation functions to make DG operating de-
cisions, where the immediate cash outflow from the decision is simply the immediate cost
of meeting the load. Therefore, the optimal decision is to minimise the cost from making
a decision plus the estimated continuation value of proceeding optimally thereafter from
the future state in period t + 1. Note that while estimated continuation functions are used
to decide DG operation, the value functions are recursively updated by employing actual
continuation functions. Hence, by working recursively backwards through all of the time
periods, the average minimised value of the microgrid’s operating cost may be determined
as the average over all N sample paths of costs in period 1 when starting from a position
in which all DG units are off, i.e., starting with the terminal condition of line 2 in Fig-
ure 1, the LSMC simulation procedure works backwards, updating Vt(mt; s

(n)
t , w

(n)
t ) using

the recursion in Equation 2.4 until the answer is obtained as in line 15 of Figure 1.

3 Numerical Example

In this section, we examine the properties of the microgrid’s DG system via hourly analysis
over one test year. We assume that δ = 0.045 per annum, T = 1 year, ∆tν = 1 hour,
DB = 0.50 MW, DP = 0.20 MW, TP = {[8(1 + 3(j − 1)), 8(1 + 3(j − 1)) + 11], j =
1, 2, · · · , 365}, and R = 2 with G1 = 0.50 MW, and G2 = 0.20 MW (see Figure 2 for
the daily load profile). This implies that M = {[ 0 0 ]′, [ 0 1 ]′, [ 1 0 ]′, [ 1 1 ]′}.
Using the data from [22] on 0.50 MW and 0.20 MW reciprocating engines, we use H1 =
††We also tried a basis function with third-order powers, but the fit was not much better, e.g., the

coefficient of determination improved to 0.45 on average from 0.43. See [23] for an analysis of basis functions
used in the LSMC simulation approach.
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1 Generate s,w

2 f(s(n)
t , w

(n)
t ) = [ 1 s

(n)
t w

(n)
t s

(n)
t

2
w

(n)
t

2
s
(n)
t w

(n)
t

], n = 1, 2, . . . , N ,
t = 1, 2, . . . , K

3 VK(mK ; s(n)
K , w

(n)
K ) = min

z
(n)
K ∈M

{CK(z(n)
K ,mK ; s(n)

K , w
(n)
K )}, mK ∈ M ,

n = 1, 2, . . . , N

4 Φ̂t(s
(n)
t , w

(n)
t ;mt, z

(n)
t ) = 0, t = 1, 2, . . . , K − 1, mt, z

(n)
t ∈ M , n = 1, 2, . . . , N

5 For t = K − 1, . . . , 1

6 For mt ∈ M

7 b̂t(mt+1) = [(f(st, wt))
T (f(st, wt))]

−1(f(st, wt))
T V t+1(mt+1; st+1, wt+1)

8 For n = 1, 2, . . . , N

9 Φ̂t(s
(n)
t , w

(n)
t ;mt, z

(n)
t ) = f(s(n)

t , w
(n)
t )b̂t(mt+1 = z

(n)
t );

10 z
(n)∗
t = arg min

z
(n)
t ∈M

{Ct(z
(n)
t ,mt; s

(n)
t , w

(n)
t ) + βΦ̂t(s

(n)
t , w

(n)
t ;mt, z

(n)
t )};

11 Vt(mt; s
(n)
t , w

(n)
t ) = Ct(z

(n)∗
t ,mt; s

(n)
t , w

(n)
t ) + βVt+1(z

(n)∗
t ; s(n)

t+1, w
(n)
t+1);

12 End

13 End

14 End

15 Min Cost = β
PN

n=1 V1(m1;s
(n)
1 ,w

(n)
1 )

N ;

Figure 1: Solution Procedure for LSMC Simulation

10.3 GJ/MWh and H2 = 11.1 GJ/MWh representing approximately 35% and 32% higher
heating value conversion efficiencies, respectively. These are attainable by engines in this
size range burning a heavy fuel as indicated in [9]. There are other costs associated with
DG, such as turnkey and variable O&M costs. We do not consider the former explicitly
since the microgrid is assumed to have installed DG already, and we are addressing only
the operational problem. Nevertheless, the implied option value of the DG units from our
analysis could provide a lower bound on the annuity the microgrid should pay to install
DG. Unlike larger steam-boiler generators, smaller engine-powered generators of the type
considered here can be started quite quickly (in a matter of minutes) without significant
overall loss of fuel; still, starts impose added wear and tear on all generators, smaller ones
included. Consequently, a start-up cost has been estimated for these generators by allocating
the variable O&M costs. From the data in [22], the variable O&M costs are $12/MWh and
$15/MWh for the large and small DG units, respectively. Since it is optimal for each DG
unit to be operated either at full capacity or not at all, the hourly variable O&M costs are
obtained by multiplying the per MWh costs by the respective capacities. This yields U1 =
$6/h and U2 = $3/h per start, which may be thought of as the additional O&M expense
that must be borne due to starting up a DG unit.

Finally, we assume that the microgrid functions in an idealised deregulated market,
where all electricity and natural gas must be purchased at spot prices. Following [8], we
assume that short-term evolution of the natural logarithms of both electricity and natural
gas prices can best be described by correlated mean-reverting Ornstein-Uhlenbeck (OU)
processes. Specifically:

dXt = κX(θX −Xt)dt + σXdSt (3.1)
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Figure 2: Daily Microgrid Load Profile

dYt = κY (θY − Yt)dt + ρσY dSt +
√

1− ρ2σY dWt (3.2)

Here, for process i, θi is the long-term mean, κi is the rate of mean reversion, σi is the
annualised volatility for process i, and ρ is the instantaneous correlation coefficient between
{Xt, t ≥ 0} and {Yt, t ≥ 0}. Furthermore, {St, t ≥ 0} and {Wt, t ≥ 0} are independent
standard Brownian motion processes. The OU processes in Equations 3.1 and 3.2 may be
simulated as follows using two independent standard normal random variables εX and εY :

Xt+∆tν = Xt + κX(θX −Xt)∆t + σXεX

√
∆t (3.3)

Yt+∆tν = Yt + κY (θY − Yt)∆t + σY ρεX

√
∆t +

√
1− ρ2σY εY

√
∆t (3.4)

Using the data from [8] (reproduced in Table 1) and initial prices of $21.7/MWh and
$3.16/GJ for electricity and natural gas, respectively, we generate N = 1000 sample paths.‡‡

The effective cost of generation from the DG units is obtained by multiplying the natural gas
price by the appropriate heat rate. An example of the simulated paths is shown in Figure 3.

θX θY σX σY κX κY ρ
3.2553 0.87 0.79 0.60 3 2.25 0.30

Table 1: Parameter Data for Correlated OU Price Processes

Without loss of generality, we assume that the microgrid that has installed only one
DG unit.∗ A 95% confidence interval for the microgrid’s operating cost may be constructed

‡‡While doubling the number of sample paths reduces the standard deviation of the estimators, we find
that N = 1000 sample paths are sufficient for the conclusions of this paper.

∗This reduces the set of allowable states to M = {0, 1}. The SDP in Equations 2.1 through 2.3 is modified
accordingly. Examining a multiple-unit system would be possible, but would not provide any more intuition.
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Figure 3: Simulated Electricity Price and On-Site Generation Costs

using the Central Limit Theorem as follows:

V ± z0.975

√
S2(V )

N
(3.5)

In Equation 3.5, the sample mean, V = β
PN

n=1 V1(m1;s
(n)
1 ,w

(n)
1 )

N , is the average of the min-

imised discounted costs over N sample paths, and S2(V )
N is its sample variance. We assume

that the initial operating state of the DG unit is “off,” i.e., m1 = 0. In order to find the
option value, F , of this investment over the test year, we first solve the SDP described in
Equations 2.1 through 2.3 and then subtract its minimised cost, V , from that of a microgrid
that has no installed capacity, V 0, i.e., one that meets its entire load via spot purchases.
The estimated option value is then the difference between the mean minimum costs without
and with DG installed, i.e., F = V 0 − V .

Using this procedure and Equation 3.5, we minimise the operating costs of the single DG
units under three cases:

• No start-up costs (NS): achieve cost minimisation by following a myopic policy of
making the decision that minimises only immediate costs without considering future
value functions, i.e., ignoring the second term in Equation 2.1 when selecting from
among the alternative choices.

• Start-up costs (SU): include start-up costs and proceed optimally using the LSMC
simulation algorithm as outlined in Equation 2.4 and Figure 1.

• Start-up costs with a myopic policy (SM): include start-up costs, but use the myopic
policy of case NS to make decisions, i.e., the microgrid considers only current cash
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flows related to its operating and start-up costs in making decisions by ignoring the
second term in Equation 2.1.

Via these three cases, we illustrate that although start-up costs do not significantly increase
the operating costs of DG units, they must be taken into account by altering the operating
policy to consider the tradeoff between current costs and future expected start-up costs.
Indeed, we shall show that if a microgrid ignores this tradeoff and follows a myopic operating
policy as in case NS by not taking into account future cash flows, then the operating cost is
statistically significantly increased with less on-site generation of electricity.

From Table 2, it can be seen first of all that the inclusion of start-up costs increases the
average operating cost of DG only slightly as long as the correct tradeoff is made between
current cost minimisation and future start-up costs. In particular, there is a 0.09% increase
in the operating cost of the 0.20 MW DG unit when start-up costs are imposed (see Table
3). For the 0.50 MW DG unit, the impact of start-up costs is higher at 0.22% due to the
larger unit’s greater on-site generation. This increase is not statistically significant at the
95% level as indicated by the overlapping confidence intervals for V in cases NS and SU in
Table 4. On the other hand, if the microgrid does not adjust its operating policy to account
for future start-up costs and continues to follow a myopic policy when start-up costs are
imposed (as in case SM ), then the average operating cost of DG increases by a much larger
amount, i.e., 1.47% and 2.74% for the small and large DG units, respectively. As indicated
in Table 4, this increase is statistically significant at the 95% level for the larger unit as the
confidence intervals for V between cases SU and SM are disjoint.

Case 0.20 MW DG 0.50 MW DG
NS V = 127.06, S(V ) = 0.72 V = 120.75, S(V ) = 0.62
SU V = 127.18, S(V ) = 0.72 V = 121.01, S(V ) = 0.62
SM V = 128.92, S(V ) = 0.73 V = 124.07, S(V ) = 0.63

Table 2: Sample Mean and Standard Deviation for Individual DG Operating Costs (in
thousand $)

Case 0.20 MW DG 0.50 MW DG
SU 0.09 0.22
SM 1.47 2.74

Table 3: Average Percentage Cost Increase Relative to Case NS

Case 0.20 MW DG 0.50 MW DG
NS [125.65, 128.47] [119.54, 121.97]
SU [125.77, 128.59] [119.80, 122.23]
SM [127.49, 130.36] [122.82, 125.31]

Table 4: Confidence Intervals for Individual DG Operating Costs (in thousand $)

The implied DG option value is also more strongly affected by the start-up costs when
the myopic policy is followed (see Table 5). For example, the decrease in implied option
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value is negligible for the SU case, but becomes quite significant (at 44% and 32% for
the 0.20 and 0.50 MW units, respectively) for the SM case. More telling, however, is the
average fraction of electricity generated by DG in each case (see Table 6). While there is
a modest decrease in on-site generation in case SU as the microgrid becomes more hesitant
to turn the unit on in the first place, there is a drastic reduction in DG usage with case
SM since an active DG unit is turned off too easily based on its immediate (and not future)
profitability, thereby making it more difficult to justify turning an idle unit on. We note,
furthermore, that the smaller DG unit’s operations are more affected by the start-up costs
due to its relative inefficiency. This is the case even though the larger DG unit’s operating
cost increases by a greater percentage, which is a consequence of its being attractive enough
to be used frequently by the microgrid. Indeed, since the microgrid’s average operating cost
is always lower when using the larger DG unit, the imposition of start-up costs results in a
relatively greater impact on the bottom line. Conversely, since the smaller DG unit is used
infrequently (e.g., it provides only 12% of the microgrid’s electricity even when no start-up
costs exist), the loss in its implied option value is relatively greater when start-up costs
are imposed. Hence, the microgrid’s average cost increases by a greater percentage when
start-up costs are imposed when using the large DG unit, but its greater utilisation rate
also means that its implied option value decreases by a smaller percentage than that of the
small DG unit.

Case 0.20 MW DG 0.50 MW DG
NS 4.20 10.51
SU 4.09 10.25
SM 2.34 7.20

Table 5: Average Implied Option Values of DG (in thousand $)

Case 0.20 MW DG 0.50 MW DG
NS 11.88 29.70
SU 7.82 20.29
SM 1.12 4.90

Table 6: Average Percentage of Electricity Generated by DG

In order to determine the operational implications of start-up costs, we find start-up and
shut-down price thresholds for the DG unit. We pick a representative hour during the test
year to illustrate how the thresholds shift as a result of the start-up costs. Figure 4 is a
scatterplot of the electricity prices and the DG generating costs at which the 0.20 MW DG
unit is turned on (indicated by the blue circles) or turned off (indicated by the red crosses).
Note that the region in which it is optimal to turn on the DG unit is disjoint from that in
which it is optimal to turn off the DG unit. Indeed, the shared boundary between these
two regions reflects the fact that a myopic policy is optimal, i.e., in the absence of start-up
costs, it is optimal to start-up (shut-down) the DG unit immediately if the ratio of the DG
generating cost to the electricity price falls below (exceeds) a critical value. For example,
if the current DG generating cost is $20/MWh and the DG unit is off, then the microgrid
should wait until the electricity price is just above $20/MWh before switching the unit on.
Similarly, if the unit is on, then the microgrid should switch the unit off when the electricity
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price drops to $20/MWh.
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Figure 4: Operational Thresholds for 0.20 MW DG Unit (Case NS, Hour 4000)

As discussed previously, the presence of start-up costs implies that a myopic policy is no
longer optimal since the microgrid needs to consider not only the current relative costs of
meeting its load, but also the future costs, which may include start-up costs. Therefore, a
similar scatterplot for case SU results in a zone of inaction between the two action regions
(see Figure 5) in which it is optimal to wait and maintain the status quo, i.e., keep the
DG unit on (off) if it is currently on (off). Effectively, for a given DG generating cost, the
electricity price threshold at which to turn on (off) a DG unit that is currently off (on)
is higher (lower) than in the NS case. For example, if the current DG generating cost is
$20/MWh and the DG unit is off (on), the microgrid waits until the electricity price is around
$23/MWh ($17/MWh) before turning the unit on (off). The intuition for this hesitancy is
that the microgrid wants to avoid a situation in which it turns on (off) a marginally cheaper
(more expensive) DG unit only to have to turn it off (on) the following hour. In fact, both
operational thresholds are affected because once a DG unit is on, the prospect of shutting it
down only to have to turn it back on (and thus, pay the start-up cost) delays the shut-down
decision. It is preferable to incur slightly higher energy costs in the current period by keeping
a relatively expensive DG unit on than to pay start-up costs or face even higher costs in the
future. Furthermore, the zone of inaction appears to widen as both the electricity price and
DG generating cost increase, e.g., if the latter is $40/MWh, then the electricity price needs
to be nearly $50/MWh ($35/MWh) for an off (on) unit to be turned on (off).

We quantify the “on” and “off” thresholds by fitting lines to the frontiers of the two sets
and find that the “on” threshold has the equation:

GENCOST = 0.91009× ELPRICE − 2.2782 (3.6)

Here, GENCOST and ELPRICE refer to the natural gas generation cost and electricity
price, respectively. The equation for the “on” threshold is constructed in two steps:

1. We fit a preliminary line using the two extreme points of the “on” cluster in Figure 5.
Specifically, we take the northeastern-most point and the southwestern-most point in
the cluster and draw a line between them.

2. Then, we discard all of the points in the cluster that lie below the preliminary fitted
line and fit an OLS regression line to the remaining points, i.e., the ones that lie above
the preliminary fitted line from step 1.
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This is an ad hoc procedure and may have more severe drawbacks if used in analysing more
sophisticated boundaries. For example, the selection of the extreme points in the first stage
of this exercise could influence the ultimate fitted boundaries. However, we feel that it is
sufficient to demonstrate the effect of the start-up costs on the threshold price and construct
the “off” threshold similarly (except that we retain the points that lie below the preliminary
fitted line):

GENCOST = 1.0434× ELPRICE + 2.8062 (3.7)

Both regressions have coefficients of determination of over 0.98. We note from Equations
3.6 and 3.7 that the “on” threshold gets flatter as the electricity price increases, while
the “off” threshold gets steeper. In Figure 5, the thresholds are sketched in as dotted
lines. This increasing wedge between the two action zones could simply reflect a constant
percentage by which the electricity price must exceed (fall below) the DG generating cost
before action may be taken optimally. On the other hand, at higher prices, there may be
more uncertainty about future prices, which then causes the microgrid to be more cautious
in its decision making. In either case, although the operating cost of the DG unit is not
significantly affected by start-up costs, their impact on the microgrid’s operating policy is
more profound.
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Figure 5: Operational Thresholds for 0.20 MW DG Unit (Case SU, Hour 4000)

We find that if start-up costs are present, but the microgrid continues to follow the
myopic operating policy of case NS, then the operating cost of its DG unit is increased.
From the scatterplot in Figure 6, it now becomes clear why this is the case: following a
myopic policy does not alter the “off” threshold relative to case NS, but shifts the “on”
threshold much further to the right. This is because by ignoring future start-up costs, the
microgrid readily turns off an active DG unit according to the threshold given in Figure 4,
which subsequently puts it in a situation where it is not cost effective to use DG in the future
unless the electricity price increases drastically so that the immediate energy cost savings
outweigh the start-up costs of DG. In contrast, if it takes future start-up costs into account
as in case SU, then it turns an active DG unit off only if the immediate cost savings outweigh
future expected start-up costs. Hence, a microgrid that follows an optimal operating policy
shifts its “off” and “on” thresholds slightly relative to case NS, whereas one that follows a
myopic policy ignores not only future expected start-up costs in turning off an active DG
unit (thereby maintaining the “off” boundary from case NS), but also future expected cost
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savings from turning on an idle DG unit (thereby causing the “on” boundary to shift more
to the right than in case SU).
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Figure 6: Operational Thresholds for 0.20 MW DG Unit (Case SM, Hour 4000)

The impact of start-up costs on the larger 0.50 MW DG unit is similar: a zone of inaction
appears in case SU relative to case NS that results in a more hesitant microgrid (see Figures
7 and 8). We quantify the “on” and “off” thresholds via regression:

GENCOST = 0.8973× ELPRICE − 0.9038 (3.8)

GENCOST = 1.0469× ELPRICE + 1.9158 (3.9)

These thresholds are plotted as dotted lines in Figure 8. By subtracting Equation 3.6 from
Equation 3.7 and Equation 3.8 from Equation 3.9, we can also quantify the width of the
inaction zones as functions of the electricity price. As can be seen from Figure 9, the
zone of inaction appears to be narrower with the 0.50 MW DG unit than with the 0.20
MW unit.† In effect, the greater efficiency and relatively lower start-up cost of the larger
DG unit imply that it is more flexible than the smaller one. Nevertheless, as indicated
in Figure 10, if the large DG unit were operated in a myopic manner, then it, too, would
lose a significant fraction of its option value as it would not trade off future expected cash
flows with current ones. Hence, substantial alteration in the DG unit’s operating policy
is required in the presence of start-up costs even if these constraints have little significant
impact on the microgrid’s costs. Finally, Figure 11 indicates that the option value of the
DG unit is increasing in the electricity price volatility as higher electricity prices become
more likely. Furthermore, the undervaluation of the DG unit in the myopic case becomes
less of an issue when electricity price volatility is high because the greater occurrence of
high electricity prices enables on-site generation to be dispatched more frequently even with
incorrect accounting of future expected costs.

While the conclusions about the impact of start-up costs on operational policy are well
known in the real options literature (see for example [5]), they are especially relevant for DG

†In order to test this hypothesis statistically, it should be possible to do a standard test for differences
in means. However, as the slopes of the regression lines depend on ad hoc selection of extreme points, the
conclusions from any hypothesis tests would be circumspect. A more promising, if speculative, alternative
would be to use support vector machines (SVMs), which are based on statistical learning theory and are
designed to separate two clusters of data points that represent different sub-populations (see [25]).
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Figure 7: Operational Thresholds for 0.50 MW DG Unit (Case NS, Hour 4000)
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Figure 8: Operational Thresholds for 0.50 MW DG Unit (Case SU, Hour 4000)

projects. This is because the viability of DG is going to revolve around the effectiveness of
their control algorithms. Indeed, given the non-trivial costs of automated control systems,
examining the tradeoffs between DG costs and benefits is essential for microgrids to develop.
Under stochastic prices, finding an optimal operating policy becomes even more critical
for microgrids since without one, their advantage over central-station generation narrows
dramatically. We have, thus, attempted to provide such a framework and illustrated via
numerical examples some of the pitfalls that microgrid managers should avoid in practice.

4 Conclusion

The ongoing deregulation of electricity industries worldwide provides opportunities for mi-
crogrids to evolve according to the needs of end-use consumers by incorporating DG and
CHP applications where beneficial. Limits on carbon emissions, such as by cap-and-trade al-
lowance markets, would make microgrids more economically attractive because CHP permits
higher overall fuel efficiency. Microgrids will, nonetheless, face complex control problems for
many reasons, only one of which is addressed herein. Furthermore, the cost of control is
non-trivial at small scales of operation and coördination with other building operations is
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Figure 9: Width of Inaction Zones (Case SU, Hour 4000)
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Figure 10: Operational Thresholds for 0.50 MW DG Unit (Case SM, Hour 4000)

also required, so finding efficient algorithms for microgrid operations could be a critical as-
pect of their overall viability. In this paper, we make a stylised attempt to examine the
impact of modest start-up costs on DG value and operation within a stochastic setting.

By taking a real options approach, we find that although the impact of start-up costs
on the expected operating cost of DG is minor, their operational implications are certainly
more profound. In effect, the presence of start-up costs forces the microgrid to trade off
current cash flows with estimates of future expected cash flows before making any operational
decisions since future cash flows are affected by current actions and states. By contrast,
without start-up costs, the microgrid may proceed to make decisions in a myopic manner, i.e.,
consider only current cash flows and states in making its decision because future cash flows
are independent of current actions and states. Factoring this dependency into the microgrid’s
decisions causes there to be a zone of inaction between the “on” and “off” thresholds for
DG as it becomes preferable to wait before the electricity price (DG generating cost) more
than exceeds the DG generating cost (electricity price) before turning the DG unit on (off).
Indeed, this hesitancy results from the fact that the microgrid must now include future
expected start-up costs as implicit opportunity costs of turning on an idle DG unit. Since
the additional cost makes switching to the “on” state less attractive, the microgrid maintains
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Figure 11: Option Value Sensitivity Analysis for 0.50 MW DG Unit

the status quo over an intermediate range of prices. Similarly, the presence of start-up costs
causes the microgrid to postpone turning off an active DG unit because future expected
start-up costs are subtracted from the current cost savings of using electricity purchases,
thereby leading to inaction as long as the electricity price is not relatively low. If such a
tradeoff is ignored, i.e., the microgrid proceeds myopically in the presence of start-up costs,
then the zone of inaction widens, resulting in significantly higher costs. In particular, the
“off” threshold is not affected since future expected start-up costs are ignored. However, the
“on” threshold is shifted far to the right as the subtraction of current start-up costs from
current cost savings of using DG without accounting for future expected cost savings from an
“on” DG unit reduces the benefits of DG. Therefore, from our model, a microgrid manager
can infer not only the option values of its DG, but also identify an optimal operating policy.

In order to focus on such operational implications, we have neglected many real-world
features in our stylised model. For instance, we do not consider the transmission and dis-
tribution costs of electricity purchases, which would make DG units more valuable than is
implied in this work. Our analysis could also benefit from more rigorous treatment of DG
O&M costs as we allocate only incremental variable O&M costs as start-up costs. Omission
of CHP applications also significantly understates the value of DG. This feature may also
affect DG operating schedules depending on the degree to which electric and heat loads are
coincident. We propose to incorporate CHP as an option to upgrade in future work. In this
context, the investment decision should also be modelled, although it is more common for
such decisions to be driven by long-term price factors rather than the short-term ones we
address here (see [17]). Finally, from a modelling perspective, since we examine a relatively
short time horizon, we should incorporate seasonality, daily peak prices, and spikes in both
price processes.
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