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Abstract: A popular approach for solving complex optimization problems is through relaxation: some
constraints are removed in order to have a convex problem approximating the original problem. On the
other hand, direct approaches for solving such problems are becoming increasingly powerful. This paper
examines two cases drawn from data analysis, in order to compare the two techniques.
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1 Introduction

The field of mathematical optimization has many practical applications. Such applications
generally consist of setting a number of factors in order to improve a process or to obtain
the “best” outcome. The major difficulty of modeling this process into a mathematical
optimization problem is that this problem should be accurate enough, while still solvable
within a reasonable time.

Often, a same problem can have several mathematical formulations. A common practice
is to try to reformulate it as a linear programming problem, for which commercial solvers
such as CPLEX or LINGO provide efficient algorithms.

In many areas, however, these problems give rise to difficult optimization problems, and
it is necessary to resort to more general software of global optimization. Commercial global
solvers can be found in [3, 11, 14]. Due to the limitations of computing capabilities, it may
be necessary to simplify a given problem, in order to get an approximate solution. For
example, it may be beneficial to relax certain constraints to obtain a convex problem, much
easier to solve. However, such an approach may lead to a solution with is not feasible for
the original problem.

There exist surveys comparing various solvers for global optimization (see [9]). However,
it is difficult to evaluate the efficiency of a solver, as problems in global optimization can
differ very much, according to the form of the feasible set and of the objective function.

In this paper we consider two problems arising in real-world applications. For each of
these problems, after providing a small descriptive background, several equivalent mathe-
matical formulations are given and discussed. Then several methods, including relaxation
techniques and commercial solvers are applied on these problems, and the results are com-
pared and discussed.
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2 First Problem

2.1 Setting of the Problem

The first problem under consideration arises in data analysis. Consider a dataset D with no

observations and nf features. We want to provide a method for clustering this dataset, by
finding a hyperplane separating D in two clusters. We assume that this hyperplane passes
through the barycenter of the set. To make sure that these two clusters are far apart, this
hyperplane should as far as possible from any (that is the closest) point.

Consider the following problem (suggested in [8]):

maximize f(a) = minx∈D |〈a, x〉|
subject to
‖a‖ = 1

(2.1)

where 〈x, y〉 is the scalar product over Rnf and ‖‖̇ = ‖‖̇2 is the Euclidean norm. The number
of variables is nf . This problem is nonsmooth, nonconvex, therefore it is very difficult to
solve. One of the main difficulties resides in the equality constraint. It is possible, however,
to formulate several different problems leading to the solution of problem (2.1). In particular,
the form of the objective function can be used in that purpose.

One possible formulation is to relax the equality constraint as follows

maximize f(a)
subject to
‖a‖ ≤ 1

(2.2)

Another equivalent problem has the form:

maximize 1
‖a‖f(a)

subject to
a ∈ Rnf \ {0}

(2.3)

Finally ([8]),

maximize minx∈D〈a, x〉2
subject to
‖a‖ = 1

(2.4)

Each of these problems has advantages and disadvantages: in the case of problem (2.2),
the constraint is quite simple, and the feasible set is closed convex. Problem (2.3) is a
problem with a different type of constraint (over which unconstrained algorithms can be
applied), and the objective function is constant along rays. However, this function is not
defined at 0. Finally, problem (2.4) can be rewritten as a semidefinite problem which can
be relaxed to a convex problem ([8]).

Consider the matrix A = aT a. Then the problem (2.4) is equivalent to the following:

maximize F (A) = minx∈D xT Ax
subject to

trace(A) = 1;
rank(A) = 1;

A is symmetric positive definite.

(2.5)
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It is possible to relax the rank constraint, in order to obtain the following convex problem:

maximize F (A)
subject to

trace(A) = 1;
A is symmetric positive definite,

(2.6)

which can be rewritten as the semidefinite programming problem:

maximize c
subject to

c− xT Ax + yx = 0,∀x ∈ D;
trace(A) = 1;

yx ≥ 0,∀x ∈ D;
A is symmetric positive definite.

(2.7)

The problem (2.7) contains many more variables than the original problem: the number
of variables is n2

f + no + 1. However, it is a linear problem on the cone of semidefinite
matrices.

We want to compare two methods for finding a solution to the original problem (2.1) by
solving reformulations of it:

Solving this problem directly using a global optimization solver.

Solving the relaxed problem (2.7), and try to find the solution of the original problem
from the solution of the relaxed problem.

2.2 Numerical Experiments

In order to solve the semidefinite problem (2.7), the solver used is SeDuMi (see [13]). The
solution A∗ of the problem (2.7) is not directly applicable to the problem (2.1). As solutions
of this problem we consider:

The leading eigenvector (that is the eigenvector corresponding to the largest eigenvalue)
a0 of A∗.

Random generation of 1000 vectors with correlation matrix A∗.

To solve the global optimization problem (2.2) and (2.3), we applied the following meth-
ods or software:

CIAO-GO (see [14])

AGOP (see [4, 15])

LGO (see [11])

Random generation of 1000 vectors according to normal distribution.

Problem (2.3) is more complex to solve, as its objective function is not defined at the
origin.

Experiments are carried out on 8 small and medium size real world datasets. These
datasets are (See [6, 7]):
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aust Australian Credit Database;

breast Breast Cancer Database;

cleve Cleveland Database;

diab Diabetes Database;

firis Fisher’s iris Database;

iono Ionosphere Database;

segment Image Segmentation Database;

vehic Vehicles Database;

wpbc Wisconsin Prognosis Breast Cancer Database

Various configurations have been examined: small or large number of observations, small
or large number of features. SeDuMi is a C program with a Matlab interface. Unfortunately
this interface limits the size of the datasets we can examine, and therefore no experiment
has been carried out on large datasets.

The statement of problem (2.1) necessitates the hyperplane to go through the origin.
Therefore the datasets were modified to have their barycenter at the origin.

2.3 Results of Numerical Experiments

Numerical experiments are presented in tables 1-5. The entries in these tables are as follows:

no Number of observations in the dataset;

nf Number of features in the dataset;

A Solution of (2.6) obtained by SeDuMi;

e(A) Leading eigenvector of matrix A;

rA Random point with correlation matrix A;

Prob(i) Solution obtained for formulation (i);

T(i) Computational time for solving formulation (i);

N.F.(i) Number of Function Evaluations during solution of formulation (i).

2.3.1 SeDuMi

Table 1 presents the results obtained by the SeDuMi software for solving formulation (2.7).
Matlab is much slower than other packages and programs used during this research, and

therefore the generation of random points can be very long. This generation was not taken
into account in the results presented here. Only the time taken by SeDuMi to solve the
formulation (2.6) is indicated.
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Dataset F (A) f(e(A)) max(f(rA)) Time
aust 3350.01 0.004493 16.5428 143.0
breast 1.69996 0.00178 0.322707 37.9
cleve 40.6621 0.00505 0.998068 9.1
diab 78.4567 0.01393 1.10646 91.4
firis 0.6287 0.000288 0.122785 0.8
iono 0.1568 0.001619 0.0675656 31.5
segment 179.6 1.24× 10−5 0.686752 2723.0
vehic 302.7 0.006815 2.81461 158.0
wpbc 1076.2 0.001135 13.9543 34.0

Table 1: Results of numerical experiments for SeDuMi

2.3.2 CIAO-GO

CIAO-GO could only be applied on formulation (2.2). Formulation (2.3) could not be solved
using CIAO-GO: the function not being defined at the origin lead to erroneous results due
to computational inaccuracies. Results for CIAO-GO are presented in table 2. These results
are quite good (much better than the results obtained through the relaxation technique),
and found within a reasonable time.

Dataset Prob. (2.2) N.F.(2.2) T(2.2)
aust 19.77 41402 0.938
breast 0.39631 26671 1.188
cleve 1.31029 32759 0.656
diab 1.65667 17336 0.609
firis 0.153028 6839 0.062
iono 0.0945898 153419 9.719
segment 0.564424 129257 11.859
vehic 1.76744 36256 1.391
wpbc 15.3779 76682 1.719

Table 2: Results obtained by CIAO-GO

2.3.3 AGOP

AGOP could be applied on both formulations 2.2 and (2.3). Results for AGOP are presented
in table 3.

The solutions reached by AGOP are also very good. The method is more consistent in
finding solutions of the same range for both formulations, although the formulation (2.3)
seems to be slightly better handled.

The number of function evaluations needed to solve the problems are quite similar to the
ones for CIAO-GO.

2.3.4 LGO

The problem (2.2) was solved using the commercial software LGO, through GAMS as an
interface. LGO proposes three modes:
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Dataset Prob. (2.2) Prob. (2.3) N.F.(2.2) N.F.(2.3) T(2.2) T(2.3)
aust 19.3285775 19.3765527 1149911 604981 27.969 14.250
breast 0.6253363 0.6231331 455040 318483 7.188 5.078
cleve 1.7616778 1.8009352 498540 473542 4.688 4.344
diab 2.1210358 2.0999435 544576 557624 9.047 9.234
firis 0.1593965 0.1594949 201699 178953 0.484 0.453
iono 0.1355756 0.1222489 1131855 1091260 34.891 33.656
segment 0.9541016 1.0901141 825908 792703 76.078 74.266
vehic 5.8926857 5.9801020 663401 557511 22.031 19.172
wpbc 18.8113554 19.1084435 3415941 1207682 51.734 18.328

Table 3: Results obtained by AGOP

LGO 1 is based on a Branch and Bounds technique

LGO 2 is based on an adaptive random search

LGO 3 is based on a local method with multistart.

Due to bugs in the licensed version of the GAMS system, LGO 1 could not be run on
problems whose size was larger than 10 variables. This means that we could only solve the
problem for datasets with less than 9 features (In GAMS, the value of the objective function
is counted as a variable).

Since the objective function of formulation (2.3) is not defined at the origin, it is not
possible to solve this problem using LGO on GAMS. Therefore only the formulation (2.2)
was solved.

Only the computational time is indicated in the output of the GAMS software, for this
reason the number of function evaluations is not reported.

The results are presented in the following table:

Dataset LGO 1 LGO 2 LGO 3 T(LGO 1) T(LGO 2) T(LGO 3)
aust - 16.294 18.699 - 3.844 103.390
breast 0.295 0.425 0.554 3.654 4.122 54.045
cleve - 1.621 1.962 - 1.297 26.937
diab 1.715 1.199 1.585 4.998 5.046 38.287
firis 0.154 0.156 0.159 0.503 0.374 3.568
iono - 0.106 0.129 - 18.765 352.422
segment - 0.806 0.866 - 15.343 173.360
vehic - 5.775 5.861 - 9.829 282.953
wpbc - 11.956 19.186 - 8.297 249.516

Table 4: Results obtained by LGO on problem (2.2)

It can be concluded that LGO performs relatively well. In two cases it obtained bet-
ter results than the other methods. In particular, the third method proposed by LGO,
which is the simplest one (local method with multistart), seems to perform best, although
necessitating much longer computations than the other methods.
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2.3.5 Comparison between Relaxation Approach and Global Solvers

Table 5 shows the results obtained for solving the relaxed problem and the original one. It
is quite clear that the solution of the relaxed problem is much larger than the solution of
the real problem to solve.

Dataset no nf Relaxed Best Best software
aust 690 15 3350.01 19.77 CIAO-GO
breast 683 9 1.69996 0.6253 AGOP
cleve 297 13 40.6621 1.962 LGO 3
diab 768 8 78.4567 2.1210358 AGOP
firis 150 4 0.6287 0.1594949 AGOP
iono 351 34 0.1568 0.1355756 AGOP
segment 2310 18 179.6 1.0901141 AGOP
vehic 846 18 302.7 5.9801020 AGOP
wpbc 194 33 1076.2 19.186 LGO 3

Table 5: Summary of the results obtained

3 Second Problem: Minimum of Sum of Squared Distances

3.1 Setting of the Problem

The minimization of the sum of squared distances problem is one of the most widely studied
in the literature. This problem finds its roots in data analysis, where it serves as a clustering
measurement.

It is locally minimized by the k-means algorithm [5], and many methods have been
proposed for solving it.

It can be stated as follows: Given a dataset A = {ai : i = 1, . . . , n},

minimize
∑n

i=1 min1≤j≤q ‖ai − cj‖2
subject to

cj ∈ Rn, 1 ≤ j ≤ q
(3.1)

A number of relaxation approaches have been proposed in [10], and successfully applied
to two small-sized datasets: the Soybean data (see [7]) and the Bavarian postal codes data
(see [12]).

The suite of algorithms GANSO (see [15]) contains several methods for solving gen-
eral purpose nonconvex nonsmooth optimization problems. Among these methods can be
found:

DFBM is a local search based on the discrete-gradient method [2];

D+E stands for DFBM+ECAM. This is a combination of the discrete-gradient method
and the Cutting angle method [1]. It is also implemented in the software CIAO-GO
[14].

DSO is a software implementation of the AGOP method presented in the previous
section
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In [10], this problem was studied and solved using a relaxation method. For that purpose,
problem (3.1) is rewritten as a 0-1 SDP as follows (see [10] for more details):

Let us define the assignment matrix Y as follows: yij = 1 if ai is associated to cluster
center cj , and yij = 0 otherwise.

Then, we define:

A is a matrix whose i-th row is ai;

Z = X(XT X)−1XT ,

I is the identity matrix,

e = (1, . . . , 1)T .

It is shown in [10] that the problem (3.1) can be rewritten as:

minimize trace(AAT (I − Z))
subject to

Ze = e, trace(Z) = k, Z ≥ 0
(3.2)

Z = ZT , Z2 = Z, (3.3)

where Z ≥ 0 means that each element of Z is nonnegative.
Then, the proposed relaxation is to replace (3.3) by:

z ∈ {Z = [zij ] : zij ≤ zii, zij + zik ≤ zii + zjk},
to obtain a linear programming problem.

3.2 Numerical Experiments

The results of the numerical experiments are shown in tables 6 and 7. They are compared
with the best known results (column “best known”), found in [10], and with the results of
the k-means algorithm. As an indication the best result obtained among the global solvers
is given in the column “Best global”

q dim Best known k-means DFBM D+E DSO Best global
2 70 404.46 404.46 404.46 404.46 404.46 404.46
3 105 215.26 246.46 246.46 246.46 246.46 246.46
4 140 205.96 234.69 234.69 234.69 226 226

Table 6: Results for the Soybean data

4 Conclusions

In this paper we have compared two approaches for solving a nonconvex optimization prob-
lem. The first one is to apply direct algorithms. These methods are quite recent, and
attempt to directly solve the problem. Although usually able to reach at least a good local
minimum, they cannot always guarantee a very good solution for functions having a complex
structure, and it is difficult to verify the result.

The second approach is the relaxation: the problem is reformulated, and some constraints
are omitted to reach a simpler problem (usually convex or even SDP). Then this relaxed
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q dim Best known k-means DFBM D+E DSO Best global
2 6 6.03 · 1011 7.54 · 1011 7.54 · 1011 7.54 · 1011 6.03 · 1011 6.03 · 1011

3 9 2.95 · 1011 3.54 · 1011 3.54 · 1011 3.54 · 1011 2.95 · 1011 2.95 · 1011

4 12 1.04 · 1011 1.05 · 1011 1.05 · 1011 1.05 · 1011 1.05 · 1011 1.05 · 1011

5 15 5.98 · 1010 7.39 · 1010 7.39 · 1010 7.39 · 1010 5.98 · 1010 5.98 · 1010

6 18 3.59 · 1010 4.60 · 1010 4.60 · 1010 4.58 · 1010 4.58 · 1010 3.60 · 1010

7 21 2.20 · 1010 3.72 · 1010 3.72 · 1010 3.72 · 1010 2.20 · 1010 2.20 · 1010

8 24 1.34 · 1010 3.36 · 1010 3.36 · 1010 3.24 · 1010 1.34 · 1010 1.34 · 1010

9 27 7.08 · 1009 3.17 · 1010 3.17 · 1010 3.05 · 1010 8.42 · 1009 8.42 · 1009

Table 7: Results for the Bavarian postal data

problem is solved and a feasible solution is then constructed using this result. The drawback
of these methods is that it is often difficult to reach a good feasible solution from the solution
to the relaxed problem.

We have applied and compared both approaches for two different problems arising in
the field of data analysis, and carried out numerical experiments over several well-known
datasets. The main conclusion from these experiments that no method is universal: each
approach proved better than the other ones under different conditions.

4.1 First Experiment

The solution for the relaxed problem is much larger than the best obtained solution for
the real problem. As can be seen on table 5, only for one dataset (ionosphere), the results
were comparable. For two datasets (Australian Credit and segmentation), the value of the
function was more than 150 times larger for the relaxed solution. This may mean that the
relaxed solution is in fact quite far from the real solution, and that there may not be any
easy way of obtaining one from the other.

The other solvers applied showed a consistent efficiency: they were able to reach a
solution close to the global one for many of the problems. Each solver performed better for
some of the datasets. However the formulation of the problem proved to be crucial for both
CIAO-GO and AGOP: AGOP generally performed better for one formulation than for the
other. The fact that this was also dataset-dependent also shows that it is a difficult task to
know in advance which formulation will provide better solutions.

This means that the choice of the method or software to solve a problem is very problem-
dependent, but also that the formulation of the problem is very method-dependent. In other
terms, it is necessary to choose the best formulation in conjunction with the best software.

4.2 Second Experiment

In this case, the relaxation method performs better than the direct ones, at least in the case
of small datasets, the reason being that in many cases the result obtained on the convex
problem is feasible for the original one. Then this result is a global solution for the problem
at hand.

However, these two approaches are of different nature: the complexity of the nonconvex
formulation mainly depends on q, the number of clusters: the dimension of the optimization
problem is n× q, where n is the number of features.

On the other hand, the dimension of the relaxed problem does not depend on q, but
it depends on the number of records in the dataset. As a result, this method is highly
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impractical when the dataset is too large.

4.3 Summary

It seems quite difficult to know in advance which formulation suits better which software.
A careful study should be undertaken, in order to better understand this aspect.

A parade to this dependency can be applied when the dimension of the problem is not
too high: many software allow one to enter a solution as an initial one, or as a benchmark
to help the search. A solution can be obtained using one of the methods and entered as an
input for another method, in order to be improved.

Nevertheless, it is still beneficial to carry out a prior study of the aspects of the problem,
in order to adapt it best to the software (and conversely to chose an appropriate software).

In conclusion, convex relaxation seems mostly useful to provide an lower bound to the
global minimum. When the solution obtained appears feasible to the original constraints
(as is the case for the minimization of sum-of-squares problem), these method become very
efficient, as proved by on the sum-of-square function. However in the general case, general
purpose global algorithms provide a good alternative for finding a good feasible solution.

It should also be taken into account that for most optimization problems, the use of a
specialized solver can be very beneficial.
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