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1 Introduction

The concept of ε-solution is very adaptable for the cases that the feasible regions are non-
convex or non closed sets. In fact, the original problems are the special cases of ε- approxi-
mate problems such as the famous Ekland’s variational principle, which is an ε-solution rule
for optimization problem. The concept of ε-solution also is the basis of numerical comput-
ing, e.g., stability, well-posedness and so on. The interesting example of the ε-equilibrium
problem is the generalized game for ε-strategy in economics.

The notion of approximate solutions adapted in this paper follows from the concept of
ε-efficiency originally introduced in multiple objective programming by Loridan [16] in 1984.
Two years later, White [27] introuduced six alternative definitions of ε-efficent solutions and
established the relationships between these concepts. ε-efficiency for more general vector
optimization problems are considered in [19, 21]. For the concept of ε-solution for (vector)
variational inequality problem, Tammer [22, 23] studied the existence and the generaliza-
tion of Ekeland’s variational priciple. Since vector equilibrium problem is a very general
mathematical model covering vector optimization, vector variational inequalities and so on
as special cases, the main motivation of this paper is to study the behavior of the solution
map of the parametric vector equlibrium problems by following the idea of Loridan [16].

Let X be a real Hausdorff topological vector space and Z a real topological vector space.
A set C ⊂ Z is said to be a cone if λx ∈ C for any λ ≥ 0 and for any x ∈ C. The cone
C is called solid if it has nonempty interior, i.e., intC 6= ∅. A cone C is said to be pointed
if C ∩ (−C) = {θZ} where θZ denotes the zero vector of Z. For any set A ⊂ Z, we let
bd A and cl A denote the boundary and closure of A, respectively. Also, we denote Ac the
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complement of the set A. For any set A of a real vector space, the convex hull of A, denoted
by co A, is the smallest convex set containing A.

Let f : X × X → Z and ∅ 6= K ⊂ X. For fixed ε ∈ intC, the ε-vector equilibrium
problem (ε-VEP, for short) is to find x ∈ K such that

(ε-VEP) f(x, y) + ε /∈ −intC, for all y ∈ K.

Let Ω : intC → 2X be the set-valued mapping such that Ω(ε) is the solutions set of
ε-VEP for ε ∈ intC, i.e.,

Ω(ε) = {x ∈ K : f(x, y) + ε /∈ −intC, for all y ∈ K}.
We remark that ε-VEP is closely related to the vector equilibrium problem (VEP) which

is to find x ∈ cl K such that

(VEP) f(x, y) /∈ −intC, for all y ∈ K.

Let S denote the solution set of VEP, i.e.,

S = {x ∈ cl K : f(x, y) /∈ −intC for all y ∈ K}.
If K is closed, then VEP becomes the ordinary vector equilibrium problem. The classical
vector equilibrium problems and its extensions have been extensively studied in the litera-
ture. See, [1, 2, 3, 4, 6, 7, 8, 14, 20, 28] and the references therein. We may regard solutions
of ε-VEP as approximate solutions of the problem VEP. We remark that S 6= ∅ does not
imply Ω(ε) 6= ∅, for all ε ∈ intC.

Example 1.1. Let X = R, Z = R2, C = R2
+, and K =

(
0,

π

2

)
. Suppose that f : X×X → Z

is defined by

f(x, y) =
( −|x · tan y|
−|x2 · tan y|

)
.

Then 0 ∈ S but Ω(ε) = ∅ for each ε > 0.

The purpose of this paper is to establish relationship between the sets Ω(ε) and S for
ε ∈ intC. We also investigate continuities of the solution mapping Ω : intC → 2X . In
particular, a result concerning the lower semicontinuity of Ω is presented.

We observe that our results in this paper can be employed to study the behavior of
solution maps of parametric vector optimization, parametric vector variational inequalities,
parametric generalized games and so on.

2 Preliminaries

Definition 2.1 (C-quasiconvexity, [10, 17, 24]). Let X be a vector space, and Z also a
vector space with a partial ordering defined by a pointed convex cone C. Suppose that K is
a convex subset of X and that f is a vector-valued function from K to Z. Then, f is said
to be C-quasiconvex on K if it satisfies one of the following two equivalent conditions:

(i) for each x1, x2 ∈ K and λ ∈ [0, 1],

f(λx1 + (1− λ)x2) ∈ z − C, for all z ∈ C(f(x1), f(x2)),

where C(f(x1), f(x2)) is the set of upper bounds of f(x1) and f(x2), i.e.,

C(f(x1), f(x2)) := {z ∈ Z : z ∈ f(x1) + C and z ∈ f(x2) + C}.
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(ii) for each z ∈ Z,
A(z) := {x ∈ K : f(x) ∈ z − C}

is convex or empty.

Definition 2.2 (C-proper quasiconvexity, [24]). Let X be a vector space, and Z also
a vector space with a partial ordering defined by a pointed convex cone C. Suppose that K
is a convex subset of X and that f is a vector-valued function from K to Z. Then, f is said
to be C-properly quasiconvex on K if for every x1, x2 ∈ K and λ ∈ [0, 1] we have either

f(λx1 + (1− λ)x2) ∈ f(x1)− C,

or
f(λx1 + (1− λ)x2) ∈ f(x2)− C;

f is said to be strictly C-properly quasiconvex on K if for every x1, x2 ∈ K and λ ∈ (0, 1)
we have either

f(λx1 + (1− λ)x2) ∈ f(x1)− intC,

or
f(λx1 + (1− λ)x2) ∈ f(x2)− intC.

Usually we define cone concavity of f by the fact that −f is cone convex. However the
following definition for cone concavity is also natural.

Definition 2.3 (C-quasiconcavity). Let X be a vector space, and Z also a vector space
with a partial ordering defined by a pointed convex cone C. Suppose that K is a convex
subset of X and that f is a vector-valued function from K to Z. Then, f is said to be
C-quasiconcave on K if for each z ∈ Z, the following set:

{x ∈ K : f(x) /∈ z − intC}

is convex or empty; f is said to be strictly C-quasiconcave on K if for each z ∈ Z, the
following set:

{x ∈ K : f(x) /∈ z − cl C}
is convex or empty.

Proposition 2.4. Let X be a nonempty compact subset of a real topological vector space and
Z a real topological vector space with a proper solid convex cone C. Suppose that f : X → Z
is (−C)-properly quasiconvex on X. Then f is C-quasiconcave on X.

Proof. Let z ∈ Z and x1, x2 ∈ {x ∈ X : f(x) /∈ z − intC}. Since f is (−C)-properly
quasiconvex on X, for each x′ ∈ [x1, x2]

f(x′) ∈ {f(x1), f(x2)}+ intC.

Hence f(x′) /∈ z − intC. Therefore {x ∈ X : f(x) /∈ z − intC} is convex on X, i.e., f is
C-quasiconcave on X.

Definition 2.5 (C-continuity, [17, 25]). Let X be a topological space, and Z a topological
vector space with a partial ordering defined by a solid pointed convex cone C. Suppose that
f is a vector-valued function from X to Z. Then, f is said to be C-continuous at x ∈ X if
it satisfies one of the following two equivalent conditions:
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(i) For any neighbourhood Vf(x) ⊂ Z of f(x), there exists a neighbourhood Ux ⊂ X of x
such that f(u) ∈ Vf(x) + C for all u ∈ Ux.

(ii) For any k ∈ intC, there exists a neighbourhood Ux ⊂ X of x such that f(u) ∈
f(x)− k + intC for all u ∈ Ux.

Moreover a vector-valued function f is said to be C-continuous in X if f is C-continuous
at every x on X.

Remark 2.6. Whenever Z = R and C = R+, C-continuity and (−C)-continuity are the
same as ordinary lower and upper semicontinuity, respectively. In [25, Definition 2.1], C-
continuous function is called C-lower semicontinuous function, and (−C)-continuous func-
tion is called C-upper semicontinuous function.

Proposition 2.7 ([24, Proposition 2.1]). Let X be a topological space, and Z a topological
vector space with a partial ordering defined by a solid pointed convex cone C. Suppose that
f is a vector-valued function from X to Z. Then f is C-continuous on X if and only if for
each z ∈ Z, f−1(z + intC) is an open subset of X.

Definition 2.8 ([5]). Let X and Y be two topological spaces, T : X → 2Y a set-valued
mapping.

(i) T is said to be upper semicontinuous (u.s.c. for short) at x ∈ X if for each open set V
containing T (x), there is an open set U containing x such that for each z ∈ U, T (z) ⊂
V ; T is said to be u.s.c. on X if it is u.s.c. at all x ∈ X.

(ii) T is said to be lower semicontinuous (l.s.c. for short) at x ∈ X if for each open
set V with T (x) ∩ V 6= ∅, there is an open set U containing x such that for each
z ∈ U, T (z) ∩ V 6= ∅; T is said to be l.s.c. on X if it is l.s.c. at all x ∈ X.

(iii) T is said to be continuous at x ∈ X if T (x) is both u.s.c. and l.s.c.; T is said to be
continuous on X if it is both u.s.c. and l.s.c. at each x ∈ X.

From [11, 18], we obtain the following lemma.

Lemma 2.9. Let X and Y be two topological spaces, T : X → 2Y a multivalued mapping. If
for any x ∈ X, T (x) is compact, then T is u.s.c. on X if and only if for any net {xα} ⊂ X
such that xα → x and for every yα ∈ T (xα), there exist y ∈ T (x) and a subnet {yβ} of {yα},
such that yβ → y.

Definition 2.10 (C-compactness, [17]). Let C be a nonempty convex cone in a Hausdorff
topological space Z. We say E ⊂ Z is C-compact if any cover of E of the form

{Uα + C : α ∈ I,Uα are open}

admits a finite subcover.

Lemma 2.11 ([17, Theorem 7.2]). Let X be a nonempty compact convex subset of a
real Hausdorff topological vector space. Let Z be a real topological vector space with a solid
pointed convex cone C ⊂ Z. Suppose that f is a vector-valud function from X to Z. If f is
C-continuous, then

⋃
x∈X{f(x)} is C-compact.
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Definition 2.12 (KKM-map). Let X be a topological vector space, and K a nonempty
subset of X. Suppose that F is a multifunction from K to 2X . Then F is said to be a
KKM-map, if

co {x1, . . . , xn} ⊂
n⋃

i=1

F (xi)

for each finite subset {x1, . . . , xn} of X.

Remark 2.13. Obviously if F is a KKM-map, then x ∈ F (x) for each x ∈ K.

Lemma 2.14 ([9]). Let X be a Hausdorff topological vector space, and K a nonempty
subset of X, and let G be a multifunction from K to 2X . Suppose that G is a KKM-map
and that G(x) is a closed subset of X for each x ∈ K. If G(x̂) is compact for at least one
x̂ ∈ K, then

⋂
x∈K

G(x) 6= ∅.

Proposition 2.15 ([26]). Let Z be a real topological vector space. Suppose that C is a solid
pointed convex cone in Z. Then cl C + intC = intC.

Proposition 2.16. Let Z be a real topological vector space, A a subset of Z, and C a solid
convex cone in Z. If A ∩ (−intC) = ∅, then

(A + cl C) ∩ (−intC) = ∅.

Proof. Suppose to the contrary that there exists z ∈ (A + cl C)∩ (−intC). Then there exist
a ∈ A, c′ ∈ cl C and c ∈ intC such that z = a + c′ = −c. Hence a = −(c′ + c) ∈ −intC, by
Proposition 2.15. This contradicts to the fact that A ∩ (−intC) = ∅.
Proposition 2.17. Let Z be a real topological vector space and C a solid pointed convex
cone in Z with k ∈ intC. Then the following properties hold:

(i) for every z ∈ Z there exists t ∈ R such that z ∈ t · k + intC;

(ii) for every z ∈ intC there exists t > 0 such that z − t · k ∈ intC.

Proof. (i). Let z ∈ Z. −k + intC is a neighborhood of thetaZ . Since Z is a topological
vector space, each neighborhood of θZ is absorbing. Hence there exists α > 0 such that
z ∈ α(−k + intC), i.e., z ∈ (−α · k + intC).

(ii). Let z ∈ intC. Then there exists a neighborhood U of θZ such that z + u ⊂ intC.

Since Z is t.v.s., there exists α > 0 such that k ∈ α · U . Hence z − 1
α
· k ∈ (z + U) ⊂ intC.

3 Main Results

In this section, we will establish several results for ε-vector equilibrium problems. First we
derive that Ω(ε) is not empty for ε ∈ intC under suitable conditions.

Theorem 3.1. Let X be a real Hausdorff topological vector space. Let Z be a real topological
vector space with a solid pointed convex cone C ⊂ Z. Suppose that K is a nonempty subset
of X, that f is a vector-valud function from X×X to Z. Also we assume that the following
conditions:

(i) S′ := {x ∈ cl K : f(x, y) /∈ −intC for all y ∈ cl K} 6= ∅;
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(ii) cl K is compact;

(iii) f is C-continuous on X ×X.

Then ε-VEP has at least one solution for each ε ∈ intC.

Proof. Let ε ∈ intC and x ∈ S′. Then by condition (iii), for each y ∈ cl K there are
neighborhoods Uy of x and Vy of y such that

f(u, v) ∈ (f(x, y)− ε) + intC for all (u, v) ∈ Uy × Vy.

Since
⋃

y∈cl K

Vy ⊃ cl K and cl K is compact, we can choose yi ∈ cl K, i = 1, . . . , n, such that

n⋃
i=1

Vyi
⊃ cl K. Then for U :=

n⋂
i=1

Uyi
, we have

f(u, y) ∈
n⋃

i=1

((f(x, yi)− ε) + intC) for all u ∈ U and y ∈ cl K.

Hence

f(u, y) + ε ∈
n⋃

i=1

(f(x, yi) + intC) for all u ∈ U and y ∈ cl K.

Since x ∈ S′ and y1, . . . , yn ∈ cl K we have

(f(x, yi) + intC) ∩ (−intC) = ∅, for all i = 1, . . . , n,

from which it follows that
(

n⋃

i=1

(f(x, yi) + intC)

)
∩ (−intC) = ∅.

Consequently,
f(u, y) + ε /∈ −intC for all u ∈ U and y ∈ cl K.

Moreover K ∩ U 6= ∅ because of x ∈ cl K. Let x̄ ∈ K ∩ U . Then f(x̄, y) + ε /∈ −intC for all
y ∈ cl K. In particular, x̄ ∈ Ω(ε). Therefore the problem ε-VEP has at least one solution.

Example 3.2. Let f : R× R→ R2 defined by

f(x, y) =





(y

x
,−1

)
if x ≥ y > 0,

(x

y
,−2

)
if y > x > 0,

(
x + y,−3

)
if 0 > x + y,(

0,−4
)

otherwise,

C = R2
+ and K = (−1, 1). Then 1 ∈ S′, i.e., S′ 6= ∅, cl K is compact, and f is C-continuous

on R× R. Thus ε-VEP has at least one solution for each ε > 0 by Theorem 3.1. Actually,
x̂ = 1− ε

2
is a solution of ε-VEP.
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Example 3.3. Let f : R × R → R2 defined by f(x, y) =
( −1
−|x− y|

)
, K = [−1, 1] and

C = R2
+. Then S′ = ∅ and also for each ε ∈ (0, 1), Ω(ε) = ∅. We observe that we need not

only conditions (ii) and (iii) but also (i) in Theorem 3.1.

Corollary 3.4. Let X be a real Hausdorff topological vector space. Let Z be a real topological
vector space with a solid pointed convex cone C ⊂ Z. Suppose that K is a nonempty subset
of X and that f is a vector-valud function from X × X to Z. Also we assume that the
following conditions:

(i) S := {x ∈ cl K : f(x, y) /∈ −intC for all y ∈ K} 6= ∅;
(ii) cl K is compact;

(iii) f is C-continuous on X ×X;

(iv) f(x, ·) is (−C)-continuous on bd K for some x ∈ S.

Then ε-VEP has at least one solution for each ε ∈ intC.

Proof. Let x̂ ∈ S which satisfies condition (iv). Then for every y ∈ K,

f(x̂, y) /∈ −intC. (3.1)

Suppose to the contrary that there exists ŷ ∈ bdK such that

f(x̂, ŷ) ∈ −intC.

By condition (iv), f(x̂, ·) is (−C)-continuous at ŷ ∈ bd K. Hence there exists a neighborhood
V of ŷ such that

f(x̂, v) ∈
(

f(x̂, ŷ)
2

− intC

)
, for all v ∈ V.

Because of ŷ ∈ bd K, V ∩K 6= ∅. Hence there exists y′ ∈ V ∩K 6= ∅ such that

f(x̂, y′) ∈
(

f(x̂, ŷ)
2

− intC

)
⊂ −intC.

This contradicts to (3.1). Therefore for each y ∈ bd K,

f(x̂, y) /∈ −intC,

i.e., for every y ∈ cl K,
f(x̂, y) /∈ −intC.

Hence x̂ ∈ S′, i.e., S′ 6= ∅.

Now the result follows from Theorem 3.1.

Theorem 3.5. Let X be a real Hausdorff topological vector space. Let Z be a real topological
vector space with a solid pointed convex cone C ⊂ Z. Suppose that K is a nonempty subset
of X and that f is a vector-valud function from X ×X to Z with f(x, x) /∈ −intC for all
x ∈ X. Also we assume that the following conditions:

(i) cl K is compact convex;
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(ii) f(x, ·) is C-quasiconvex on X for each x ∈ X;

(iii) f(·, y) is (−C)-continuous on X for each y ∈ X;

(iv) f is C-continuous on X ×X.

Then the problem ε-VEP has at least one solution, i.e., Ω(ε) is nonempty for each ε ∈ intC.

Proof. Let for each y ∈ cl K,

G(y) := {x ∈ cl K : f(x, y) /∈ −intC}.
First, we show that G(y) is a KKM-map. Suppose to the contrary that there exists αi ∈
[0, 1], xi ∈ cl K (i = 1, . . . , n) such that

n∑

i=1

αixi = x /∈
n⋃

i=1

G(xi).

Then
f(x, xi) ∈ −intC, i = 1, . . . , n.

Moreover x ∈ cl K because of the convexity of clK. Hence by condition (ii),

f(x, x) = f(x,
n∑

i=1

αixi) ∈ −intC,

which contradicts to the fact that f(x, x) /∈ −intC for all x ∈ X.
Next by condition (iv) and Proposition 2.7, A := {y ∈ X : f(x, y) ∈ −intC} is an open

subset of X. Then G(y) = cl K ∩ (Ac) is a closed subset of X. Hence G(y) is closed for each
y ∈ K. Also cl K is compact. Hence G(y) is compact for each y ∈ K. Thus we can apply
Lemma 2.14, and so

S′ =
⋂

y∈K

G(y) 6= ∅.

Hence by Theorem 3.1, the problem ε-VEP has at least one solution.

Remark 3.6. We observe that the condition that f is both C-continuous and (−C)-
continuous doesn’t imply that f is continuous. See, e.g., [17, Theorem 5.3 and Remark 5.4].

Remark 3.7. Theorem 3.5 is only one of the variations of Theorem 3.1. Using various
existance results for VEP, we may obtain conditions of nonemptyness of S′. Then we can
derive another existence results for ε-VEP easily. If we assume closedness of C, we may
utilize existence results for generalized VEP in [4, 12, 13, 15].

Next, we show that the solution mapping Ω of ε-VEP is upper semicontinuous on intC
under some suitable conditions.

Theorem 3.8. Let X be a real Hausdorff topological vector space. Let Z be a real topological
vector space with a solid pointed convex cone C ⊂ Z. Suppose that K is a nonempty subset
of X, that f is a vector-valued function from X×X to Z. Also we assume that the following
conditions:

(i) K is compact;

(ii) f(·, y) is (−C)-continuous on X for each y ∈ X;
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(iii) Ω(ε) is nonempty for each ε ∈ intC.

Then Ω is u.s.c. on intC.

Proof. Let ελ → ε and xλ ∈ Ω(ελ). Since K is compact, we can assume, without loss
of generality, xλ → x ∈ K. Suppose to the contrary that x /∈ Ω(ε). Then there exists
y ∈ K such that f(x, y) + ε ∈ −intC. Since Z is a topological vector space, there exists a
neighborhood U of θZ such that f(x, y)+ε+U+U ⊂ −intC. Then f(x, y)+ε+U+U−intC ⊂
(−intC − intC) ⊂ −intC. Because of ελ → ε, xλ → x, and condition (ii), there exists a λ̂

such that for every λ ≥ λ̂, f(xλ, y)+ελ ∈ −intC. This contradicts the fact that xλ ∈ Ω(ελ).
Hence x ∈ Ω(ε). Therefore by Lemma 2.9, Ω(ε) is u.s.c. on intC.

Corollary 3.9. Let X be a real Hausdorff topological vector space. Let Z be a real topological
vector space with a solid pointed convex cone C ⊂ Z. Suppose that K is a nonempty subset
of X, that f is a vector-valued function from X × X to Z with f(x, x) /∈ −intC for all
x ∈ X. Also we assume that the following conditions:

(i) K is compact convex;

(ii) f(x, ·) is C-quasiconvex on X for each x ∈ X;

(iii) f(·, y) is (−C)-continuous on X for each y ∈ X;

(iv) f is C-continuous on X ×X.

Then Ω is u.s.c. on intC ∪ {θZ}.
Proof. The result follows from Theorems 3.5 and 3.8.

We now establish that the solution mapping Ω of ε-VEP is lower semicontinuous on intC
under suitable assumptions.

Theorem 3.10. Let X be a real Hausdorff topological vector space. Let Z be a real topo-
logical vector space with a solid pointed convex cone C ⊂ Z. Suppose that K is a nonempty
subset of X, that f is a vector-valud function from X ×X to Z. Also we assume that the
following conditions:

(i) K is compact convex;

(ii) f(x, ·) is C-continuous on X for each x ∈ X;

(iii) f(·, y) is strictly C-quasiconcave on K for each y ∈ K;

(iv) Ω(ε) is nonempty for each ε ∈ intC.

Then Ω is l.s.c. on intC.

Proof. Let ε ∈ intC. Let V be an open set of X with V∩Ω(ε) 6= ∅. Suppose that x ∈ V∩Ω(ε)
and that x̂ ∈ Ω(α · ε), where α ∈ (0, 1). We choose x′ ∈ (x, x̂) ∩ V, where (a, b) denotes the
line segment between a and b.

Obviously x̂ ∈ Ω(ε). Because of condition (iii),

f(x′, v) /∈ −ε− cl C, for all v ∈ X.

Since −ε− cl C is a closed set, for each v ∈ X there exist a positive number tv > 0 such that

f(x′, v)− tv · ε /∈ −ε− cl C.
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Because of conditions (i) and (ii), by Lemma 2.11,
⋃

v∈X f(x′, v) is C-compact. Clearly
f(x′, v)− tv · ε + intC is a neighborhood of f(x′, v) and

⋃

v∈X

{f(x′, v)− tv · ε + intC} ⊃
⋃

v∈X

f(x′, v).

Hence there exist v1, . . . , vn ∈ X such that

n⋃

i=1

{f(x′, vi)− tvi
· ε + intC} ⊃

⋃

v∈X

f(x′, v). (3.2)

Since f(x′, vi)−tvi
·ε /∈ −ε−cl C, i = 1, . . . , n, there exist corresponding numbers t1, . . . , tn ∈

(0, 1) such that
f(x′, vi)− (tvi

+ ti) · ε /∈ −ε− cl C, i = 1, . . . , n.

Let τ = min{t1, . . . , tn}. Then by Proposition 2.16,
(

n⋃

i=1

f(x′, vi)− (tvi
+ τ) · ε

)⋂
−ε− cl C = ∅.

Because of (3.2),

f(x′, v)− τ · ε ∈
(

n⋃

i=1

f(x′, vi)− (tvi
+ τ) · ε

)
, for all v ∈ X.

Accordingly
f(x′, v)− τ · ε /∈ −ε− intC, for all v ∈ X,

i.e.,
x′ ∈ Ω((1− τ) · ε).

Therefore x′ ∈ Ω(ε′) for all ε′ ∈ (1− τ)ε + intC. Hence Ω is l.s.c. on intC.

Theorem 3.11. Let X be a real Hausdorff topological vector space. Let Z be a real topo-
logical vector space with a solid pointed convex cone C ⊂ Z. Suppose that K is a nonempty
subset of X, that f is a vector-valud function from X ×X to Z. Also we assume that the
following conditions:

(i) K is compact convex;

(ii) f(x, ·) is C-continuous on X for each x ∈ X;

(iii) f(·, y) is strictly (−C)-properly quasiconvex on K for each y ∈ K;

(iv) Ω(ε) is nonempty for each ε ∈ intC.

Then Ω is l.s.c. on intC.

Proof. Let ε̂ ∈ intC be arbitrary but fixed and V be an open set with V ∩ Ω(ε̂) 6= ∅. Let
x̂ ∈ V∩Ω(ε̂). Then we show there exist x̄ ∈ V and µ > 0 such that for all ε ∈ (1−µ)ε̂+intC,
we have

f(x̄, y) + ε /∈ −intC, for all y ∈ K.

We note that (1− µ)ε̂ + intC is a neighborhood of ε̂.
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First we select x̄ ∈ V in the following way. Let α ∈ (0, 1), x0 ∈ Ω(αε̂) and

x̄ ∈ V
⋂
{x ∈ K : x = λx̂ + (1− λ)x0, 0 < λ < 1}.

Next we find corresponding µ ∈ (0, 1− α). Because of the way in selecting x̄, we have

f(x̄, y) ∈ f(x̂, y) + intC,

or
f(x̄, y) ∈ f(x0, y) + intC.

Let K ′ := {y ∈ K : f(x̄, y) /∈ f(x0, y) + intC}. By condition (ii) and Proposition 2.7,
A := {y ∈ X : f(x̄, y) ∈ f(x0, y)+ intC} is an open set of X. Then Ac = {y ∈ X : f(x̄, y) /∈
f(x0, y)+ intC} is a closed set of X. Hence K ′ = (K ∩Ac) is a closed set, i.e., compact set.
Because of Proposition 2.17, we have f(x̄, v) ∈ f(x̂, v) + intC for all v ∈ K ′. Thus, for each
v ∈ K ′ there exists µv ∈ (0, 1− α) such that

f(x̄, v) ∈ f(x̂, v) + µv · ε̂ + intC.

Hence
Mx̄ ⊂ Mx̂ +

⋃

v∈K′
(µv · ε̂ + intC),

where Mx̄ and Mx̂ denote
⋃

v∈K′
{f(x̄, v)} and

⋃
v∈K′

{f(x̂, v)}, respectively. Because of com-

pactness of K ′ and condition (ii), Mx̄ is C-compact by Lemma 2.11. In addition,
⋃

v∈K′
{µv · ε̂ + intC} =

⋃

v∈K′
{µv · ε̂}+ intC =

⋃

v∈K′
{µv · ε̂}+ intC + intC,

and Mx̂ +
⋃

v∈K′(µv · ε̂ + intC) is an open covering of Mx̄. Hence we can choose a finite
subset {µv1 , . . . , µvn

} ⊂ {µv : v ∈ K ′} such that

Mx̄ ⊂ Mx̂ +
n⋃

i=1

(µvi · ε̂ + intC).

Putting µ = min{µv1 , . . . , µvn
}, we have

Mx̄ ⊂ Mx̂ + µ · ε̂ + intC.

Hence
Mx̄ − µ · ε̂ ⊂ Mx̂ + intC. (3.3)

Because of x̂ ∈ Ω(ε̂) (
Mx̂ + ε̂

) ∩ (−intC) = ∅.
Hence by Proposition 2.16,

(
Mx̂ + ε̂ + intC

) ∩ (−intC) = ∅.

Therefore by (3.3), (
Mx̄ + (1− µ)ε̂

) ∩ (−intC) = ∅.
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On the other hand for each v ∈ (K \K ′), f(x̄, v) ∈ f(x0, v) + intC. Since x0 ∈ Ω(αε̂), we
have f(x̄, v) + αε̂ /∈ −intC. Because of α < (1− µ),


 ⋃

v∈(K\K′)

{f(x̄, v) + (1− µ)ε̂}

 ∩ −intC = ∅,

from which it follows that
( ⋃

v∈K

{f(x̄, v) + (1− µ)ε̂}
)
∩ −intC = ∅.

Let U = (1− µ)ε̂ + intC. Then U is an open set containing ε̂. For every ε ∈ U ,
⋃

v∈K

{f(x̄, v) + (1− µ)ε̂}+ intC ⊃
⋃

v∈K

{f(x̄, v) + ε}.

Therefore by Proposition 2.16,
( ⋃

v∈K

{f(x̄, v) + ε}
)
∩ −intC = ∅,

from which it follows f(x̄, v) + ε /∈ −intC for all v ∈ K, i.e., x̄ ∈ Ω(ε) for all ε ∈ U . Hence
Ω is l.s.c. at ε̂. Since ε̂ is arbitrary, Ω is l.s.c. on intC.

Corollary 3.12. Let X be a real Hausdorff topological vector space. Let Z be a real topo-
logical vector space with a solid pointed convex cone C ⊂ Z. Suppose that K is a nonempty
subset of X, that f is a vector-valud function from X ×X to Z with f(x, x) /∈ −intC for
all x ∈ X. Also we assume that the following conditions:

(i) K is compact convex;

(ii) f(x, ·) is C-quasiconvex on X for each x ∈ X;

(iii) f(·, y) is strictly (−C)-properly quasiconvex on K for each y ∈ K;

(iv) f(·, y) is (−C)-continuous on X for each y ∈ X

(v) f is C-continuous on X ×X.

Then Ω is continuous on intC.

Proof. The result follows from Theorems 3.5 and 3.11.

Corollary 3.13. Let X be a real Hausdorff topological vector space. Let Z be a real topo-
logical vector space with a solid pointed convex cone C ⊂ Z. Suppose that K is a nonempty
subset of X, that f is a vector-valud function from X ×X to Z. Also we assume that the
following conditions:

(i) K is compact convex;

(ii) f(·, y) is (−C)-continuous on X for each y ∈ X;

(iii) f is C-continuous on X ×X;
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(iv) f(·, y) is strictly (−C)-properly quasiconvex on K for each y ∈ K;

(v) Ω(ε) is nonempty for each ε ∈ intC.

Then Ω is continuous on intC.

Proof. The result follows from Theorems 3.8 and 3.11.

Finally we show that nonemptyness of the solutions sets of ε-VEP implies that there
exists a solution to VEP under mild conditions.

Theorem 3.14. Let X be a real Hausdorff topological vector space. Let Z be a real topo-
logical vector space with a solid pointed convex cone C ⊂ Z. Suppose that K is a nonempty
subset of X, that f is a vector-valud function from X ×X to Z. Also we assume that the
following conditions:

(i) cl K is compact;

(ii) f(·, y) is (−C)-continuous on X for each y ∈ X;

(iii) Ω(ε) 6= ∅ for all ε ∈ intC.

Then S is nonempty.

Proof. Let {ελ} ⊂ intC, ελ → θZ , and xλ ∈ Ω(ελ). Then by condition (i), without loss of
generality, we assume xλ → x and x ∈ cl K. Suppose to the contrary that f(x, y) ∈ −intC
for some y ∈ K. Then by condition (ii), there is a λ0 such that for all λ ≥ λ0

f(xλ, y) ∈ −intC.

This contradicts to the fact that xλ ∈ Ω(ελ). Hence f(x, y) /∈ −intC for all y ∈ K and thus
x ∈ S from which the result follows.

We remark that from the proof of Theorem 3.5, one can see that Condition (iii) in
Theorem 3.5 can be replaced by the condition that Ω(ε) 6= ∅ for some net {ελ} ⊂ intC such
that ελ → θZ .
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