
STABILITY OF INEQUALITY SYSTEMS INVOLVING
MAX-TYPE FUNCTIONS
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Abstract: We study the stability of certain inequality systems that arise in monotonic analysis and are
defined by certain classes of abstract linear functions. We consider the non-negative orthant Rn

+ as a base
space and the class of abstract linear functions consisting of the family of the max-type functions of the
form a(x) := 〈a, x〉 = maxi=1,2,...,n aixi, with a and x in Rn

+. The stability, under perturbations of all
the coefficients, of the solution set mapping of systems of infinitely many max-type inequalities, {〈at, x〉 ≥
bt, t ∈ T} is studied from different points of view (lower semicontinuity, continuity in the Bouligand sense,
metric regularity, the existence of strong Slater points, adapted Robinson-Ursescu condition). Some Farkas
and Gale type solvability results are also presented.
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1 Introduction

In the preface of his remarkable book “Abstract Convexity and Global Optimization” [16],
A. Rubinov claims for the need of new tools in the analysis of the today complex optimiza-
tion problems. He also states that local approximation, and the subsequent techniques of
nonsmooth analysis, are of limited utility when one faces global optimization problems. They
require particular global tools and, so, generalizations of concepts like the convex subdiffer-
ential, should be addressed by means of notions as global affine support and its extensions.
The idea behind is the so-called convexity without linearity, theory known as abstract convex-
ity (see, also, [13]). This topic has an impressive number of applications, even in theoretical
fields, but its development has been mainly driven by applications in optimization. Very
recent papers as [3], [7], [11], [12], [17], [18], [19], [20], etc., show the maturity level reached
by the subject as well as the large number of applications.

Monotonic analysis is an advanced part of abstract convex analysis based on the use of
elementary functions which are monotone on cones; it has many applications in mathematical
economics (see e.g. [11]). In this paper we study the stability of inequality systems in Rn

+,
involving max-type functions of the form

〈a, x〉 := max
i∈I

aixi, x ∈ Rn
+,

where a ∈ Rn
+ and I := {1, 2, ..., n}. Semi-infinite systems σ := {〈at,x〉 ≥ bt, t ∈ T}

of max-type inequalities arise in monotonic analysis [16] describing the so-called co-normal
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subsets of Rn
+. If f is any increasing function defined on Rn

+, then the upper level sets{
x ∈ Rn

+ : f (x) ≥ c
}

are co-normal. We study the stability of the upper level set, F ={
x ∈ Rn

+ : f (x) ≥ 0
}
, of an abstract concave function depending on its representation as a

solution set of some associated abstract linear semi-infinite system. For instance, a con-
tinuous increasing positively homogeneous function f can be represented as the pointwise
infimum of a subset of functions of the form 〈a,x〉 − b, for some a ∈ Rn

+, b ∈ R, so it is an
abstract concave function, e.g. f (x) = inf {〈at,x〉 − bt, t ∈ T}, for some (possibly infinite)
index set T . The upper level set F of the function f is the solution set of the max-type
system σ := {〈at,x〉 ≥ bt, t ∈ T}.

The main objective of this paper is to study the stability of the solution set of σ =
{〈at, x〉 ≥ bt, t ∈ T}, F, under small perturbations of all the coefficients involved in the
system. Perturbations of the coefficients in the nominal system σ yield a new perturbed
system σ1 := {〈a1

t , x
〉 ≥ b1

t , t ∈ T}, and the associated perturbed solution set F1. The
perturbations should be sufficiently small to guarantee {a1

t , t ∈ T} ⊂ Rn
+. It is also assumed

that bt and b1
t are non-negative scalars, for all t ∈ T.

We consider as a parameter space the set Θ of all the max-type inequality systems on Rn
+,

with a fixed index set T. This parameter space can be identified with
(
Rn+1

+

)T
, since each

system σ can alternatively be represented by
{(

at

bt

)}
t∈T

. The system σ ∈ Θ is consistent if

its solution set F is non-empty. The subset of Θ formed by all the consistent systems will
be denoted by Θc.

The parameter space Θ is endowed with the topology of the uniform convergence of the
coefficient vectors, via the extended distance d : Θ×Θ → [0,+∞] given by

d (σ1, σ) := sup
t∈T

∥∥∥∥
(

a1
t

b1
t

)
−

(
at

bt

)∥∥∥∥ , (1.1)

where ‖·‖ is the l∞−norm in Rn+1 (i.e., ‖x‖ = maxi∈I |xi|). The condition that σ belongs
to the interior set of Θc is referred to as stability for the consistency.

Recently, López et al.,[9], have studied the stability of inequality systems involving min-
type functions of the form 〈a, x〉min := mini∈I aixi, for a, x ∈ Rn

++. They have found results
about solvability and stability in the environment of Rn

++ in some sense similar to the ones
we present here. One might think of a possible duality scheme by taking into account that
the max-type inequality 〈a, x〉max ≡ 〈a, x〉 ≥ b can be written as a min-type inequality
〈 1

a , 1
x 〉min ≤ 1

b through the variable transformation x 7→ 1
x , where 1

x is the vector defined
by

(
1
x

)
i

= 1
xi

if xi 6= 0 and by
(

1
x

)
i

= 0 if xi = 0. Nonetheless the results there and the
ones here cannot be obtained from one another as the following systems show: Consider the
max-type system

σ = {〈at, x〉 ≥ bt, t ∈ T} ≡ {〈at, x〉max ≥ bt, t ∈ T} (1.2)

and the corresponding min-type system

τ =
{〈 1

at
,
1
x

〉
min

≤ 1
bt

, t ∈ T
}

, (1.3)

where T = ]0,∞[ , at = (1/t, 1/t)T for t ∈ T , bt = 1/t , for t ≥ 1, and bt = 1 for 0 < t < 1.
Then, both are consistent systems but τ is stable with respect to the consistency while σ is
not (see Remark 4.4 in Section 4 below).

Next, we summarize the structure of the paper. Section 2 is devoted to notation and
preliminaries. Section 3 includes some solvability results relative to max-type systems which



STABILITY OF MAX-TYPE INEQUALITY SYSTEMS 363

are versions of Farkas and Gale alternative theorems. Section 4 provides different character-
izations of the stability of the feasible set mapping ; i.e., the set valued function F : Θ ⇒ Rn

+

that assigns to each σ ∈ Θ its solution set F . In this section we prove that the condition
that σ belongs to the interior set of Θc is equivalent to the lower semicontinuity of F at
σ (also equivalent in this case to the continuity in the Bouligand sense of F at σ), to the
existence of strong Slater points and to the adapted Robinson-Ursescu condition. In Section
5 we discuss some error bounds for the solution set F , linear regularity of the collection
{Ft, t ∈ T} of solution sets of the systems σt = {〈at, x〉 ≥ bt}, t ∈ T, and the metric
regularity of certain associated mapping.

2 Notation and Preliminary Results

As it is usual, given a non-empty set X of a topological space the symbols intX, cl X and
bd X stand for the interior, the closure and the boundary of X, respectively. If X is a
subset of a vector space then conv X and coneX will represent the convex hull and the
conical convex hull of X. Consider the n-dimensional vector space Rn with the l∞−norm.
This norm is symbolized by ‖·‖ , whereas B is the unit open ball for this norm. If n = 1 we
use R instead of R1. We also use the following notation:

• xi is the i-th coordinate of a vector x ∈ Rn;

• if x, y ∈ Rn, then x ≥ y ⇔ xi ≥ yi for all i = 1, . . . , n;

• if x, y ∈ Rn, then x > y ⇔ xi > yi for all i = 1, . . . , n;

• 0 is the null-vector in Rn;

• 1 is the vector in Rn whose coordinates are all equal to 1;

• limk will be interpreted as limk→∞;

• {xk} denotes the sequence x1, x2, ..., xk, ... ;

• Rn
+ := {x ∈ Rn : x ≥ 0};

• Rn
++ := {x ∈ Rn : x > 0};

• R+ := R+∪{+∞} and Rn

+ ≡ (R+)n;

• RT
+ is the set of all the functions defined from the set T into R+;

• if a ∈ Rn
+ and b ∈ R+ then b

a is the vector in Rn

+ whose i-th coordinate is b
ai

, where
we adopt the convention

b

0
=

{
0, if b = 0,
+∞, if b > 0; (2.1)

• if h : X → R+ then the effective domain of h is dom h := {x ∈ X | h(x) < +∞}.
A set U ⊂ Rn

+ is called co-normal if

x ∈ U, y ∈ Rn
+ and y ≥ x ⇒ y ∈ U.

The empty set is co-normal by definition. If f is an arbitrary increasing function defined
on Rn

+ then the level sets {x ∈ Rn
+ : f(x) ≥ c} are co-normal (possibly empty) for all c ∈ R.
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The intersection and the union of a family of co-normal sets are co-normal. The solution
set of σ = {〈at, x〉 ≥ bt, t ∈ T} is closed and co-normal.

It is obvious that a nonempty co-normal set U is co-radiant ; i.e., if x ∈ U and λ ≥ 1,
then λx ∈ U. Moreover, for each y > 0 a positive scalar λ exists such that λy ∈ U.

3 Solvability Results for Max-type Systems

Dual characterizations of the solvability of a max-type inequality system, σ = {〈at, x〉 ≥ bt,
t ∈ T}, are provided in this section. In the ordinary linear case there are well-known
alternative theorems of Farkas and Gale; here we present non-convex versions of them. In
[16, §8.2], Rubinov presents a very general non-linear extension of the classical Farkas lemma
for finite systems of linear inequalities and also a dual characterization of inconsistency. For
max-type systems we provide straightforward proofs which have the advantage of avoiding
the use of conjugation theory.

If
Ft :=

{
x ∈ Rn

+ | 〈at, x〉 ≥ bt

}
, t ∈ T,

one easily observes, taking into account (2.1), that

Ft = Rn
+�

{
x | 0 ≤ x <

bt

at

}
,

and, then, Ft = Rn
+ if bt = 0, and Ft = ∅ if at = 0 and bt > 0. The solution set of σ is,

accordingly,

F =
⋂

t∈T

Ft = Rn
+�

⋃

t∈T

{
x | 0 ≤ x <

bt

at

}

and, so,

σ ∈ Θc ⇔
⋃

t∈T

{
x | 0 ≤ x <

bt

at

}
6= Rn

+. (3.1)

The following proposition can be considered a Gale-type theorem:

Proposition 3.1. The system σ :={〈at, x〉≥ bt, t ∈T}∈ Θc if and only if sup
{

bt

‖at‖ , t ∈ T
}

<
∞.

(Here the supremum is taken in R+ as a consequence of (2.1).)

Proof. (⇒) If z ∈ F one has

bt ≤ 〈at, z〉 ≤ ‖at‖ ‖z‖ , for every t ∈ T.

If we divide by ‖at‖ (always having in mind (2.1)), we get

bt

‖at‖ ≤ ‖z‖ , for every t ∈ T.

(⇐) Reasoning by contradiction, σ /∈ Θc and (3.1) would yield the existence of a sequence
{tk} ⊂ T such that, in Rn

+,

btk

atk

> k1, k = 1, 2, ... .
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Thus, btk

‖atk‖ > k and we arrive to the contradiction

lim
k

btk

‖atk
‖ = ∞.

The following proposition is a semi-infinite abstract version of Farkas’ lemma.

Proposition 3.2. The inequality 〈a, x〉 ≥ b is a consequence of the system σ = {〈at, x〉 ≥ bt,
t ∈ T} if and only if

b

a
∈ cl

⋃

t∈T

{
u

∣∣∣∣0 ≤ u ≤ bt

at

}
, (3.2)

where the closure is taken in Rn

+.

Proof. Let us start with the inconsistent case; i.e., F = ∅. In this case every inequality
〈a, x〉 ≥ b is a trivial consequence of σ. According to (3.1), we also have

⋃

t∈T

{
u

∣∣∣∣0 ≤ u <
bt

at

}
= Rn

+,

and this entails

Rn

+ = cl(Rn
+)

= cl
⋃

t∈T

{
u

∣∣∣∣0 ≤ u <
bt

at

}

⊂ cl
⋃

t∈T

{
u

∣∣∣∣0 ≤ u ≤ bt

at

}
⊂ Rn

+.

Hence (3.2) trivially holds.
Now we approach the consistent case, F 6= ∅. Assume, first, that 〈a, x〉 ≥ b is a conse-

quence of the system σ and that, reasoning by contradiction, (3.2) fails. Next we make the
following discussion:

i) The possibility a = 0 and b > 0 is excluded because 〈a, x〉 ≥ b is a consequence of the
consistent system σ.

ii) b = 0 yields b/a = 0, which trivially belongs to the set
⋃

t∈T

{
u

∣∣∣0 ≤ u ≤ bt

at

}
, and

this possibility is also precluded by assumption.
iii) If a 6= 0 and (3.2) fails b must be positive (otherwise, b/a = 0 and the same contra-

diction that in ii) arises).
The unfulfillment of (3.2) entails the existence of a sufficiently large scalar M > 0 and a

sufficiently small ε > 0 such that the vector z whose components are

zi :=
{

b
ai
− ε, if ai > 0,

M, if ai = 0,

satisfy z ≥ 0 and

z /∈
⋃

t∈T

{
x | 0 ≤ x <

bt

at

}
.
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Therefore, z ∈ F and the current assumption implies 〈a, z〉 ≥ b. At the same time,

〈a, z〉 = max
{i:ai>0}

ai

(
b

ai
− ε

)
= max
{i:ai>0}

{b− aiε} < b,

and we get a new contradiction.
Conversely, let us assume that (3.2) holds and proceed with the following discussion:
i) If b = 0 it is obvious that 〈a, x〉 ≥ b is a consequence of the system σ.
ii) If a = 0 and b > 0, (3.2) reads

∞1 ∈ cl
⋃

t∈T

{
u

∣∣∣∣0 ≤ u ≤ bt

at

}
,

and there exist sequences {tk} ⊂ T and {uk} ⊂ Rn

+ such that

uk ≤ btk

atk

, k = 1, 2, ..., and uk ≥ k1.

Therefore,

lim
k

btk

‖atk
‖ = ∞,

and this contradicts σ ∈ Θc by virtue of Proposition 3.1.
iii) If a 6= 0, b > 0, and (3.2) is satisfied, there will exist sequences {tk} ⊂ T and

{uk} ⊂ Rn

+ such that

uk ≤ btk

atk

, k = 1, 2, ..., and
b

a
= lim

k
uk.

Because b > 0 there must exist k0 such that btk
> 0 for every k ≥ k0.

For each z ∈ F one has
〈atk

, z〉 ≥ btk
, k ≥ k0,

and there will exist an associated ik ∈ I such that the ik-th coordinate of the vector atk
,

which we denote here by atkik
, satisfies

atkik
zik

≥ btk
, k ≥ k0,

or, equivalently,

zik
≥ btk

atkik

, k ≥ k0.

Then, there must exist î ∈ I appearing infinitely many times in the inequalities above; i.e.,
there is a subsequence {kl} such that ikl

= î, and kl ≥ k0. Therefore,

zbi ≥
btkl

atkl
bi
≥ ukl

bi
, kl ≥ k0.

Taking limits for l →∞ we obtain zbi ≥ b/abi . Consequently,

〈a, z〉 ≥ abizbi ≥ b

and, certainly, the inequality 〈a, x〉 ≥ b is a consequence of σ.
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4 Stability of a Semi-infinite Max-type Inequality System

In this section we study the stability of the system σ = {〈at, x〉 ≥ bt, t ∈ T} ∈ Θc. At this
point, we have to emphasize the idea that stability is relative to the representation of the
set F = {x ∈ Rn

+ | x is solution of σ}, not to the set F itself. So, the same set F can have
“good” (stable) and “bad” (unstable) representations. To look for stable representations
of any relevant set in optimization underlies every pre-conditioning strategy in numerics.
Here we analyze some stability criteria studied in [1], in the context of ordinary nonlinear
programming, and in [4], [5], [6] and [8] relatively to semi-infinite linear programming. The
stability approach inspired in [14] does not apply here because the image sets of the mappings
considered in this section are in RT

+ (which is not a Banach space) and their graphs are not
convex.

Since we start from a consistent nominal system (σ ∈ Θc), a first stability criterion to be
considered is the stability with respect to the consistency. This property means that small
perturbations in the coefficients do not affect the consistency.

Definition 4.1. The system σ ∈ Θc is stable with respect to the consistency (stable, in brief)
if σ ∈ intΘc.

The following example shows that Θc is not an open set in our parameter space (Θ, d),
in which case the stability with respect to the consistency would be trivially fulfilled.

Example 4.2. Consider the system in R2
+

σ =
{
max {tx1, tx2} ≥ t2, t ∈ [0, 1]

}
.

Observe that 1 is a solution of σ and, so, σ ∈ Θc. Consider the perturbed system

σk =
{
max

{
ak

t1x1, a
k
t2x2

} ≥ t2, t ∈ [0, 1]
}

, k = 1, 2, ...,

where

ak
t1 = ak

t2 =
{

t, if t ∈] 1
k , 1],

0, if t ∈ [0, 1
k ].

We have
d(σk, σ) = sup

0≤t≤1/k

t =
1
k

,

and limk d(σk, σ) = 0. Since σk /∈ Θc we must conclude that σ ∈ bd Θc.

The following proposition provides a very simple criterion to recognize the stability with
respect to the consistency.

Proposition 4.3. Let σ = {〈at, x〉 ≥ bt, t ∈ T} ∈ Θc. Then σ ∈ intΘc if and only if

0 /∈ cl{at, t ∈ T}.
Proof. (⇒) Reasoning by contradiction, let us assume that

0 ∈ cl{at, t ∈ T}.
In this case we will see how to construct a sequence {σk} ⊂ Θ�Θc converging to σ, which
contradicts our present hypothesis.

Because 0 ∈ cl{at, t ∈ T}, there will exist a sequence {tk} ⊂ T such that limk atk
= 0.

(If there is a t0 ∈ T such that at0 = 0, we shall take tk = t0, for every k.)
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Let σk = {〈ak
t , x

〉 ≥ bk
t , t ∈ T}, k = 1, 2, ..., with

ak
t :=

{
0, if t = tk,
at, if t ∈ T�{tk},

and

bk
t :=

{
max { 1

k ,btk
} if t = tk,

bt, if t ∈ T�{tk}.
Therefore,

d(σk, σ) ≤ max{‖atk
‖ ,

1
k
}, k = 1, 2, ...,

and σk → σ. At the same time, σk /∈ Θc because the inequality

〈
ak

tk
, x

〉
= 〈0, x〉 ≥ bk

tk
≥ 1

k
,

is itself inconsistent.
(⇐) Since 0 /∈ cl{at, t ∈ T}, there will exist δ > 0 such that

‖at‖ > δ, for every t ∈ T.

Consider any possible system σ1 := {〈a1
t , x

〉 ≥ b1
t , t ∈ T} ∈ Θ such that d(σ1, σ) < δ/2.

We shall prove that σ1 ∈ Θc, which implies σ ∈ intΘc.
Since σ ∈ Θc, and by Proposition 3.1, there exists M > 0 such that

bt

‖at‖ ≤ M, for all t ∈ T.

The definition of ‖at‖ entails the existence of it ∈ I, associated with each t ∈ T, such that
‖at‖ = atit

. Then we obtain, for any t ∈ T,

b1
t

‖a1
t‖
≤ b1

t

a1
tit

<
bt + δ

2

atit
− δ

2

=
bt

‖at‖ + δ
2‖at‖

1− δ
2‖at‖

≤ M + 1
2

1− 1
2

= 2M + 1,

and hence σ1 ∈ Θc, again by Proposition 3.1.

Remark 4.4. We can apply this proposition to the consistent system σ (1.2) described
in the introduction to see easily that it is not stable with respect to the consistency. The
associated min-type system τ (1.3) is stable in this sense by a direct application of the
condition given in the Proposition 4.1 in [9] because inf {1/bt, t ∈ T} > 0.

Generically, in optimization, the stability of the feasible set is related to the existence of
strict feasible solutions which, in the semi-infinite context, are called strong Slater points.

Definition 4.5. The system σ = {〈at, x〉 ≥ bt, t ∈ T} is said to satisfy the strong Slater
condition (SS condition, in short) if there exist x0 and η > 0 such that

〈
at, x

0
〉 ≥ bt + η, for

all t ∈ T. In this case x0 is called an SS point of σ.
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Proposition 4.6. σ ∈ intΘc if and only if σ satisfies the strong Slater condition.

Proof. (⇒) By Proposition 3.1 there exists M > 0 such that

bt

‖at‖ ≤ M, for all t ∈ T, (4.1)

and Proposition 4.3 provides the existence of δ > 0 such that

‖at‖ ≥ δ, for all t ∈ T. (4.2)

Then, for every t ∈ T,

〈at, (M + 1)1〉 = (M + 1) ‖at‖ ≥ bt + δ,

and (M + 1)1 is an SS point with positive slack η = δ.
(⇐) If x0 is an SS point with slack η > 0, we have

〈
at, x

0
〉 ≥ bt + η, for every t ∈ T,

and this entails x0 6= 0. Then,

‖at‖
∥∥x0

∥∥ ≥ 〈
at, x

0
〉 ≥ bt + η ≥ η.

Thus,
‖at‖ ≥ η

‖x0‖ , for every t ∈ T,

and Proposition 4.3 applies to conclude that σ ∈ intΘc.

The following propositions provide additional information about the SS points.

Proposition 4.7. If σ ∈ intΘc and z > 0 is feasible for σ, then λz is an SS point for all
λ > 1.

Proof. The reasoning used in the proof of the direct statement in Proposition 4.6 guarantees
the existence of K > 0 such that K1 is an SS point. Moreover, for ρ sufficiently large we can
be sure that K1 ≤ ρz, and ρz will be also an SS point. We shall deal with the non-trivial
case ρ > λ > 1.

Let us introduce now the function h : R+ → R defined by

h(µ) := inf
t∈T

(〈at, z〉µ− bt).

h is a increasing concave function (infimum of affine functions) and, so, for any possible
λ ∈]1, ρ[,

h(λ) = h

(
ρ− λ

ρ− 1
1 +

λ− 1
ρ− 1

ρ

)

≥ ρ− λ

ρ− 1
h(1) +

λ− 1
ρ− 1

h(ρ)

≥ λ− 1
ρ− 1

h(ρ).

Since ρz is an SS point, h(ρ) > 0 and, consequently, λz is an SS point with slack (λ −
1)h(ρ)/(ρ− 1).

Finally, if λ ≥ ρ it is absolutely obvious that λz is again an SS point.
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Remark 4.8. The condition z > 0 cannot be omitted in the last proposition, as the
following example shows.

Example 4.9. Consider the system in R2
+

σ = {max {tx1, (1− t)x2} ≥ t, t ∈ [0, 1]} .

Observe that z =
(
1
0

)
is a solution of σ, but λz with λ > 1 is not an SS point, because the

inequality associated with t = 0 does not allow for a positive slack at this point

max{0 · λ, 1 · 0} = 0 ≥ 0.

Corollary 4.10. If σ ∈ intΘc and z ∈ intF, then z is an SS point for σ.

Proof. z ∈ intF entails z > 0 and the existence of λ ∈]0, 1[ such that λz ∈ F. Then, we
write z = 1

λ (λz) and Proposition 4.7 applies.

Remark 4.11. If x0 > 0 is SS point for σ, then x0 does not need to belong to intF .

Example 4.12. Let us consider the system in R2
+

σ = {max {tx1, tx2} ≥ t− 1, t ∈ [1,∞[} .

Observe that z =
(
1
1

)
is an SS point (with positive slack η = 1), but z /∈ intF, because(

λ
λ

)
/∈ F, for every λ ∈ [0, 1[.

The following characterizations of the stability of σ are formulated as properties of the
feasible set mapping F : Θ ⇒ Rn

+, which assigns to each σ ∈ Θ its solution set F ; i.e.,
F(σ) = F . Remember that F is lower semicontinuous in the Berge sense (B-lsc, in brief)
at σ ∈ Θc if, for each open set relative to Rn

+, W, such that F(σ) ∩W 6= ∅, there exists an
open set U, relative to Θ, containing σ and such that F(σ1) ∩W 6= ∅ for every σ1 ∈ U.

Proposition 4.13. Let σ ∈ Θc. Then σ ∈ intΘc if and only if the feasible set mapping F
is B-lsc at σ.

Proof. (⇐) It is obvious from the very definition of the lower semicontinuity.
(⇒) Suppose that σ ∈ intΘc and that W is an open set relative to Rn

+ such that
F(σ) ∩ W 6= ∅. We shall prove the existence of δ > 0 such that σ1 ∈ Θ and d(σ1, σ) < δ
imply F(σ1) ∩W 6= ∅.

Pick a point y ∈ F(σ)∩W. It is obvious that we can find z ∈ F(σ)∩W such that z > 0
(take z = y + ε1 with ε > 0 small enough). If λ > 1 is sufficiently close to 1 we can be sure
that λz ∈ W and, by Proposition 4.7, λz is an SS point for σ with some positive slack η.

If we define δ := η
1+λ‖z‖ , and σ1 = {〈a1

t , x
〉 ≥ b1

t , t ∈ T} ∈ Θ verifies d(σ1, σ) < δ, we
can write, for every t ∈ T,

〈
a1

t , λz
〉

= λ max
i∈I

a1
ti

zi > λ max
i∈I

(ati
− δ)zi

≥ λ{(max
i∈I

atizi)− δ ‖z‖} = 〈at, λz〉 − λδ ‖z‖

≥ bt + η − λη ‖z‖
1 + λ ‖z‖

= bt +
η

1 + λ ‖z‖ = bt + δ > b1
t .
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Hence, λz ∈ F(σ1) ∩W, and this set is obviously non-empty.

In relation to our feasible set mapping F , we shall consider the inner limit lim infbσ→σ F (σ̂)
which is the set of points that are limit points of sequences {xr} , xr ∈ F (σr), for all pos-
sible sequences {σr}, σr → σ; whereas the outer limit lim supbσ→σ F (σ̂) consists of all
possible cluster points of such sequences. When F (σ) = lim supbσ→σ F (σ̂) it is said that F
is outer semicontinuous (osc) at σ and, similarly, F is inner semicontinuous (isc) at σ if
F (σ) = lim infbσ→σ F (σ̂) . Following [15] we say that F is continuous in the Bouligand sense
at σ ∈ Θc if

lim infbσ→σ F(σ̂) = lim supbσ→σ F (σ̂) = F (σ) ;

i.e., if F is simultaneously osc and isc at σ. The continuity in the Bouligand sense is equivalent
to require that limbσ→σ F(σ̂) = F (σ) in the sense of Painlevé-Kuratowski.

According to [15], the inner semicontinuity of F at σ is equivalent to the lower semi-
continuity of F at σ (in the sense of Berge). Moreover, the outer semicontinuity of F at σ
is equivalent to the closedness of F at σ, property that is defined in the following terms,
relatively to F :

F is closed at σ ∈ Θc if, for all sequences {σk} ⊂ Θc and
{
zk

} ⊂ Rn
+ satisfying limk σk =

σ, limk zk = z and zk ∈ F (σk), one has z ∈ F (σ) .

The following result has its convex semi-infinite counterpart in Theorem 4.1 in [10].

Proposition 4.14. Let σ ∈ Θc. Then σ ∈ intΘc if and only if the feasible set mapping F
is continuous in the Bouligand sense at σ.

Proof. According to the comments above the only thing that is still to be proved is that F is
always closed at any σ ∈ Θc, but this property is a straightforward consequence of the fact
that all the coefficients of the systems in {σk} are pointwise convergent to the coefficients
of σ and also of the continuity of 〈·, ·〉 .

The last characterizations of the stability of F given in this paper are related with
the relevant property of metric regularity. They also bring the appealing conclusion that
σ ∈ intΘc is equivalent to the fact that σ remains consistent for small perturbations of the
intercepts bt, t ∈ T.

Associated with the fixed function a : T → Rn
+, let us introduce the set valued function

M : Rn
+ ⇒ RT

+ defined by

M(x) := {f ∈ RT
+ | 〈a(·), x〉 ≥ f(·)}.

Given the function b ∈ RT
+, we have b ∈ M(z) if and only if z is a solution of the system

{〈at, x〉 ≥ bt, t ∈ T}. In other words, M−1 is the feasible set mapping restricted to those
systems with fixed at, t ∈ T. The following definition is based on [14].

Definition 4.15. The system σ = {〈at, x〉 ≥ bt, t ∈ T} satisfies the Robinson-Ursescu
condition if b ∈ intM(Rn

+).

Proposition 4.16. Given σ ∈ Θc, σ ∈ intΘc if and only if σ satisfies the Robinson-Ursescu
condition.

Proof. b ∈ intM(Rn
+) if there is δ > 0 such that supt∈T |h(t)| ≤ δ and b+h ∈ RT

+ conjointly
entail b + h ∈M(Rn

+).
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(⇒) Let δ > 0 be a scalar such that σ1 ∈ Θ and d(σ1, σ) ≤ δ entail σ1 ∈ Θc. Let
h : T → R be an arbitrary function satisfying |h(t)| ≤ δ, for every t ∈ T, and such that
bt + h(t) ≥ 0, for all t ∈ T. Then

σ1 = {〈at, x〉 ≥ bt + h(t), t ∈ T} ∈ Θc,

and we can pick a point z1 ∈ F1 and observe that
〈
at, z

1
〉 ≥ bt + h(t), for every t ∈ T,

entails b + h ∈M(z1) ⊂M(Rn
++). Since h is arbitrary, we conclude that b ∈ intM(Rn

+).
(⇐) If b ∈ intM(Rn

+), and η > 0 is sufficiently small, the constant function h(t) = η, for
every t ∈ T, satisfies b + h ∈ M(Rn

+). Hence a point x0 exists such that
〈
at, x

0
〉 ≥ bt + η,

for every t ∈ T, and x0 is an SS point. If we apply Proposition 4.6, the proof is finished.

Remark 4.17. From a theoretical point of view all the Propositions 4.3, 4.6, 4.13, 4.14
and 4.16 could be used to analyze the stability of the inequality system. Nonetheless, for
practical reasons, Proposition 4.3 is very simple to apply just by looking into the set of
the coefficients at; also, by finding a strong Slater point of the system σ one can directly
apply Proposition 4.6. So, these two propositions are quite useful in order to establish the
stability of the systems; in fact they can be checked to conclude the validity of the B-lsc or
Bouligand-continuity of the feasible set mapping F or of the Robinson-Ursescu condition of
the system σ.

5 Metric regularity and error bounds

Definition 5.1. Given σ = {〈at, x〉 ≥ bt, t ∈ T} ∈ Θc and z ∈ F(σ), we say that M is
metrically regular at z for b if there exist two positive scalars k and ε such that

d(y,M−1(b1)) ≤ kd(b1,M(y)), (5.1)

provided that y ∈ Rn
+, b1 ∈ RT

+, and

‖y − z‖ < ε, sup
t∈T

∣∣b1
t − bt

∣∣ < ε. (5.2)

In our context, it can be easily checked that

d(b1,M(y)) = sup
t∈T

(b1
t − 〈at, y〉)+,

with a+ := max{a, 0}.
Proposition 5.2. Let σ = {〈at, x〉 ≥ bt, t ∈ T} ∈ Θc. Then σ ∈ intΘc if M is metrically
regular at z for b, for every z ∈ F.

Proof. We shall prove that σ satisfies the Robinson-Ursescu condition and, then, apply
Proposition 4.16.

Take z ∈ F and let k and ε be a pair of positive scalars such that (5.1) holds provided that
the conditions (5.2) are fulfilled. Reasoning by contradiction, assume that b ∈ bdM(Rn

+),
which entails the existence of a function h : T → R satisfying |h(t)| ≤ ε

2 , for every t ∈ T,
such that b + h ∈ RT

+ and
b + h /∈M(Rn

+). (5.3)
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If b1 := b+h, it is evident that supt∈T

∣∣b1
t − bt

∣∣ ≤ ε
2 < ε and thatM−1(b1) = ∅. Nevertheless,

sup
t∈T

(b1
t − 〈at, z〉)+ = sup

t∈T
(bt + h(t)− 〈at, z〉)

≤ sup
t∈T

|h(t)|+ sup
t∈T

(bt − 〈at, z〉)

≤ ε

2
,

whereas d(z,M−1(b1)) = d(z, ∅) = +∞, and this contradicts (5.1) for y = z.

(Notice that (5.1) can be valid when M−1(b1) = ∅, but in this case the value of
supt∈T (b1

t − 〈at, y〉)+ must be +∞.)

We have just shown that the metric regularity at any point of F for b implies the stability
with respect to the consistency of the system σ . With respect to the reverse implication,
we show the existence of a global error bound on any cone K in Rn

+ defined by the condition
mini yi

maxi yi
> γ, where γ is any fixed positive real number. This property will allow us to prove

the converse implication to Proposition 5.2 at any z > 0.

Theorem 5.3. Let δ and γ be any pair of positive real numbers. If σ = {〈at, x〉 ≥ bt, t ∈
T} ∈ Θc is such that ‖at‖ ≥ δ for all t ∈ T , then

d
(
y,M−1

(
b1

)) ≤ 1
δγ

d
(
b1,M (y)

)
, (5.4)

for any b1 ∈ RT
+ and for all y ∈ Rn

+ with mini yi

maxi yi
> γ. Moreover, for y = 0 it holds:

d
(
0,M−1

(
b1

)) ≤ 1
δ
d

(
b1,M (0)

)
.

Proof. i) The case M−1
(
b1

) 6= ∅, mini yi

maxi yi
> γ. Without loss of generality we may assume

that d
(
y,M−1

(
b1

))
> 0 and d

(
b1,M (y)

)
< +∞. Since d(y,M−1(b1)) > 0 we have

0 < sup
t∈T

(b1
t − 〈at, y〉)+ = sup

t∈T
(b1

t − 〈at, y〉) < ∞. (5.5)

Let us introduce the function h : R→ R defined by

h(λ) := sup
t∈T

(b1
t − 〈at, y〉λ).

We have 0 < h(1) < ∞, by (5.5). Moreover, h is a lsc decreasing convex function (supremum
of affine functions) and, so, it is continuous on [1,+∞[. (It is evident that [1,+∞[⊂ dom h.)

Suppose that λ1 > 1 is taken large enough to guarantee λ1y ∈M−1(b1) and, so, h(λ1) ≤
0 (this is possible because y > 0, as a consequence of the condition mini yi

maxi yi
> γ > 0). The

Bolzano theorem provides λ0 ∈]1, λ1] satisfying h(λ0) = 0 and, accordingly, λ0y ∈M−1(b1).
Now

d(y,M−1(b1)) ≤ ‖y − λ0y‖ = (λ0 − 1) ‖y‖ ,
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and thus,

d
(
b1,M (y)

)
= sup

t∈T
(b1

t − 〈at, y〉)+

= sup
t∈T

(b1
t − 〈at, y〉)

= sup
t∈T

{
b1
t − 〈at, λ0y〉+ (λ0 − 1) 〈at, y〉

}

≥ sup
t∈T

{
b1
t − 〈at, λ0y〉+ (λ0 − 1) ‖at‖min

i∈I
yi

}

≥ h(λ0) + (λ0 − 1)δ min
i∈I

yi

= 0 + (λ0 − 1) ‖y‖ δ
mini∈I yi

maxi∈I yi

≥ δγd(y,M−1(b1)).

ii) The caseM−1
(
b1

)
= ∅, y ∈ Rn

+. Obviously, d(y,M−1(b1)) = +∞. We will show that
d

(
b1,M (y)

)
= +∞ as well. Observe thatM−1

(
b1

)
= ∅ gives that supt∈T

(
b1
t / ‖at‖

)
= +∞

by virtue of Proposition 3.1. Now,

d
(
b1,M (y)

)
= sup

t∈T
(b1

t − 〈at, y〉)+

= sup
t∈T

(b1
t − 〈at, y〉)

≥ sup
t∈T

(
b1
t − ‖at‖ ‖y‖

)

= sup
t∈T

‖at‖
(

b1
t

‖at‖ − ‖y‖
)

≥ δ sup
t∈T ′

(
b1
t

‖at‖ − ‖y‖
)

= δ sup
t∈T ′

(
b1
t

‖at‖
)
− ‖y‖

= +∞,

where T ′ =
{

t ∈ T : b1t
‖at‖ > ‖y‖

}
.

iii) The case y = 0. Now,

d
(
b1,M (0)

)
= sup

t∈T

(
b1
t − 〈at,0〉

)+
= sup

t∈T
b1
t = B1.

If B1 = +∞ there is nothing to prove. For B1 < +∞ put x = B1

δ 1 and observe that

〈at, x〉 =
B1

δ
‖at‖ ≥ B1 ≥ bt,

for all t ∈ T . Hence x ∈M−1(b1) and, so

d
(
0,M−1

(
b1

)) ≤ ‖x‖ =
B1

δ
=

1
δ
d

(
b1,M (0)

)
.
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Remark 5.4. Notice that we have actually proved that

d(y,M−1(b1)) = +∞ = d
(
b1,M (y)

)
,

for all y ∈ Rn
+ , whenever the system σ1 = {〈at, x〉 ≥ b1

t , t ∈ T} is not consistent.

Corollary 5.5. Let σ = {〈at, x〉 ≥ bt, t ∈ T} ∈ intΘc, then M is metrically regular at z
for b, for every z ∈ F such that z > 0.

Proof. Let z > 0, take ε = 1
2 mini∈I zi > 0 and γ = ε

‖z‖+ε . Since σ ∈ intΘc, Proposition 4.3
gives the existence of δ > 0 such that ‖at‖ ≥ δ, for every t ∈ T. Moreover, if y ∈ Rn

+ and
‖y − z‖ < ε, then

min
i∈I

yi ≥ min
i∈I

zi − ε = 2ε− ε = ε

and
max
i∈I

yi ≤ max
i∈I

zi + ε = ‖z‖+ ε,

so
mini∈I yi

maxi∈I yi
≥ γ.

By the last theorem we get

d
(
y,M−1

(
b1

)) ≤ kd
(
b1,M (y)

)
,

for k = 1
δγ = ‖z‖+ε

δε . Therefore, (5.1) holds at z for b. (Notice that we do not establish any
condition on b1.)

The following property, which is called linear regularity (see, for instance, [2] will allow
us to prove, under an extra condition on the coefficients a′ts, the existence of a global error
bound in Rn

+.

Proposition 5.6. If Ft = {x ∈ Rn
+/ 〈at, x〉 ≥ bt }, t ∈ T, F = ∩t∈T Ft 6= ∅ and y ∈ Rn

+,
then

d (y, F ) = sup
t∈T

d (y, Ft) = sup
t∈T

min
i∈I+(at)

(
bt

ati

− yi

)+

,

where I+ (at) = {i ∈ I : ati 6= 0}. (In case of at = 0 we consider mini∈I+(at)

(
bt

ati
− yi

)+

=
0.)

Proof. Notice that the second equality follows immediately from the definition of Ft. We
will show the first one. Let y ∈ Rn

+ and rt = d (y, Ft) for all t ∈ T . Put r := supt∈T rt.
Since Ft ⊃ F it follows that rt ≤ d (y, F ); hence

r = sup
t∈T

d (y, Ft) ≤ d (y, F ) .

Now, due to the fact that each Ft is co-normal, y+rt1 ∈ Ft. From r ≥ rt we have y+r1 ∈ Ft

for all t ∈ T , i.e. y + r1 ∈ F and so d (y, F ) ≤ r. Therefore d (y, F ) = r = supt∈T d (y, Ft) .

Remark 5.7. The very definition of the linear regularity property of the collection {Ft, t ∈
T} reads as d (y, F ) ≤ k supt∈T d (y, Ft) for some positive constant k. In our case this
family of co-normal sets is strongly linearly regular in the sense that actually the equality
d (y, F ) = supt∈T d (y, Ft) holds true.
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Proposition 5.8. If σ = {〈at, x〉 ≥ bt, t ∈ T} ∈ Θc and

inf {ati
: i ∈ I+ (at) , t ∈ T} = γ > 0,

then the solution set F has a global error bound on Rn
+ with bound k ≤ γ−1.

Proof. Take y ∈ Rn
+. If y ∈ F there is nothing to prove; assume that y /∈ F , then

d (y, F ) = sup
t∈T

d (y, Ft)

= sup
t∈T

min
i∈I+(at)

(
bt

ati

− yi

)+

= sup
t∈T

min
i∈I+(at)

(
bt

ati

− yi

)

= sup
t∈T

min
i∈I+(at)

1
ati

(bt − ati
yi)

≤ 1
γ

sup
t∈T

min
i∈I+(at)

(bt − atiyi)

=
1
γ

sup
t∈T

(
bt − max

i∈I+(at)
atiyi

)

=
1
γ

sup
t∈T

(bt − 〈at, y〉)

=
1
γ

d (b,M (y)) .

Finally, we show that, under this last condition on the coefficients, the stability of σ with
respect to the consistency yields the metric regularity, i.e., the reverse implication of (5.1).

Theorem 5.9. If σ = {〈at, x〉 ≥ bt, t ∈ T} ∈ intΘc and

inf {ati : i ∈ I+ (at) , t ∈ T} = γ > 0,

then
d

(
y,M−1

(
b1

)) ≤ 1
γ

d
(
b1,M (y)

)
,

for any b1 ∈ RT
+ and all y ∈ Rn

+. In particular, M is metrically regular at any y ∈ F for b.

Proof. Our present assumption leads, by virtue of Proposition 4.3, to the existence of δ > 0
such that ‖at‖ ≥ δ, for every t ∈ T . If b1 ∈ RT

+ is such that M−1
(
b1

)
= ∅, then the

Remark 5.4 gives that both terms are +∞. If b1 ∈ RT
+ is such that its associated system

σ1 = {〈at, x〉 ≥ b1
t , t ∈ T} is consistent, an application of Proposition 5.8 to σ1 yields the

result.

In view of Proposition 5.2 we get the following characterization for finite systems.

Corollary 5.10. If T is finite and σ is consistent, then σ ∈ intΘc if and only if M is
metrically regular at any z ∈ F for b.
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[4] M. Cánovas, M.A. López, J. Parra and M.I. Todorov, Stability and well-posedness in
linear semi-infinite programming, SIAM J. Optim. 10 (1999) 82–98.
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