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GENERALIZED TYPE I INVEXITY AND DUALITY IN
NONDIFFERENTIABLE MULTIOBJECTIVE VARIATIONAL
PROBLEMS*

S.K. MisHRA, S.Y. WANG' AND K.K. LAI

Abstract: We consider a new class of generalized V-type I invex functions for a class of nondifferentiable
multiobjective variational problems. A number of sufficient optimality results are established under gener-
alized V-type I and related invex functions. Duality theorems are obtained for Mond-Weir type duals under
the aforesaid assumptions.
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Introduction

Hanson [7] observed that variational and control problems are continuous-time analogue
of finite dimensional nonlinear programming problems. Since then the fields of nonlinear
programming problems and the calculus of variations have to some extent merged together
within optimization theory, hence enhancing the potential for continued research in both
fields. Optimality conditions and duality results are obtained for scalar valued variational
problems by Mond and Hanson [19] under convexity. Mond et al. [21] extended the concept
of invexity (see, Hanson [8]) to the continuous case and used it to generalize earlier dual-
ity results for a class of variational problems. Mond and Smart [20] extended the duality
theorems for a class of static nondifferentiable problems with Wolfe type and Mond-Weir
type duals, and further extended these for the continuous analogues. Mishra and Mukherjee
[16] extended the work of Mond et al. [21] for multiobjective variational problems which
in particular extended an earlier work of Bector and Husain [3]. Jeyakumar and Mond [10]
introduced the class of V-invex functions, which preserves the sufficient optimality and du-
ality results in the scalar case and avoids the major difficulty of verifying that the inequality
holds for the same kernel function. Mukherjee and Mishra [22] extended the work of Jeyaku-
mar and Mond [10] to variational problems with the concept of weak minima. Mishra [15]
established a close relationship between variational problems and nonlinear multiobjective
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programming problems. Kim and Kim [12] obtained duality results for a nondifferentiable
multiobjective variational problem under generalized (F, p)-convexity, following Mishra and
Mukherjee [17]. For other works on variational problems one can see, Bhatia and Mehra [2],
Chankong and Haimes [4], Chen [5], Kim and Lee [11], Liu [14], Mishra and Mukherjee [18],
Mukherjee and Mishra [23], Nahak and Nanda [24, 25] and Yang and Zang [26].

Recently, Kim and Kim [13] extended the concepts of generalized V —type I invex vector-
valued functions introduced by Hanson et al. [9], to continuous case and established Mond-
Weir type duality results under the aforesaid assumptions.

In this paper, we extend the work of Kim and Kim [13] to nondifferentiable case by
adding a square root of a certain positive semidefinite quadratic form in every component of
the objective function. In Section 2, we recall the necessary concepts and give the model of
the problem. We establish several sufficient optimality conditions in Section 3. In Section 4,
we present duality theorems for Mond-Weir type of dual under the aforesaid assumptions.

Notations and Preliminaries

Let I = [a, b] be a real interval and f : I x R™ x R"™ — R be a continuously differentiable
function. In order to consider f (¢, x,2), where z : I — R" is differentiable with derivative
%, we denote the partial derivatives of f by f,

_[of of _|of of
fr[aml"”78x"}7 fz[@x”’@x"}

The partial derivatives of the other functions used will be written similarly. Let C' (I, R™)
denote the space of piecewise smooth functions z with norm ||z|| = ||z + ||Dz||, , where
the differential operator D is given by

t
ui:Dxi@xi(t):a+/ui(s) ds,

in which « is a given boundary value. Therefore, D = except at discontinuities.
For a multiobjective continuous programming;:

(MP) minimize /bf(t,a:,x /f1 t,x, ) /fp (t,z,2)

subject to
z(a)=a, z(b)=p
gtz i) <0, tel,
xeC(I, R"),

where f; : IXR" X R* — R, i€ P={1,...,p},g9: I X R X R* — R™ are assumed to be
continuously differentiable functions.
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Let K denote the set of all feasible solutions for (MP), that is
K={zeC(, R"): z(a)=a, z(b)=0, g(t, x(t), ©(t)) < 0,tel}.

Craven [6] obtained Kuhn-Tucker type necessary conditions for the above problem and
proved that the necessary conditions are also sufficient if the objective functions are pseu-
doconvex and the constraints are quasiconvex.

Definition 2.1. A point z* € K is said to be an efficient solution of (MP) if for all z € K

b

b
[ i @4 o) dtz/m,x(t),s'c(t)) dt, VieP

b
:>/fi(t,x*(t ) dt = /fltx (t)) dt, Vi€ P.

We now recall the definitions of generalized V-type I invex functions from Kim and Kim
[13].
Definition 2.2. We say the problem (PM) to be V-type I invex at w € C (I, R™) with

respect to 7, o; and j; if there exist vector function n : I x R" x R* — R" with 7 (t,z,2) =0
and real valued functions a; € Ry\ {0} and 3; € R\ {0} such that

b b

/fi (t,,@) dt — /fi (t,u,q) dt

a a

b
> [, w i o {2 i - 55 o} a
and
b b

; d
- [atwiy de > [5G it ol ¢ - ol i} a
Vee K andforallie P={1,2,...,p}h,jeM={1,2,...,m}.

If the first inequality is strict (whenever x # 2*) we say that (MP) is sems strictly V-type
I invex at x*.

Definition 2.3. We say the problem (MP) is semi strictly quasi V-type I at uw € C (I, R™)
with respect to n, o; and (3; if there exist vector function n : I x R" x R — R" with
n (t,z,z) = 0 and real valued functions «; € R\ {0} and 8; € R\ {0} such that for some
vector 7 € RP | 7 > 0, and piecewise smooth function A : I — R™, A (t) >0,

by b p
/ZT%I w, &,u)f; (tx, &) dt < /Zrmx w, &, ) fi (t,u,a) dt
i=1 =1

b
= /Znn(tw,u){fi(t,u,d)—jtf};(uu,u)} dt < 0,

Y i=1
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and

b

f/waj(a:,u,ac,u>gj<t,u7u> gt < 0

Jj=1

; . d .
= /Z)\ n (¢, z,u) {gi(hwu)—dtgi(t,u?u)} dt < 0,

a J=1
whenever x # 2*, Ve € K, foralli e P={1,2,...,p} and j € M ={1,2,...m}.

Definition 2.4. We say the problem (MP) is semi strictly pseudo V—type I at u €
C (I, R™) with respect to i, o; and §; if there exist vector function n: I x R x R" — R"
with 7 (¢,z,x) = 0 and real valued functions o; € Ry \ {0} and 8; € R.\ {0} such that for
some vector 7 € RP, 7 > 0, and piecewise smooth function A : I — R™, A(t) >0,

by
/ZT (t,z,u) {f;(t,u,u)—ifé(t,u,u)} dat >0

=1

by b
:>/Z o (x,u, &, 0) fi (o, &) dt>/ZTalmumu)f1(tuu)dt
i=1 i=1

and

b
/ZAJ n (t,z,u) {g;(t,u,u)cﬁgg(t,u,a)} dt > 0

@ J=1

:/Z)\ )G (x, w, &, u)g(t,u,a) dt < 0,

a J=1
whenever x # 2%, Ve € K, foralli e P={1,2,...,p} and j € M ={1,2,...,m}.
Definition 2.5. We say the problem (MP) is quasi strictly pseudo V—type I at u €
C (I, R™) with respect to n, o; and §; if there exist vector function n: I x R" x R" — R"

with 7 (¢,2,2) = 0 and real valued functions o; € Ry \ {0} and 8; € R;\ {0} such that for
some vector 7 € RP, 7 > 0, and piecewise smooth function A : I — R™, A(t) >0,

by b p
/ZTO&ZI w, &,u)f; (tx, &) dt < /ZTqu w, &, ) fi (t,u,a) dt
i=1 =1

b
= /Znn(tw,u){fi(t,u,d)—jtf};(uu,u)} dt < 0,

i=1
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and

/bzm:)\j (t)n (¢, 2, u) {gi (t,u, i) — %gi (t,u,u)} dt > 0

a J=1

:>/Z)\ )Bi(x,u, &,4)g(t,u,a) dt < 0,

a J=1
Vee K, forallie P={1,2,...,p}and j € M ={1,2,...,m}.

Definition 2.6. We say the problem (MP) is pseudo quasi V-type I at uw € C (I, R")
with respect to 1, o; and 3; if there exist vector function n : I x R" x R® — R" with
n (t,x,2z) = 0 and real valued functions «; € R\ {0} and 8; € R\ {0} such that for some
vector 7 € RP | 7 > 0, and piecewise smooth function A: I — R™, A (t) >0,

bop
/;Tm (t,z,u) {f; (t,u,u)—%f; (t,uﬂl)} dt > 0

b b
P P
é/ZTazxuxu)fz(txx dt>/27a1xuxu)fl(tuu)dt
i=1 i=1
and

b m
_/ZM t) By (x, u, &, 10) g (tu,i) dt < 0

a J=1

:>/Z)\ n(t,z,u) {gi(t,u,u)—jtgi(t,u,u)} dt < 0,

VaeK, forallzEP:{l,Q,...,p}andjeM:{l,Q,...,m}.

We consider the following nondifferentiable multiobjective continuous programming prob-
lem (CNP):

b
minimize / fit,z, )+ (7 () Biz (t))l/Q} dt,...,

b
/ {fp (t,2, ) + (27 (¢) Bpx(t))l/Z} dt

subject to
z(a)=a, z(b)=p
g(t,x,x) S 07 t€I7

xeC((I, R"),
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where f; : IXR" X R" - R, i€ P={1,...,p},g9: I X R x R" — R™ are assumed to be
continuously differentiable functions and each B;, V i € P, is an n X n positive semidefinite
matrix.

Let Konp denote the set of all feasible solutions for (CNP), that is

Koenp={ze€C{, R"): z(a)=a, 2(b)=0, g(t, z(t), (t)) < 0,tel}.

In the subsequent analysis, we shall frequently use the following generalized Schwarz
inequality

1 1
zT'Bz < (I’TBSC) 2 (ZTBZ) 2 ,

where B is an n X n positive semidefinite matrix.

Optimality Conditions

In this section we establish some sufficient conditions for an x* € Konyp to be efficient
solution of problem (CNP) under various generalized V-type I invexity assumptions.

Theorem 3.1 (Sufficiency). Let z* be feasible for (CNP) and suppose that there exist
T* € RP, 7* > 0 and a piecewise smooth function \* : I — R™ \* (t) > 0, such thatV t € I,

p m
ST(F L @) + By () 2 (8) + YN (1) gl (¢ 2,57
i=1 j=1
d [<& , m ,
= | 2o m et @) + ) Nl (bt i) | (3.1)
i=1 j=1
2Bz <1, i=1,2,...,p (3.2)
b m
[0 e iyt —o. (3.3)
a J=1

If the problem (CNP) is quasi strictly pseudo V —type I invex with respect to 7, o; and 3;,
Vie P, je€ M. Then z* is an efficient solution for (CNP).

Proof. Suppose that z* is not an efficient solution for (CNP), then there exists an z € Koy p
such that

b 1/
/ {fi(t,:c,:t)+(asT (t)B; (t)z (1)) 2} dt

< /b{fi(t,m*,df*)—i—(m*T(t)Bi(t)$*(t))1/2} dt, YieP,

and

b 1/
/ {fio (t,x, &) + (a7 (1) Biy (t) x (1)) 2} dt

< /b {fio (t,a*, &%) + ("7 (t) B, (t) * (t))l/Q} dt, for some ig € P,



GENERALIZED TYPE I INVEXITY AND DUALITY 315

which implies that
b P L
/ZTiai(ac,x*,:b,:t*) fi(ted) + (2T () By (0) 2 (1) /2 bt
@ =1

b P . )
- AEgn%@Jﬁi”ﬂ{ﬁ@ﬁ@ﬂ+@”m34mfm)&}w

From the above inequality, the inequality (3.2), the generalized Schwarz inequality and
the invexity hypothesis on the problem, we have

b
P ‘ q
/;Ti*n (¢, z,27) {f; (b, o, &%) + Bi ()2 (1) — - fi (£, 27, x’*)}dt <0.  (3.4)

From (3.1) and (3.4), we have

b
/i)\;‘ t)n(t,x, x*) {gi (t,x*, &%) — %gi (t,x*@*)} dt > 0. (3.5)
o J=1
From the invexity hypothesis on the problem (CNP) and (3.5), we have
b m
/ZA; () B; (x, a*, &, &%) gj (t, 2", &%) dt < 0. (3.6)
o J=1

Since 8; € R4\ {0} , Vj € M, from (3.3), we have

b m
/Z&m@@wtmm%wf@ﬂﬁ:a

q J=1
which contradicts the inequality (3.6) and hence z* is an efficient solution for (CNP). O

Theorem 3.2 (Sufficiency). Let z* be feasible for (CNP) and suppose that there exist
T* € RP, 7" > 0 and a piecewise smooth function \* : I — R™, \*(t) > 0, such that
YV t € I, the inequalities (5.1)-(3.3) from Theorem 3.1 hold. If the problem (CNP) is pseudo
quast V —type I invex with respect ton, o and 85,V i € P, 5 € M. Then z* is an efficient
solution for (CNP).

Proof. Suppose that z* is not an efficient solution for (CNP), then there exists an z € Koy p
such that

b 1/
/ {fi(t,x,i)qt(xT (t) B; () x (1)) 2} dt

b
< /{fi(t,x*,:t*)—i-(sc*T(t)Bi(t)x* (t))1/2} dt, YieP,
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and

b 1
/ {f (t, 2, ) + (7 (8) Bi, (t) = (1)) /2} dt

b 1
< / {fio (t,z*,2%) + (z*7 (t) B, (t) 2™ () /2} dt, for some ig € P,

which implies that
b P 1/
/ ZTZ- o (z, 2%, &, 3%)3 fi (tx, @) + (27 () B; (t) 2 () 28
a =1

b » ) '
< /;Tl Q; (567 x*’ T, q;*) {fz (t,;(;*?j*) -+ (SL’*T (t) B; (t) z* (t)) /2} dt. (37)

a

Since 3; € R4\ {0} , Vj € M, from (3.3), we have

b m
/ZA;(t)ﬂf(xvx*vfbvfb*)gj(t,z*ﬂb*) d = 0.

o J=1
From the above inequality, the invexity hypothesis on the problem, we have

b m
/Z)\;n (t,z, z*) {g; (t,z", ") — %g; (t,w*,jc*)} dt < 0. (3.8)

a J=1

From (3.1) and (3.8), we have

b D
/;Ti*n (t,z, z*) {fi(t’$*7¢*)+3i<t)zi(t)—ifi(t,x*,fc*)}dtzo. (3.9)

From the invexity hypothesis on the problem (CNP) and (3.9), we have

b p .
[t 8 {ff (t2,) + (a7 (1) B (1) 1) /2} @

b p ) ,

which contradicts the inequality (3.7) and hence x* is an efficient solution for (CNP).

The sufficiency conditions can be established under semi strictly quasi V-type I and semi
strictly pseudo V-type I invexity assumptions as well. More precisely, we have following
Theorems 3.3 and 3.4. However, as the proofs will be similar to the above Theorems 3.1
and 3.2, we omit the proofs. O
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Theorem 3.3 (Sufficiency). Let x* be feasible for (CNP) and suppose that there exist
T* € RP, 7* > 0 and a piecewise smooth function \* : I — R™  X\*(t) > 0, such thatV t € I,
the inequalities (3.1)-(3.3) from Theorem 3.1 hold. If the problem (CNP) is semi strictly
quasi V-type I invex with respect to n, oy and B;, Vi € P, j € M. Then x* is an efficient
solution for (CNP).

Theorem 3.4 (Sufficiency). Let z* be feasible for (CNP) and suppose that there exist
T* € RP, 7* > 0 and a piecewise smooth function \* : I — R™, X\* (t) > 0, such thatV t € I,
the inequalities (3.1)-(3.3) from Theorem 3.1 hold. If the problem (CNP) is semi strictly
pseudo V -type I invex with respect ton, a; and B, Vi€ P, j € M. Then x* is an efficient
solution for (CNP).

Mond-Weir Duality

We consider the following dual problem to (CNP):
(MWD)

subject to

P m
Zﬂfé (t,u, ) + By (t) 2 (t) + ij (t) g (t,u, @)
=1 j=1
d P ) m .
i=1 j=1
2Bz <1, i=1,2,...,p (4.2)
b
/)\j(t)gj(t,u,u)dt >0.YjeM, (4.3)
At)>0,tel. (4.4)

We let Yy be the set of feasible solutions of the problem (MWD). Now we establish some
duality theorems for the pair of problems (CNP) and (MWD).
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Theorem 4.1 (Weak Duality). Let x be feasible for (CNP) and (u, 7, A) € Yy. If the
problem (CNP) is pseudo quasi V -type I invex with respect ton, o; and 3;,Vie P, je€ M.
Then the following cannot hold:

b

1
/{f (t.a,@) + (a7 (t) Bi () z (1)) /2} dt

a

b
< /{fi(t,u,ﬂ)+(uT(t)Bi(t)u(t))%} dt, Vie P

and

b 1
/{fio (t,z, &) + (=7 () By, () 2 (1)) /2} dt

b

< / {fio (t,u,w) + (u” () Biy () u (t))1/2} dt, for someig € P.

a

Proof. Suppose contrary to the result, since o; € R1\ {0} , Vi€ P, and 7 > 0, we get

b 1
/Zfiai(:v, u, &, u){f, (t,x,2) + (mT(t)Bi (t)x(t)) /2} dt

i=1

b p .
< /;Tiai(l‘,u,i‘,’d) {fi(t’u’u)Jr(UT(t)Bi(t)u(t)) /2} dt. (4.5)

a

Since ; € R4\ {0} , Vj € M, by duality constraint (4.3), we have

b
/Z)\j(t) By (xyu, i, ) gy (t,u,a)dt >0. (4.6)

a J=1

By the generalized invexity hypothesis and (4.6), we get
b p
/ka(t,w’ U){gi (tu, @) = — g} (tu, u)} dt < 0. (4.7)
o J=1
From (4.1) and (4.7), we have

/bp
a =

o) {7 0 B (050 - GAG w20, @)

i=1
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By the generalized invexity hypothesis, generalized Schwarz inequality and (4.8), we get

by 1
/Znai(:v, u, T, u){fl (t,x,d) + (mT(t)BZ- (t)ac(t)) /2} dt

i=1

b, 1
> /E;Tiai(:c,u,:’c,u){fi(t7u,u)+(UT(t)Bi(t)u(t)) /2} it

a
which contradicts (4.5), this completes the proof. O

Theorem 4.2 (Weak Duality). Let x be feasible for (CNP) and (u, 7, A) € Yy. If the
problem (CNP) is semi strictly V -type I invex with respect ton, o; and 3;,Vie P, je€ M.
Then the following cannot hold:

b

1
/{fi (t,@,d) + (27 (t) B (t) x (1)) /2} dt

b
< /{fi(t,u,u)—&-(uT(t)Bi(t)u(t))1/2} dt, YieP,

and

b 1
/{fio (t,z, &) + (z (t) Bi, (t) x (1)) /2} dt

b

< / {fio (t,u,w) + (u” (t) Biy () u (t))1/2} dt, for someig € P.

a
Proof. Suppose contrary to the result, since o; € R4\ {0} , Vi€ P, and 7 > 0, we get
/b
)

i=1

1
n%uwumm1{ﬁ@m@+@?@&@ﬂ@”&}ﬁ

b, :
< /z;nai(x,u,x',u)_l {fi(t7u’a)+(UT(t)Bi(t)u(t)) /2} dt. (4.9)

a

Since ; € R4\ {0} , Vj € M, by duality constraint (4.3), we have

b
/Z)\j(t)ﬁj(x,u,d:,ﬂ)gj(t,u,u)dt >0. (4.10)

@ J=1

By the generalized invexity hypothesis and (4.10), we get

b m
[t {at i) - G u i} an < o (4.11)

@ J=1
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From (4.1) and (4.11), we have

b P
/;Tm (t, z,u) {f;}(t,u, ﬂ)—&-Bi(t)zi(t)—%f;(t,u, u)} >0. (4.12)

a

By the generalized invexity hypothesis, generalized Schwarz inequality and (4.12), we
get

b » 1/
/ o () w, &, ) {fl- (t,z, i) + (27 (¢) B; (t) x (¢)) 2} dt
a i 1

b P ,

which contradicts (4.9), this completes the proof. O

Strong and converse duality theorems can be established on the lines of Mishra [15] and
Kim and Kim [13], in the light of the discussions given in the present paper.

Conclusion

In the present paper, we have extended a recent work of Kim and Kim [13] to nondifferen-
tiable case, as a by product our results extend an earlier work of Mishra [15] to more general
class of generalized invexity and an earlier work of Hanson et al. [9] to nondifferentiable and
continuous-time case, as well.

Moreover, it will be interesting to see if the results of the present paper can be extended
to the class of functions given by Aghezaaf and Hachimi [1]. The results of Mishra and
Mukherjee [18] can be extended to the classes of functions used in the present paper. Some
of these problems will be topic of research of forth coming papers of the authors.
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