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1 Introduction

The present paper is devoted to the study of semismoothness of continuous or lower semi-
continuous functions. Semismoothness is an important property, in particular for algo-
rithms and inverse mapping theorems (see [33, 34, 48] and, for the vector-valued case,
[8, 9, 49, 39, 47, 50, 51, 61, 62, 64]....) and optimality conditions ([7]). In particular, it
is shown in [60] that the metric projection operator to the semidefinite cone is strongly
semismooth; such a result provides a foundation for Newton’s methods for second-order
cone optimization ([9]) and semidefinite cone optimization ([61]). But, up to our knowledge,
the study of semismoothness has been limited to the locally Lipschitzian case. Still, the
case of lower semicontinuous functions is important in optimization theory: for instance
indicator functions, eigenvalue functions and optimal value functions are of wide use. It is
often a delicate matter to determine whether a marginal or performance function is locally
Lipschitz or not (see [23, 46] for such a question). Thus, it may be useful to enlarge the
framework for semismoothness to the case of continuous or lower semicontinuous functions
on a Banach space. We also tackle the relationships between semismoothness of a function
and submonotonicity of its subdifferentials, in the sense of Spingarn ([56]) and Rockafellar
([54]); this last property is also important for algorithms ([57]). In particular, we extend
some results of [5, 16, 43, 56] to the case of non Lipschitzian functions. Among the functions
which can be encompassed in the new class of semismoothness are the functions of the form
f = g + h, where g is an arbitrary closed proper convex function and h is a finite-valued
function of class C1.
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We illustrate our results in pointing out the links with a notion of approximate star-
shapedness at a given point x0 which generalizes the notion of approximate convexity stud-
ied in [1, 21, 31, 37]. Starshaped sets and starshaped functions play an important role in
various fields of mathematics (see [14, 20, 26, 45, 55] for a sample). The class of functions
on X which are starshaped at some point x0 ∈ X is much larger than the class of convex
functions; moreover it enjoys some properties (such as stability under infima for any sub-
family of functions taking a given value at x0) which are not shared by the class of convex
functions. The class we study is still larger since we focus our attention on a property which
is just approximate starshapedness. This property is deduced from starshapedness in a way
which is similar to the passage from convexity to approximate convexity in the sense of [31].
The example of the function f : R→ R given by f(x) = |x| − x2 with x0 := 0 shows that
there are approximately starshaped functions which are not starshaped. In Theorem 6.4 we
show the striking result that a semismooth function is approximately starshaped.

Because our study is essentially limited to properties bearing on a specific point, the
questions linked with integration are left apart although they are related with submono-
tonicity; see [22] and its references for such questions. A related study of regularity of sets
and approximate convexity of sets is undertaken in [1, 13, 38]: among our aims is the wish
to exhibit regularity criteria, i.e. conditions ensuring that some subdifferentials of a given
function f coincide at some point. Nonsmooth analysis needs such unificating results.

2 Preliminaries

In the sequel, X is a Banach space and F(X) is the set of functions f : X → R∪{+∞};
S(X) denotes the set of lower semicontinuous functions f ∈ F(X) and L(X) stands for the
class of locally Lipschitzian real-valued functions. If f is defined on a subset W of X, we
extend it by +∞ on X\W. The open ball with center x0 ∈ X and radius ρ > 0 is denoted
by B(x0, ρ); BX and SX stand for the closed unit ball and the unit sphere of X respectively.
We recall that X is an Asplund space if every separable linear subspace of X has a separable
dual. This class of spaces is important in nonsmooth analysis and convex analysis.

A subdifferential on a Banach space X will be here just a correspondence ∂ : F(X)×X ⇒
X∗ which assigns a subset ∂f(x) of the dual space X∗ of X to any (f, x) ∈ F(X)×X in such
a way that ∂f(x) coincides with the subdifferential of convex analysis for a convex function
f . However, we impose some limitations to this correspondence, so that in fact many usual
properties are satisfied; moreover, for several statements, we require a mean value property.
The simplest one is the Lebourg mean value theorem (see for instance [10, Thm 2.3.7], [2,
Thm 19], valid for locally Lipschitzian functions.

For lower semicontinuous functions, a (more sophisticated) version can be given for a
reliable subdifferential (for X), i.e. a subdifferential ∂ satisfying the following fuzzy property
close to the basic fuzzy rule of [28] (see also [42, 65]):

(F) for any f ∈ S(X), g ∈ L(X) with g convex such that f + g attains at x a local
minimum and for any ε > 0, there exist u, v ∈ B(x, ε), u∗ ∈ ∂f(u), v∗ ∈ ∂g(v) such that
|f(u)− f(x)| < ε, ‖u∗ + v∗‖ < ε.

We say that ∂ is multi-reliable (for X) if, for each m ∈ N\{0}, ∂ is reliable on Xm.
That is the case for the Clarke–Rockafellar ([10, Thm 2.3.7], [53]), the Ioffe subdifferential
([28]) and the moderate subdifferential of Michel–Penot ([2, 32]) for any Banach space X
and, when X is an Asplund space, for the Fréchet subdifferential and the limiting Fréchet
subdifferential of Mordukhovich ([35, 65]).
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Theorem 2.1 ([44]). Let ∂ be a reliable subdifferential (for X). Then, ∂ is valuable (for
X) in the sense that it satisfies the following property: given f ∈ S(X) finite at x ∈ X,
y ∈ X\{x} and r ∈ R such that f(y) ≥ r, there exists u ∈ [x, y) and sequences (un) → u,
(u∗n) such that u∗n ∈ ∂f(un), (f(un)) → f(u),

lim inf
n
〈u∗n, y − x〉 ≥ r − f(x), (2.1)

lim inf
n
〈u∗n,

x− un

‖x− u‖〉 ≥
r − f(x)
‖y − x‖ ∀x ∈ u + (0,∞)(y − x). (2.2)

In particular, when X is an Asplund space, any subdifferential larger than the Fréchet
subdifferential is valuable. The following multidirectional mean value theorem is more power-
ful: in view of the compactness of the segment [x, y], taking a sequence (εn) → 0+, it implies
the preceding one in the case Y := {y} since in that case lim infs→0+ f(Y + sBX) ≥ f(y).
Thus a multi-valuable subdifferential in the sense of the following statement is valuable.

Theorem 2.2 ([11, 12, 28, 65]). Let ∂ be a multi-reliable subdifferential (for X). Then, ∂
is multi-valuable (for X) in the sense that it satisfies the following property: given a bounded
closed convex subset Y of X, x ∈ X\Y, D := [x, Y ] := {(1− t)x + ty : t ∈ [0, 1], y ∈ Y } and
f ∈ S(X) finite at x, bounded below on D + σBX for some σ > 0, then for any ε > 0 and
r ∈ R such that

r ≤ lim inf
s→0+

f(Y + sBX),

there exist z ∈ [x, Y ] + εBX and z∗ ∈ ∂f(z) such that

r − f(x) < 〈z∗, y − x〉+ ε ‖y − x‖ for all y ∈ Y.

In several cases of interest, the subdifferential we use is tangentially determined in the
sense that it is defined with the help of some generalized directional derivative f∂ of f ∈
F(X) via the formula

∂f(x) := {x∗ : 〈x∗, ·〉 ≤ f∂(x, ·)}. (2.3)

This not always the case. For example, the Ioffe approximate subdifferential and the firm
(or Fréchet or regular) subdifferential of f ∈ F(X) at x are not tangentially determined.
The latter (studied at length in [4]) is the set ∂−f(x) of x∗ ∈ X∗ such that for any ε > 0
there exists some ρ > 0 for which

f(w)− f(x)− 〈x∗, w − x〉 ≥ −ε ‖w − x‖ ∀w ∈ B(x, ρ).

Let us just mention the directional derivatives we will use. The lower directional derivative
(or contingent derivative or lower epiderivative or lower Hadamard derivative) of f is given
by

f !(x, u) := lim inf
(t,v)→(0+,u)

1
t
(f(x + tv)− f(x)).

It can also be denoted by f ′(x, u) in view of its importance, but here we keep this notation
for the case the directional derivative of f at x in the direction u exists in the sense that
f !(x, u) = f ](x, u), where

f ](x, u) := lim sup
(t,v)→(0+,u)

1
t
(f(x + tv)− f(x)) = −(−f)!(x, u).
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The Clarke-Rockafellar derivative [10], [53] or circa-derivative of f ∈ S(X) is given by

f↑(x, u) := sup
r>0

lim sup
(t,y)→(0+,x)

f(y)→f(x)

inf
v∈B(u,r)

1
t
(f(y + tv)− f(y)).

When f ∈ L(X), f↑ coincides with the Clarke’s derivative f0 [10] which, for f ∈ S(X), and
with the notation Bf (x, δ) := {y ∈ B(x, δ) : |f(y)− f(x)| < r}, is defined by

f0(x, u) := inf
r>0

sup
(t,y,v)∈(0,r)×Bf (x,r)×B(u,r)

1
t
(f(y + tv)− f(y)),

For f continuous at x this expression can be simplified into

f0(x, u) := lim sup
(t,y,v)→(0+,x,u)

1
t
(f(y + tv)− f(y)).

The subdifferentials associated with f ! and f↑ will be denoted by ∂! and ∂↑ respectively.
We will need the next result in which co∗(S) denotes the weak∗ closed convex hull of

a subset S of X∗ and w →f x means w → x with f(w) → f(x). Moreover, if F : T ⇒
X∗ is a multifunction from a metric space to the dual of a Banach space, we denote by
lim supt→s F (t) the set of weak∗ limit points of bounded nets (x∗i )i∈I such that there exist
a net (ti)i∈I → s with x∗i ∈ F (ti) for each i ∈ I.

Theorem 2.3 ([3], [35, Thm 8.11]). Let E be a closed subset of an Asplund space X,
let x ∈ E and let f ∈ S(X). Then, with ∂−f(x) := lim supw→f x ∂−f(w), ∂∞f(x) :=
lim sup(t,w)→f (0+,x) t∂−f(w), one has

∂↑f(x) = co∗(∂−f(x) + ∂∞f(x)). (2.4)

In view of the abundance of concepts of subdifferentials, it is of interest to detect con-
ditions ensuring some coincidence. The following definition will be convenient for such an
aim; it is compatible with the terminology calling f regular or subdifferentially regular when
f is ∂↑-regular ([10]).

Definition 2.4. A function f ∈ F(X) is said to be ∂-regular at x0 for some subdifferential
∂ if ∂f(x0) = ∂!f(x0).

3 Semismoothness

The following result is valid for any lower semicontinuous function on X finite at x0 and has
an independent interest. Here (relative) radial continuity means continuity along segments
whose extremities belong to the domain of the function. This mild continuity assumption is
satisfied by all convex functions.

Lemma 3.1. Let f ∈ S(X) be finite at x0 ∈ X and let ∂ be a subdifferential.
(a) If ∂ is valuable for X, then, for each u ∈ SX , one has

lim inf
(t,v)→(0+,u)

inf{〈x∗, v〉 : x∗ ∈ ∂f(x0 + tv)} ≤ f !(x0, u) := lim inf
(t,v)→(0+,u)

1
t

(f(x0 + tv)− f(x0)) .

(3.1)
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(b) If ∂ is multi-valuable for X, and if f is radially continuous at x0, then for each
u ∈ SX one has

lim sup
(t,v)→(0+,u)

sup{〈x∗, v〉 : x∗ ∈ ∂f(x0 + tv)} ≥ f ](x0, u) := lim sup
(t,v)→(0+,u)

1
t
(f(x0 + tv)− f(x0)).

(3.2)

Proof. (a) Relation (3.1) is obvious when f !(x0, u) = ∞. Given r > r′ > f !(x0, u) and δ > 0
we can find (t, v) ∈ (0, δ)×B(u, δ) such that t−1(f(x0+tv)−f(x0)) < r′. Then, relation (2.1)
applied to the pair (x0 + tv, x0) yields some s ∈ [0, 1), some sequences (xn) → x0 + tv− stv,
(x∗n) , and (εn) → 0+ such that x∗n ∈ ∂f(xn),

〈x∗n,
x0 − xn

‖x0 − xn‖〉 ≥
f(x0)− f(x0 + tv)
‖x0 − (x0 + tv)‖ − εn.

Since (vn) defined by xn := x0 + t(1− s)vn converges to v, we have vn ∈ B(u, δ) for n large
enough, t′ := (1 − s)t ∈ (0, δ), x∗n ∈ ∂f(x0 + t′vn) and since qn := ‖v‖−1 ‖vn‖ → 1, we get
for n large enough

〈x∗n, vn〉 ≤ qnr′ + εn ‖vn‖ < r.

Therefore
inf{〈x∗, v′〉 : (t′, v′) ∈ (0, δ)×B(u, δ), x∗ ∈ ∂f(x0 + t′v′)} ≤ r.

Since δ > 0 is arbitrarily small and r is arbitrarily close to f !(x0, u), we get relation (3.1).
(b) Let us first consider the case f ](x0, u) := −(−f)!(x0, u) > 0. Let r′ > r > 0 with

r′ < f ](x0, u) and let δ ∈ (0, 1) be given. Let us pick β ∈ (0, δ/2) such that 1 + 2β < r′/r,

w

‖w‖ ∈ B(u, δ) ∀w ∈ B(u, 2β) (3.3)

and let us pick some (t, v) ∈ (0, β)×B(u, β) such that t−1(f(x0 + tv)− f(x0)) > r′. By the
radial continuity of f at x0, we can choose p ∈ (0, βt) such that t−1(f(x0+tv)−f(x0+pv))) >
r′. Let us take γ ∈ (0, βp) such that

inf
y∈B(x0+tv,γ)

f(y)− f(x0 + pv) > r′t.

We also impose that f is bounded below on [x0 +pv, B(x0 + tv, γ)]+γBX , which is possible
in view of the lower semicontinuity of f and the compactness of the segment [x0+pv, x0+tv].
Let ε > 0 be given such that ε ≤ γp(t− p)−1, ε < βp− γ, ε < r′(1 + 2β)−1 − r.

Applying the multidirectional mean value theorem to the pair (x0 + pv, B(x0 + tv, γ)),
we get some z ∈ [x0 + pv, B(x0 + tv, γ)] + εBX and z∗ ∈ ∂f(z) such that

r′t < 〈z∗, y − x0 − pv〉+ ε‖y − x0 − pv‖ ∀y ∈ B(x0 + tv, γ) (3.4)

Let q ∈ [0, 1], b, b′ ∈ BX be such that y := x0 + tv + γb ∈ B(x0 + tv, γ), z := (1 − q)(x0 +
pv) + qy + εb′. Then, for m := p + q(t− p), w := v + m−1(qγb + εb′), we have

z − x0 = pv + q(t− p)v + qγb + εb′ = mw.

Since (t− p) (qγ + ε) ≤ (t− p)qγ + pγ = mγ, we have

w = v +
γ

t− p
b′′ with b′′ :=

t− p

mγ
(qγb + εb′) ∈ BX .



328 H.V. NGAI AND J.-P. PENOT

Since γ < βp < βt/2 < β(t− p), we get w ∈ B(v, β) ⊂ B(u, 2β) and, by (3.3),

z − x0

‖z − x0‖ =
w

‖w‖ ∈ B(u, δ).

Let us set y′ := x0 + tv + γb′′, so that y′ ∈ B(x0 + tv, γ) and

z − x0 = mv + qγb + εb′ = m(t− p)−1 ((t− p)v + γb′′) = m(t− p)−1(y′ − x0 − pv)

We obtain from (3.4), after division by s := ‖y′ − x0 − pv‖ ≤ (t−p) ‖v‖+γ ≤ t(1+β)+γ <
t(1 + 2β),

〈z∗, z − x0

‖z − x0‖〉 ≥ r′(1 + 2β)−1 − ε > r. (3.5)

For u′ := ‖z−x0‖−1(z−x0) ∈ B(u, δ), t′ := ‖z−x0‖ = ‖mw‖ ≤ m(‖u‖+2β) ≤ t(1+2β) ≤
β(1 + δ) < δ since β < δ/2, δ < 1, we have z = x0 + t′u′ and 〈z∗, u′〉 > r. Therefore

sup{〈x∗, u′〉 : t′ ∈ (0, δ), u′ ∈ B(u, δ), x∗ ∈ ∂f(x0 + t′u′)} > r (3.6)

and lim sup(t,v)→(0+,u) sup{〈x∗, v〉 : x∗ ∈ ∂f(x0 + tv)} ≥ f ](x0, u).
Now let us consider the case f ](x0, u) ≤ 0. Then, let r < r′ < f ](x0, u), hence r < r′ < 0

and r′/r < 1. In that case, in order to secure the passage from (3.4) to the outer inequality
of (3.5), we replace the requirement 1 + 2β < r′/r by the inequality (1 − β)2 > r′/r
which is satisfied if β ∈ (0, δ/2) is small enough. Again, we take p ∈ (0, βt) such that
t−1(f(x0 + tv)− f(x0 + pv))) > r′. Then we have (t− p)(1− β) > t(1− β)2 > tr′/r; and we
can choose γ > 0 such that (t− p)(1− β)− γ > tr′/r, so that

s := ‖y′ − x0 − pv‖ ≥ (t− p) ‖v‖ − γ ‖a‖ ≥ (t− p)(1− β)− γ > tr′/r

or tr′/s > r; thus, if we take ε > 0 small enough (and depending on r, r′, t, β, γ only), we
have tr′/s− ε > r and, again, by inequality (3.4) and the definition of y′ and z we get

〈z∗, z − x0

‖z − x0‖〉 = 〈z∗, y′ − x0 − pv

s
〉 ≥ r′

t

s
− ε > r.

The same choices of u′ and t′ show that relation (3.6) is again satisfied.

Remark 3.2. In the usual case in which ∂(f +h)(x) = ∂f(x)+h for any f ∈ S(X), h ∈ X∗,
the second part of the proof of assertion b) can be avoided by changing f into f + h for
some h ∈ X∗ with h(u) large enough to ensure (f + h)](x0, u) > 0.

Example 3.3. Inequality (3.2) is not valid for any lower semicontinuous function, as the
case of f : R→ R given by f(x) = |x| for x ∈ R\{0}, f(0) = −1 : then f ](0, 1) = +∞, but
∂−f(x) = {1} for each x ∈ (0, 1).

The following definition, partially introduced in [43] is convenient to deal with the im-
portant concept of semismoothness defined in [33]. In the original paper [33], only the case
of locally Lipschitzian functions, with ∂ = ∂↑ was considered.

Definition 3.4. A multimapping M : X ⇒ X∗ is extendedly thin at x0 if for any u ∈ SX ,
any sequences (un) → u, (tn) → 0+, and any x∗n ∈ M(x0 + tnun) the sequence (〈x∗n, un〉)n

has a limit in the extended reals. It is thin at x0 if that limit is always finite.
Given a subdifferential ∂, a function f on X is said to be ∂-semismooth (resp. extendedly

∂-semismooth) at x0 ∈ X if f(x0) is finite and ∂f is thin (resp. extendedly thin) at x0.
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For the sake of simplicity, we will essentially limit our study to semismooth functions.

Remark 3.5. If the requirement that (〈x∗n, un〉)n has a finite limit is changed into the re-
quirement that (〈x∗n, u〉)n has a finite limit, we say that M is radially thin; that condition
was the original definition in [43]. When M is bounded on a neighborhood of x0, as assumed
in [43], both notions coincide. In particular, for a locally Lipschitz function and a subdif-
ferential contained in the Clarke subdifferential, the definition of semismoothness coincides
with the one given in [33] and elsewhere. Since here ∂f is not necessarily locally bounded,
we have to make that tuning.

One may wonder whether the definition really depends on the choice of a subdifferential.
A partial answer is as follows.

Proposition 3.6. Let ∂′ be the subdifferential associated with a given subdifferential ∂ by set-
ting for f ∈ S(X), x ∈ X, ∂′f(x) := co∗(lim supw→f x ∂f(w) + lim sup(t,w)→f (0+,x) t∂f(w)).
Then f ∈ S(X) is ∂′-semismooth at x0 ∈ X iff it is ∂-semismooth at x0.

If X is an Asplund space, if f ∈ S(X) and if ∂1, ∂2 are subdifferentials such that
∂−f ⊂ ∂if ⊂ ∂↑f for i = 1, 2, then f is ∂1-semismooth at x0 ∈ X if, and only if, f is
∂2-semismooth at x0 ∈ X.

Proof. It suffices to show that f is ∂′-semismooth at x0 ∈ X when f is ∂-semismooth at
x0 ∈ X. By definition, for any u ∈ SX there exists some λ ∈ R such that, to any ε > 0
corresponds some δ > 0 for which

|〈x∗, v〉 − λ| ≤ ε ∀v ∈ B(u, δ), ∀t ∈ (0, δ), ∀x∗ ∈ ∂f(x0 + tv).

Let x ∈ Cδ := x0 + (0, δ)B(u, δ), x := x0 + tv with t ∈ (0, δ), v ∈ B(u, δ), and let

x∗ ∈ S(x) := lim sup
w→x

∂f(w) + lim sup
(t,w)→(0+,x)

t∂f(w).

There exist w∗, y∗ ∈ X∗, with x∗ = w∗ + y∗, nets (wi) → x, (zj) → x, (rj) → 0+, and nets
(w∗i ) → w∗, (z∗j ) in X∗ such that (w∗i ) → w∗, (rjz

∗
j ) → y∗ for the weak∗ topology, with (w∗i )

and (rjz
∗
j ) bounded. Since Cδ is open, we may suppose wi, zj ∈ Cδ and write wi = x0 + tivi

with (vi) → v. Then we have |〈w∗i , vi〉 − λ| ≤ ε, hence |〈w∗, v〉 − λ| ≤ ε. Similarly, writing
zj = x0 + tjvj , with (vj) → v and observing that

∣∣〈z∗j , vj〉 − λ
∣∣ ≤ ε, we get |〈y∗, v〉| =

limj

∣∣〈rjz
∗
j , vj〉

∣∣ ≤ limj |rjλ| + limj rjε = 0. Thus |〈x∗, v〉 − λ| ≤ ε. Then a convexity and
closure argument shows that one also has |〈x∗, v〉 − λ| ≤ ε for each x∗ ∈ co∗(S(x)).

The second part follows immediately from the first part and Theorem 2.3.

The following result has been proved in [33, Lemma 2] for the Clarke subdifferential
in the case of a locally Lipschitzian function; see [49, Prop. 2.1] for an extension to the
vector-valued case. It shows the compatibility of the terminologies in [16, 33, 43] with
the preceding definition. Since the Clarke subdifferential is large, the assumption of ∂-
semismoothness we make here is in general less stringent than ∂↑-semismoothness. Here we
use directional convergence as in the preceding definition: we write x

u→ x0 to mean that we
take x = x0 + tv with v → u, t → 0+.

Lemma 3.7. Suppose ∂ is multi-valuable for X and f ∈ S(X) is radially continuous at x0

and extendedly ∂-semismooth at x0 ∈ X. Then for each u ∈ SX the directional derivative
f ′(x0, u) exists and

f ′(x0, u) = lim
x

u→x0, x∗∈∂f(x)

〈x∗, x− x0

‖x− x0‖〉.



330 H.V. NGAI AND J.-P. PENOT

Proof. The existence of the directional derivative and the equality are immediate conse-
quences of Lemma 3.1 and of the definition of extended ∂-semismoothness.

Example 3.8. Let f : R2→ R be given by f(x, y) = 0 for (x, y) ∈ R−×R, f(x, y) = xg(y/x)
for (x, y) ∈ (0,+∞)×R, where g : R→ R is a C∞ function satisfying g(r) = r for r ∈ [−1, 1],
g(r) = 0 for |r| ≥ 2. Then f is ∂-semismooth at any point of R2 for any subdifferential ∂
such that ∂−f ⊂ ∂f ⊂ ∂↑f .

Example 3.9. Let f : R2 → R be given by f(x, y) = 0 for (x, y) ∈ R− × R, f(x, y) =
2x3/2 sin(y/x) for (x, y) with x > 0. Then f is Fréchet differentiable on R2 with f ′(x, y) = 0
for (x, y) ∈ R− × R and f ′(x, y) = (3x1/2 sin(y/x) − 2yx−1/2 cos(y/x), 2x1/2 cos(y/x)) for
(x, y) with x > 0. Obviously, f is semismooth at (0, 0) and non-Lipschitz around (0, 0).

Example 3.10. Let f : R→ R be given by f(0) = 0, f(x) = x2 sin(1/x) for x ∈ R\{0}.
Albeit f has a derivative at x0 = 0, it is not semismooth at 0 for any subdifferential ∂ such
that ∂−f ⊂ ∂f ⊂ ∂↑f .

Example 3.11. The function f : R→ R given by f(x) = − |x| is semismooth, but not
regular at 0.

4 Directional Submonotonicity at a Point

The following definition is a weakening of a notion introduced by Spingarn in [56] and used
in [54, 57]; it is adapted to the comparison we have in view. In order to be precise, let us
recall that a multimapping M : X ⇒ X∗ is said to be submonotone around x0, or, as in
[37] approximately monotone around x0 (or strictly submonotone around x0, but we prefer
not to keep the word “strict” which may be confusing, since strict monotonicity is a well
established notion) if M(x0) is nonempty and if for any ε > 0 there exists δ > 0 such that
for any x1, x2 ∈ B(x0, δ) and any x∗1 ∈ M(x1), x∗2 ∈ M(x2) one has

〈x∗1 − x∗2, x1 − x2〉 ≥ −ε ‖x1 − x2‖ .

The weakening we have in view does not consist in just giving a directional variant as in
[43, Def. 2.2], [22, 25]; the main difference with the original concept is the fact that one of
the two points is fixed. This fact justifies the terminology “at x0” in contrast with “around
x0”. A neater distinction would be obtained by using a distinct word such as “stellar”, but
we prefer to keep close to the usual terminology. We introduce another distinction which
disappears when M(x0) is a singleton or a compact subset of X∗.

Definition 4.1. A multimapping M : X ⇒ X∗ is submonotone at x0 if M(x0) is nonempty
and if for any ε > 0 there exists δ > 0 such that for any x ∈ B(x0, δ) and any x∗0 ∈ M(x0),
x∗ ∈ M(x) one has

〈x∗ − x∗0, x− x0〉 ≥ −ε ‖x− x0‖ .

It is said to be extendedly directionally submonotone at x0 if M(x0) is nonempty and if for
any x∗0 ∈ M(x0), u ∈ SX , ε > 0, there exists δ > 0 such that for any s ∈ (0, δ), v ∈ B(u, δ)
and any x∗ ∈ M(x) with x := x0 + sv, one has

〈x∗ − x∗0, x− x0〉 ≥ −ε ‖x− x0‖ .

If δ > 0 can be chosen independently of x∗0 ∈ M(x0), M is said to be directionally submono-
tone at x0.
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In other words, M : X ⇒ X∗ is submonotone at x0 if one has

lim inf
x→x0, x 6=x0

inf
x∗0∈M(x0)

inf
x∗∈M(x)

〈x∗ − x∗0,
x− x0

‖x− x0‖〉 ≥ 0;

It is directionally submonotone (resp. extendedly directionally submonotone) at x0 if one
has

lim inf
x

d→x0

inf
x∗0∈M(x0)

inf
x∗∈M(x)

〈x∗ − x∗0,
x− x0

‖x− x0‖〉 ≥ 0,

(resp. inf
x∗0∈M(x0)

lim inf
x

d→x0

inf
x∗∈M(x)

〈x∗ − x∗0,
x− x0

‖x− x0‖〉 ≥ 0),

where x
d→ x0 means that x directionally converges to x0 in a sense made precise in the

preceding definition. The terminology adopted here slightly differs from the one in [43, Def.
2.2]. However, for M locally bounded, the case of study in [43, 56], the terminologies agree,
as shown in the following lemma.

Lemma 4.2. A multimapping M : X ⇒ X∗ is extendedly directionally submonotone at
x0 ∈ X, if, and only if, M(x0) is nonempty and for each u ∈ SX , one has

lim inf
(t,v)→(0+,u)

inf{〈x∗, v〉 : x∗ ∈ M(x0 + tv)} ≥ sup{〈x∗0, u〉 : x∗0 ∈ M(x0)}. (4.1)

If moreover M(x0) is bounded, then M is directionally submonotone at x0.

Proof. Let us assume M is extendedly directionally submonotone at x0. Given u ∈ SX ,
r < σM(x0)(u) := sup{〈x∗0, u〉 : x∗0 ∈ M(x0)}, and picking ε ∈ (0, 1), x∗0 ∈ M(x0) satisfying
〈x∗0, u〉 > r + 3ε, we can find some δ ∈ (0, 1) such that 〈x∗0, v〉 > r + 2ε for each v ∈ B(u, δ)
and

〈x∗ − x∗0, tv〉 ≥ −ε ‖tv‖ ≥ −2εt ∀t ∈ (0, δ),∀v ∈ B(u, δ),∀x∗ ∈ M(x0 + tv).

Thus inf{inf{〈x∗, v〉 : x∗ ∈ M(x0 + tv)} : t ∈ (0, δ), v ∈ B(u, δ)} ≥ r and (4.1) follows.
Now suppose (4.1) holds and M(x0) is nonempty. Given x∗0 ∈ M(x0), ε ∈ (0, 1), u ∈ SX

and c ≥ max(‖x∗0‖ , 1), relation (4.1) ensures that one can find δ ∈ (0, ε/3c) such that

〈x∗, v〉 ≥ σM(x0)(u)− 1
3
ε ≥ 〈x∗0, u〉 −

1
3
ε ∀t ∈ (0, δ), v ∈ B(u, δ), x∗ ∈ M(x0 + tv).

Since |〈x∗0, u− v〉| ≤ cδ and ‖v‖ ≥ 2/3 for all v ∈ B(u, δ), we get

〈x∗−x∗0, tv〉 ≥ −1
3
εt−cδt ≥ −2

3
εt ≥ −ε ‖tv‖ ∀t ∈ (0, δ), v ∈ B(u, δ), x∗ ∈ M(x0+tv),

so that M is extendedly directionally submonotone at x0. When M(x0) is bounded, we can
choose c ≥ 1 and δ > 0 independently of x∗0 ∈ M(x0).

Corollary 4.3. For a multimapping M : X ⇒ X∗ and x∗0 ∈ X, the following assertions are
equivalent:

(a) M and its opposite −M are extendedly directionally submonotone at x0;
(b) M is thin at x0, M(x0) is a singleton {x∗0} and, for each u ∈ SX , 〈x∗, v〉 → 〈x∗0, u〉

as (t, v) → (0+, u) and x∗ ∈ M(x0 + tv).
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Proof. (a)⇒(b) Given u ∈ SX we have

sup{〈x∗0, u〉 : x∗0 ∈ M(x0)} ≤ lim inf
(t,v)→(0+,u)

inf{〈x∗, v〉 : x∗ ∈ M(x0 + tv)}

≤ lim sup
(t,v)→(0+,u)

sup{〈x∗, v〉 : x∗ ∈ M(x0 + tv)}

=− lim inf
(t,v)→(0+,u)

inf{〈x∗, v〉 : x∗ ∈ −M(x0 + tv)}

≤ − sup{〈x∗0, u〉 : x∗0 ∈ −M(x0)} = inf{〈x∗0, u〉 : x∗0 ∈ M(x0)},

so that these inequalities are equalities. Thus, for each u ∈ SX the set {〈x∗0, u〉 : x∗0 ∈ M(x0)}
is a singleton. It follows that M(x0) is a singleton and (b) holds.

(b)⇒(a) Given u ∈ SX and ε > 0, our convergence assumption means that we can find
δ > 0 such that

|〈x∗, v〉 − 〈x∗0, u〉| < ε/2 ∀(t, v) ∈ (0, δ)×B(u, δ), x∗ ∈ M(x0 + tv).

We can take δ ∈ (0, 1/2) small enough to have δ ‖x∗0‖ ≤ ε/2. Then, for v ∈ B(u, δ), we
have |〈x∗, tv〉 − 〈x∗0, tv〉| < εt ≤ 2εt ‖v‖ = 2ε ‖x− x0‖ for all (t, v) ∈ (0, δ) × B(u, δ), x∗ ∈
M(x0 + tv), since |〈x∗0, v〉 − 〈x∗0, u〉| ≤ ε/2 and ‖v‖ ≥ 1/2, so that M and −M are thin at
x0.

Definition 4.4 ([43]). Given a subdifferential ∂, a function f ∈ S(X) is said to be (ex-
tendedly) directionally ∂-subconvex at x0 if ∂f is (extendedly) directionally submonotone at
x0.

Again, in nice spaces, such a definition is somewhat independent of the choice of the
subdifferential in a reasonable range. Before proving that, we establish a regularity result.
This regularity result is given in [43, Prop. 4.5] in the case of a locally Lipschitzian function;
here we extend it to the case f is lower semicontinuous. Again, we denote by σ(S, ·) the
support function of a subset S of X∗ : for u ∈ X,

σS(u) := σ(S, u) := sup{〈x∗, u〉 : x∗ ∈ S}.

Proposition 4.5. Let f ∈ S(X) be extendedly directionally ∂-subconvex at x0 ∈ X for
some valuable subdifferential ∂. Then one has σ(∂f(x0), ·) ≤ f !(x0, ·) and ∂f(x0) ⊂ ∂!f(x0).
Thus, if ∂!f(x0) ⊂ ∂f(x0), then f is ∂-regular at x0 in the sense that ∂f(x0) = ∂!f(x0).

Proof. Lemmas 3.1 and 4.2 show that for any u ∈ SX one has

f !(x0, u) ≥ lim inf
(t,v)→(0+,u)

inf{〈x∗, v〉 : x∗ ∈ ∂f(x0 + tv)} ≥ sup{〈x∗0, u〉 : x∗0 ∈ ∂f(x0)}

= σ(∂f(x0), u)

hence, by definition of ∂!f(x0), one has ∂f(x0) ⊂ ∂!f(x0) and equality holds when ∂!f(x0) ⊂
∂f(x0).

The preceding result has interesting consequences in the case the subdifferential is tan-
gentially determined by a closed convex positively homogeneous function; this is the case
for the Clarke subdifferential ∂↑ and for the moderate subdifferential of Michel-Penot ([32]).

Corollary 4.6. Let f ∈ S(X) be extendedly directionally ∂-subconvex at x0 ∈ X for some
valuable subdifferential ∂. Suppose that ∂f(x0) = {x∗0 ∈ X∗ : x∗0 ≤ f∂(x0, ·)}, where f∂(x0, ·)
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is a lower semicontinuous and sublinear function such that f∂(x0, 0) = 0 and f∂(x0, ·) ≥
f !(x0, ·). Then f is ∂-tangentially regular at x0 in the sense that f∂(x0, ·) = f !(x0, ·).
Moreover, in that case, for each u ∈ X, one has

f !(x0, u) = lim inf
(t,v)→(0+,u)

inf{〈x∗, v〉 : x∗ ∈ ∂f(x0 + tv)} = f∂(x0, u) = σ(∂f(x0), u).

Proof. Let f∂(x0, ·) be a lower semicontinuous and sublinear function defining ∂f(x0). For
each u ∈ X a form of the Hahn-Banach theorem yields σ(∂f(x0), u) = f∂(x0, u). Thus,
when f∂(x0, ·) ≥ f !(x0, ·), the preceding proposition yields f∂(x0, u) = σ(∂f(x0), u) =
f !(x0, u).

Proposition 4.7. Let X be an Asplund space and let f ∈ S(X) be (extendedly) directionally
∂-subconvex at x0 ∈ X for some subdifferential ∂ such that ∂−f ⊂ ∂f ⊂ ∂↑f. Then f
is (extendedly) directionally ∂′-subconvex at x0 for any other subdifferential ∂′ satisfying
∂′f ⊂ ∂↑f , ∂′f(x0) ⊂ ∂f(x0).

Proof. Again, the result stems from the fact that for any δ > 0, u ∈ SX , v ∈ B(u, δ),
s ∈ (0, δ) and x = x0 + sv, the set ∂↑f(x) is the weak∗ closed convex hull of

∂f(x) + ∂∞f(x) := lim sup
w→f x

∂f(w) + lim sup
(t,w)→f (0+,x)

t∂f(w);

since ∂′f(x0) ⊂ ∂f(x0), the definition of (extended) directional submonotonicity allows to
pass from ∂f to ∂′f .

Thus, in an Asplund space X, the notion of ∂-subconvexity at x0 ∈ X for functions which
are ∂-regular at x0 does not depend on the choice of ∂ in the class of subdifferentials satisfying
∂−f ⊂ ∂f ⊂ ∂↑f. In fact, in view of Proposition 4.5, if f is directionally ∂!-subconvex at x0

and if ∂ is a subdifferential such that ∂−f ⊂ ∂f ⊂ ∂↑f, then f is directionally ∂-subconvex
at x0 if, and only if, f is ∂-regular at x0. In particular there exist functions f which are
directionally ∂!-subconvex at x0 but not directionally ∂↑-subconvex at x0.

Example 4.8. For c ∈ (0, 1) let gc : [0, 1] → [−1, 0] be the restriction of a function of class
C1 on R such that gc(0) = 0 = gc(1), g′c(r) ∈ [−c, 0] for r ∈ [0, 1 − c], g′c(r) ∈ [0, 2] for
r ∈ [1 − c, 1] with g′c(1) = 2. Let us set h(c, r) := gc(r) and let us define an even function
f : R→ R by f(0) := 0, f(x) := 2−nh(2−n, 2nx − 1) for x ∈ [2−n, 2−n+1], f(x) = 0 for
x ≥ 1. Then ∂!f(0) = {0}, ∂↑f(0) = [−2, 2] and it is easy to check that f is directionally
∂!-subconvex at x0 but not ∂↑-subconvex at 0.

Example 4.9. Let (rn)n=∞
n=1 be an enumeration of the set of all rational numbers. Take the

function h from [58, p. 216, Ex. 6] defined on R by

h(t) = t +
∞∑

n=1

(t− rn)1/3

n2(1 + |rn|)1/3
.

Then h is an increasing function from R onto R, which has a derivative (possibly infinite)
at each t ∈ R with

h′(t) = 1 +
∞∑

n=1

1
3n2(t− rn)2/3(1 + |rn|)1/3

.

Therefore, h′(t) > 1 for all t ∈ R and h′(rn) = ∞ for all n ∈ N; moreover h′(·) is lower
semicontinuous. Thus, there exists t0 ∈ (0, 1) such that

h′(t0) = min{h′(t) : t ∈ [0, 1]} < ∞.
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Let k = h−1. Then 0 ≤ k′(x) < 1 for all x ∈ R and k′(h(rn)) = 0 for all n ∈ N. Let f : R→ R
be defined by f(x) = k(x) for x ≤ x0 := h(t0), f(x) = t0 +k′(x0)(x−x0) otherwise. Then f
is Lipschitzian and f ′(x0) = k′(x0) > 0; on the other hand, ∂↑f(x0) = [0, k′(x0)]. Obviously,
f is ∂!-subconvex at x0 but not ∂↑-subconvex at this point.

5 Relationships between Semismoothness and Subconvexity

Let us start our study of the links between semismoothness, regularity and subconvexity
with the following simple result. Note that the assumption ∂f(x0) ⊂ ∂!f(x0) is natural
since it is a necessary condition for ∂-directional subconvexity at x0 by Proposition 4.5.

Proposition 5.1. Let f ∈ S(X) be radially continuous, finite at x0 and (extendedly) ∂-
semismooth at x0 for a multi-valuable (for X) subdifferential ∂ such that ∂f(x0) ⊂ ∂!f(x0).
Then f is (extendedly) ∂-directionally subconvex at x0.

Proof. Since f is extendedly ∂-semismooth at x0, for each u ∈ SX one has

lim inf
(t,v)→(0+,u)

inf{〈x∗, v〉 : x∗ ∈ ∂f(x0 + tv)} ≥ f ′(x0, u) ≥ sup{〈x∗0, u〉 : x∗0 ∈ ∂f(x0)}.

Thus, Lemma 4.2 applies. When f is ∂-semismooth at x0, the uniform boundedness theorem
and the inclusion ∂f(x0) ⊂ {x∗ ∈ X∗ : x∗ ≤ f ′(x0, ·)} of Proposition 4.5 ensure that ∂f(x0)
is bounded.

Combining that result with Proposition 4.5, we get the following consequence.

Corollary 5.2. Let f ∈ S(X) be radially continuous, finite at x0, and ∂-semismooth at x0

for a multi-valuable (for X) subdifferential ∂ such that ∂!f ⊆ ∂f . Then f is ∂-directionally
subconvex at x0 if, and only if, f is ∂-regular at x0.

We deduce from Lemma 4.2 a criterion for ∂-semismoothness which generalizes [43, Cor.
4.7] from the class L(X) to the class S(X). Note that its assumption σ(∂f(x0), ·) ≥ f !(x0, ·)
is satisfied when ∂f(x0) = ∂↑f(x0) 6= ∅ and that ∂!f(x0) is bounded whenever f is quiet at
x0, in the sense that there exist c, r > 0 such that f(x)−f(x0) ≤ c ‖x− x0‖ for x ∈ B(x0, r),
i.e. −f is calm at x0.

Proposition 5.3. Let f ∈ S(X). If f is directionally ∂-subconvex at x0 ∈ X then assertion
(a) below implies assertion (b’) and moreover, for each u ∈ SX , one has σ(∂f(x0 + tv), v) →
σ(∂f(x0), u) as (t, v) → (0+, u).

If f is radially continuous at x0, if ∂ is multi-valuable for X and if σ(∂f(x0), ·) ≥
f !(x0, ·), the reverse implication holds, hence also (b)⇒(a).

When f is directionally ∂-subconvex at x0 and ∂f(x0) is bounded and nonempty (a)⇒(b).
(a) for each u ∈ SX one has lim sup(t,v)→(0+,u) σ(∂f(x0 + tv), v) ≤ σ(∂f(x0), u);
(b) f is ∂-semismooth at x0;
(b’) f is extendedly ∂-semismooth at x0.

Proof. (a)⇒(b’) Let u ∈ SX . By our upper semicontinuity assumption, using (4.1) with
M := ∂f, we get

σ(∂f(x0), u) ≥ lim sup
(t,v)→(0+,u)

sup{〈x∗, v〉 : x∗ ∈ ∂f(x0 + tv)}

≥ lim inf
(t,v)→(0+,u)

inf{〈x∗, v〉 : x∗ ∈ ∂f(x0 + tv)} ≥ σ(∂f(x0), u),
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and ∂f is extendedly thin at x0.
When ∂f(x0) is bounded, nonempty, the above limit σ(∂f(x0), ·) is finite and ∂f is thin

at x0.
(b’)⇒(a) Suppose on the contrary that there exist u ∈ SX , α ∈ R and a sequence

((tn, un)) → (0+, u) such that limn σ(∂f(x0 + tnun), un) > α > σ(∂f(x0), u). Then, for
each n ∈ N large enough, there exists some x∗n ∈ ∂f(x0 + tnun) such that 〈x∗n, un〉 > α >
σ(∂f(x0), u) ≥ f !(x0, u) in view of our assumption. This is a contradiction with Lemma
3.7 when f is extendedly ∂-semismooth at x0, since in that case (〈x∗n, un〉) → f ′(x0, u) =
f !(x0, u).

Let us give specializations of the preceding criterion; they extend the ones in [5, 16]. The
first one covers Example 3.

Corollary 5.4. Let X be an Asplund space and let f ∈ S(X) be extendedly directionally
∂-subconvex at x0 ∈ X and such that f !(x0, ·) is convex, finite at 0 and such that for each
u ∈ SX the function (t, v) 7→ f !(x0 + tv, v) is upper semicontinuous (u.s.c.) at (0+, u). Then
f is extendedly ∂!-semismooth at x0. If moreover f !(x0, ·) is finite, f is semismooth at x0.

Proof. Our assumptions ensure that σ(∂!f(x0), ·) = f !(x0, ·); moreover condition (a) of the
preceding proposition is satisfied since σ(∂!f(x0 + tv), v) ≤ f !(x0 + tv, v) for any t > 0,
v ∈ X.

Corollary 5.5. Let f ∈ S(X) be extendedly directionally ∂↑-subconvex at x0 ∈ X and such
that for each u ∈ SX the function (t, v) 7→ f↑(x0 + tv, v) is u.s.c. at (0+, u), with ∂↑f(x0)
nonempty. Then f is extendedly ∂↑-semismooth at x0 and ∂↑-regular at x0.

Proof. The ∂↑-semismoothness of f at x0 is a special case of Proposition 5.3: for ∂ = ∂↑ and
for any (t, v) ∈ (0,+∞)×X one has σ(∂f(x0 + tv), v) ≤ f↑(x0 + tv, v) and σ(∂↑f(x0), ·) =
f↑(x0, ·) since ∂↑f(x0) 6= ∅, so that condition a) of Proposition 5.3 is satisfied. Since
∂!f(x0) ⊂ ∂↑f(x0), Clarke regularity stems from Proposition 4.5.

Corollary 5.6. Let f ∈ S(X) be continuous at x0 and such that f0(x0, 0) = 0. Then f is
directionally ∂↑-subconvex at x0 ∈ X, if and only if f is ∂↑-semismooth at x0 and ∂↑-regular
at x0.

Proof. The sufficient condition is a consequence of Proposition 5.1 since ∂↑f(x0) ⊂ {x∗ ∈
X∗ : x∗ ≤ f0(x0, ·)} is bounded when f0(x0, 0) = 0 as f0(x0, ·) is sublinear and continuous at
each point its domain ([53, Thm 3]). The necessary condition is a special case of Proposition
5.3 and of the following lemma.

Lemma 5.7. For any f ∈ S(X) and x0 ∈ dom f the function (x, v) 7→ f0(x, v) is upper
semicontinuous at (x0, u) for each u ∈ X and, on its domain, the function f0(x0, ·) coincides
with f↑(x0, ·). Moreover, ∂0f(x0) = ∂↑f(x0) when f is directionally Lipschitzian around x0

in the sense that there exists some u ∈ X such that f0(x, u) < +∞.

Proof. When f ∈ L(X) the result is given in [10, Prop. 2.1.1]. In the general case one uses
the fact that the strict epigraph H(f, x) of f0(x, ·) is the hypertangent cone at (x, f(x)) to
the epigraph E of f, where the hypertangent cone H(E, e) at e ∈ E to a subset E of some
normed vector space Z is the set of z ∈ Z such that E ∩B(e, δ)+ (0, δ)B(z, δ) ⊂ E for some
δ > 0 (see [10, p. 57], [53, p. 267]). Clearly, given z ∈ H(E, e), one has z′ ∈ H(E, e′) for
e′ ∈ E close enough to e and z′ close enough to z. This fact proves the upper semicontinuity of
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(x, v) 7→ f0(x, v) at (x0, u) for each u ∈ X. The equalities H(E, e) = intT ↑(E, e), T ↑(E, e) =
clH(E, e) when H(E, e) is nonempty ([10, Thm 2.4.8]) entail the string of equivalences

x∗ ∈ ∂0f(x0) ⇔ (x∗,−1) ∈ H(E, e)0 ⇔ (x∗,−1) ∈ T ↑(E, e)0 ⇔ x∗ ∈ ∂↑f(x0).

The fact that f0(x0, ·) coincides with f↑(x0, ·) on its domain is contained in [53, Thm 3].

Another criterion is obtained by means of a variant of a notion used in [40]. A function
f is said to be directionally stable at x0 ∈ X if f(x0) < +∞ and if for any u ∈ SX there
exist δ > 0 and c > 0 such that

|f(x0 + tv)− f(x0 + tu)| ≤ ct ∀v ∈ B(u, δ), t ∈ (0, δ). (5.1)

Note that this condition is satisfied when f !(x0, ·) and (−f)!(x0, ·) are finite.

Lemma 5.8. If f ∈ S(X) is directionally stable at x0 ∈ dom f, directionally Lipschitzian
around x0 and continuous at x0, and if ∂!f(x0) = ∂↑f(x0) is nonempty, then, for each
u ∈ SX , the function (x, v) 7→ f↑(x, v) is u.s.c. at (x0, u). In fact, f !(x0, ·) = f↑(x0, ·) =
f0(x0, ·).
Proof. In view of Lemma 5.7, it suffices to prove that for each u ∈ SX we have f↑(x0, u) =
f0(x0, u). We first observe that since f is directionally Lipschitzian around x0, by [52, Cor.
1], from the relation ∂!f(x0) = ∂↑f(x0) we deduce that f↑(x0, ·) = f !(x0, ·).

Now let u ∈ dom f↑(x0, ·) and let δ > 0 and c > 0 be as in (5.1). Then,

|f(x0 + tv)− f(x0 + tw)| ≤ 2ct ∀v, w ∈ B(u, δ), t ∈ (0, δ).

It follows that for any v ∈ B(u, δ) we have

lim inf
(t,v′)→(0+,v)

1
t

(f(x0 + tv′)− f(x0)) ≤ lim inf
(t,u′)→(0+,u)

1
t

(f(x0 + tu′)− f(x0)) + 2c

hence v ∈ dom f !(x0, ·) = dom f↑(x0, ·). Thus dom f↑(x0, ·) is open. Since f is directionally
Lipschitzian around x0, [53, Thm 3] or [10, Thm 2.9.5] ensure that f↑(x0, ·) = f0(x0, ·) on
intdom f↑(x0, ·), hence on dom f↑(x0, ·). Since f↑(x0, ·) ≤ f0(x0, ·), these functions coincide.

Using Propositions 4.5 and 5.1 we get the following consequence.

Corollary 5.9. Let f ∈ S(X) be finite, continuous at x0, directionally stable at x0 and direc-
tionally Lipschitzian around x0 with ∂↑f(x0) nonempty. Then f is extendedly directionally
∂↑-subconvex at x0 if, and only if, f is extendedly ∂↑-semismooth at x0 and ∂↑-regular at
x0. If moreover ∂↑f(x0) is bounded, the equivalence holds without “extendedly”.

6 Approximate Starshapedness

The following notions are pointwise versions of the concepts of approximate convexity and
directional approximate convexity introduced in [36, 21] respectively and studied in [1, 37].

Definition 6.1. A function f ∈ F(X), finite at x0, is said to be approximately starshaped
at x0 if for any ε > 0 there exists ρ > 0 such that for any x ∈ B(x0, ρ), t ∈ [0, 1], one has

f((1− t)x0 + tx) ≤ (1− t)f(x0) + tf(x) + εt(1− t) ‖x− x0‖ . (6.1)

A function f ∈ F(X), finite at x0, is said to be directionally approximately starshaped at
x0 if for any ε > 0, u ∈ SX there exists δ > 0 such that for any s ∈ (0, δ), v ∈ B(u, δ),
t ∈ [0, 1], relation (6.1) holds for x := x0 + sv.
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Clearly, if f is approximately starshaped at x0 then it is directionally approximately
starshaped at x0 : given ε > 0 and u ∈ SX and taking ρ > 0 associated with ε as in
Definition 6.1 we see that (6.1) is satisfied when x = x0 + sv with s ∈ (0, δ), v ∈ B(u, δ)
provided δ ≤ min(1, ρ/2). Moreover, Definition 6.1 is a uniform version of the notion of
directional approximate starshapedness. In finite dimensions, the two concepts coincide.
They have interesting consequences we now delineate.

Lemma 6.2. Let f ∈ F(X) be finite at x0. If f is directionally approximately starshaped at
x0, then, for any u ∈ SX , ε > 0, there exists δ > 0 such that for any s ∈ (0, δ), v ∈ B(u, δ)
one has, for x := x0 + sv,

f !(x0, sv) ≤ f(x0 + sv)− f(x0) + ε ‖sv‖ , (6.2)

f !(x,−sv) ≤ f(x− sv)− f(x) + ε ‖sv‖ . (6.3)

Moreover, f is directionally ∂!-subconvex at x0, i.e. ∂!f is directionally submonotone at x0.

Proof. Let u ∈ SX . Given ε > 0, let δ > 0 be such that relation (6.1) is satisfied for any
s ∈ (0, δ), v ∈ B(u, δ), t ∈ (0, 1], with x := x0 + sv. Let (s, v) ∈ (0, δ) × B(u, δ) be fixed.
Then, we have

f(x0 + tsv)− f(x0) ≤ tf(x0 + sv)− tf(x0) + εt(1− t) ‖sv‖ ,

hence, dividing by t and taking the limit inferior as t → 0+, we get

f !(x0, sv) ≤ f(x0 + sv)− f(x0) + ε ‖sv‖ .

Setting x := x0 + sv, t′ := 1− t and writing (6.1) under the form

f(x− t′sv)− f(x) ≤ t′f(x− sv)− t′f(x) + εt′(1− t′) ‖sv‖ ,

dividing by t′ and taking the limit inferior as t′ → 0+, we get

f !(x,−sv) ≤ f(x− sv)− f(x) + ε ‖sv‖ .

Given x∗0 ∈ ∂!f(x0), x∗ ∈ ∂!f(x), with x := x0 +sv, using the relations 〈x∗0, sv〉 ≤ f !(x0, sv),
〈x∗,−sv〉 ≤ f !(x,−sv), adding sides by sides relations (6.2), (6.3), we get

〈x∗0 − x∗, x− x0〉 ≤ 2ε ‖x− x0‖ .

Since ε > 0 is arbitrary, we get that ∂!f is directionally submonotone at x0.

Similarly, it can be shown that if f is approximately starshaped at x0 then f is ∂!-
subconvex at x0; moreover, in such a case, f is ∂−-regular at x0 : ∂−f(x0) = ∂!f(x0).

Proposition 6.3. Let X be a Banach space such that ∂! is valuable for X and let f ∈ S(X)
be finite at x0 and directionally approximately starshaped at x0. Then for each u ∈ X\{0}
one has

f !(x0, u) = lim inf
(t,v)→(0+,u)

inf{〈x∗, v〉 : x∗ ∈ ∂!f(x0 + tv)}.

Moreover, if X is an Asplund space, and if f is ∂-regular at x0 for a subdifferential ∂ such
that ∂−f ⊂ ∂f ⊂ ∂↑f, then f is directionally ∂-subconvex at x0.
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Proof. When ∂! is valuable for X, Lemma 3.1 ensures that

` := lim inf
(t,v)→(0+,u)

inf{〈x∗, v〉 : x∗ ∈ ∂!f(x0 + tv)} ≤ f !(x0, u〉.

Let ((ti, vi))i∈I → (0+, u) and x∗i ∈ ∂!f(x0 + tivi) be such that (〈x∗i , vi〉)i∈I → `. Then, by
(6.3), for some net (εi)i∈I → 0+, we have

〈x∗i ,−vi〉 ≤ f !(x0 + tivi,−vi) ≤ t−1
i (f(x0)− f(x0 + tivi)) + εi ‖vi‖ .

Thus
` ≥ lim inf

i∈I
t−1
i (f(x0 + tivi)− f(x0)) ≥ f !(x0, u).

The second assertion is a combination of the preceding lemma with Proposition 4.7.

The following result shows a striking consequence of semismoothness.

Theorem 6.4. Let f ∈ S(X) be finite, radially continuous at x0 and ∂-semismooth at x0

for a multi-valuable subdifferential ∂ for X. Then f is directionally approximately starshaped
at x0.

Proof. Assume f is ∂-semismooth at x0 and radially continuous at x0. In view of Lemma
3.7, given u ∈ SX , ε ∈ (0, 1) there exists δ ∈ (0, 1/2) such that for any s ∈ (0, δ), v ∈ B(u, δ)
and any x∗ ∈ ∂f(x) with x := x0 + sv, one has

|〈x∗, v〉 − f ′(x0, u)| ≤ ε, (6.4)∣∣∣∣
f(x0 + sv)− f(x0)

s
− f ′(x0, u)

∣∣∣∣ ≤ ε (6.5)

Let s ∈ (0, δ), v ∈ B(u, δ), x := x0 +sv, t ∈ (0, 1), and let y := tx+(1−t)x0. Without loss of
generality, to prove inequality (6.1) we may assume that x 6= x0 and f(x) < +∞. Applying
the mean value theorem (Theorem 2.1) to f on [x, y], since by (6.5) r := f(y) < +∞, we
can find some z ∈ [x, y), some sequences (zn) → z, (z∗n) and (εn) → 0+ such that εn ∈ (0, ε)
and z∗n ∈ ∂↑f(zn) for each n and

f(y)− f(x)
‖y − x‖ ≤ 〈z∗n,

x0 − zn

‖x0 − zn‖〉+ εn. (6.6)

Let rn := ‖zn − x0‖/‖v‖, vn := (zn − x0)/rn, so that (rn) → ‖z − x0‖/‖v‖ ∈ (0, δ) and
(vn) → v. We have vn ∈ B(u, δ) for n large enough. In view of (6.4), (6.6), by letting
n →∞, we get, since ‖y − x‖ = s(1− t)‖v‖,

f(y)− f(x)
s(1− t)

=
f(y)− f(x)
‖y − x‖ ‖v‖ ≤

(
〈z∗n,

rnvn

rn ‖v‖〉+ εn

)
‖v‖ ≤ −f ′(x0, u) + ε + εn ‖v‖ .

On the other hand, since y = x0 + stv, ‖y − x0‖ = st ‖v‖ , (6.5) ensures that

f(y)− f(x0)
st

=
f(y)− f(x0)
‖y − x0‖ ‖v‖ ≤ f ′(x0, u) + ε.

Combining these two relations, we obtain, since ‖v‖ ≥ 1− δ ≥ 1/2,

f(y)−tf(x)−(1−t)f(x0) ≤ st(1−t)(2ε+εn) ≤ 2 ‖v‖ st(1−t)(2ε+εn) = 6εt(1−t) ‖x− x0‖ .

Since ε is arbitrarily small, f is directionally approximately starshaped at x0.

For a directionally Lipschitzian function, semismoothness entails a stronger property we
introduce now.
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Definition 6.5. A function f ∈ F(X), finite at x0, is said to be approximately straight at
x0 if f and −f are approximately starshaped at x0.

A function f ∈ F(X), finite at x0, is said to be directionally approximately straight at
x0 if f and −f are directionally approximately starshaped at x0, i.e. if, for any ε > 0 and
any u ∈ SX , there exists δ > 0 such that for any s ∈ (0, δ), v ∈ B(u, δ), t ∈ [0, 1], one has,
with x := x0 + sv

|(1− t)f(x0) + tf(x)− f((1− t)x0 + tx)| ≤ εt(1− t) ‖x− x0‖ . (6.7)

This property requires a symmetry result which is well known when f ∈ L(X) or when
dimX < +∞.

Lemma 6.6. If the function f : X → R is finite and continuous at x ∈ X and is directionally
Lipschitzian around x, then −f is directionally Lipschitzian around x and

∂↑(−f)(x) = −∂↑f(x). (6.8)

Proof. The first assertion is contained in [53, Thm 3]; it is also shown there that

(−f)↑(x, v) = −f↑(x,−v) ∀v ∈ X.

To prove (6.8), using [10, Thm 2.4.8, Cor. 2.9.3], let us first note that when f is directionally
Lipschitzian around x, then

x∗ ∈ ∂↑(−f)(x) ⇔ x∗ ≤ (−f)↑(x, ·) ⇔ −x∗ ≤ f↑(x, ·) ⇔ −x∗ ∈ ∂↑f(x). (6.9)

Corollary 6.7. Let f ∈ F(X) be finitely valued, continuous, directionally Lipschitzian
around x0, and ∂↑-semismooth at x0. Then f is directionally approximately straight at x0.

Proof. Since f is continuous and directionally Lipschitzian around x0, it is directionally
Lipschitzian around each point of a neighborhood of x0; thus the result follows from Theorem
6.4 and the fact that, by the preceding lemma, −f is also semismooth at x0.

Let us subsume several of our results in the following statement which shows strong
relationships.

Theorem 6.8. Let ∂ be a multi-valuable subdifferential and let f ∈ S(X) be radially con-
tinuous, finite at x0 and such that ∂!f ⊂ ∂f ⊂ ∂↑f. Among the following assertions, one
has the implications

(a) ⇒ (b) ⇒ (c), (e) ⇒ (b), (e) ⇒ (d) ⇒ (c).

If ∂↑f(x0) is nonempty, if f is continuous, directionally stable at x0, directionally Lips-
chitzian around x0 and ∂↑-regular around x0, then (a)⇔(b)⇔(c’)⇔(d’)⇔(e).

(a) f is ∂-semismooth at x0;
(b) f is directionally approximately starshaped at x0;
(c) f is directionally ∂!-subconvex at x0;
(c’) f is directionally ∂!-subconvex at x0 and ∂!f(x0) is bounded;
(d) ∂!f and ∂! (−f) are directionally submonotone at x0;
(d’) ∂!f and ∂! (−f) are directionally submonotone at x0 and ∂!f(x0) is bounded;
(e) f is directionally approximately straight at x0.
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Proof. (e)⇒(b) and (d)⇒(c) are obvious; (b)⇒(c) and (e)⇒(d) are proved in Lemma 6.2,
while (a)⇒(b) is given in Theorem 6.4. Under the additional assumption, Corollary 5.9
ensures (c’)⇒(a). Lemma 6.6 shows that −f is also directionally Lipschitzian around x0

and ∂↑(−f)(x0) is bounded and nonempty, so that f and −f are semismooth when (d’) and
the additional assumption hold, hence (d’)⇒(e) and (c’)⇒(d’).

Remark 6.9. a) When X is Asplund, Proposition 4.7 enables to replace the assumption
that f is ∂↑-regular around x0, by the assumption that f is ∂↑-regular at x0.

b) As shown in previous statements several implications can be obtained for extended
semismoothness and subconvexity and without the boundedness assumption for ∂!f(x0).

An example of starshaped function which is not semismooth can be given as follows.

Example 6.10. Given decreasing sequences (an), (cn) of (0,+∞) with limit 0, let f : R→ R
be even, continuous and given by f(x) = c2nx for x ∈ [a2n, a2n−1], f(x) = (c2n+1 + 1)(x −
a2n) + c2na2n for x ∈ [a2n+1, a2n]. Then f is starshaped at 0, differentiable at 0, but not
semismooth at 0 nor approximately convex at 0.
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Av. de l’Université 64000 PAU, France
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